STA 711: Probability and Measure Theory

Analysis \& Calculus Quiz
Students in STA 711: Probability \& Measure Theory are expected to be familiar with real analysis at an advanced undergraduate level - the level of W. Rudin's Principles of Mathematical Analysis or M. Reed's Fundamental Ideas of Analysis. They should be able to answer the questions in this quiz without consulting reference materials.
Problem 1: Recall that a sequence $\left\{x_{n}\right\}$ in a metric space (\mathcal{X}, d) converges to a limit $x^{*} \in \mathcal{X}$ if for each $\epsilon>0$ there exists a number $N_{\epsilon}<\infty$ such that

$$
\left(\forall n \geq N_{\epsilon}\right) \quad \mathrm{d}\left(x_{n}, x^{*}\right)<\epsilon .
$$

a. Prove 1 that $x_{n}:=1 / \sqrt{n}$ converges to $x^{*}=0$ in the metric space $\mathcal{X}=$ \mathbb{R} with the usual (Euclidean) distance metric $\mathrm{d}(x, y):=|x-y|=$ $\sqrt{(x-y)^{2}}$.
b. Find an explicit sequence x_{n} of rational numbers that converges to $x^{*}=\pi$ in the metric space $\mathcal{X}=\mathbb{R}$. Prove that it converges, by finding N_{ϵ} (Hint: you might want to start by choosing $N_{\epsilon}-$ say, $\lceil 1 / \epsilon\rceil$ or $\left\lceil-\log _{2} \epsilon\right\rceil$ or $\left\lceil-\log _{10} \epsilon\right\rceil$ - and then find x_{n}).

[^0]Problem 2: \quad Recall that a subset E of a metric space $(\mathcal{X}, \mathrm{d})$ is open if for each $x \in E$ there exists some $\epsilon_{x}>0$ such that the entire ball

$$
B_{\epsilon}(x)=\left\{\xi \in \mathcal{X}: \mathrm{d}(x, \xi)<\epsilon_{x}\right\} \subset E
$$

and that a set $F \subset \mathcal{X}$ is closed if its complement $F^{c}=\{x \in \mathcal{X}: x \notin F\}$ is open.
a. Prove that $(0,1)$ is open in $\mathcal{X}=\mathbb{R}$.
b. Prove that any union $U=\cup E_{\alpha}$ of open sets is also open.
c. Show by example that the union $U=\cup F_{\alpha}$ of closed sets may not be closed.

Problem 3: Recall that a set K in a metric space $(\mathcal{X}, \mathrm{d})$ is compact 2 if every open cover $K \subset \cup_{\alpha} U_{\alpha}$ admits a finite sub-cover $K \subset \cup_{i=1}^{n} U_{\alpha_{i}}$, and that a function $f(\cdot): \mathcal{X} \rightarrow \mathcal{Y}$ from one metric space to another is continuous if for every open set $U \subset \mathcal{Y}, f^{-1}(U):=\{x: f(x) \in U\}$ is an open set in \mathcal{X}.
a. Prove that every compact set K is also closed.
b. If K is a compact set and $A \subset K$ is a closed subset, prove that A is also compact.
c. If $f: \mathcal{X} \rightarrow \mathbb{R}$ is a continuous real-valued function and $K \subset \mathcal{X}$ is compact, prove that the supremum

$$
M:=\sup _{x \in K} f(x)
$$

is finite.
d. Show ${ }^{3}$ this can fail if f is not continuous- i.e., give an example of an unbounded (but finite) function f on a compact set K.

[^1]
Problem 4:

a. Let K_{α} be compact for each index α and suppose that each finite intersection $\cap_{j=1}^{n} K_{\alpha_{j}} \neq \emptyset$ is non-empty. Prove that $\cap_{\alpha} K_{\alpha} \neq \emptyset$.
b. If $f: \mathcal{X} \rightarrow \mathbb{R}$ is real-valued and continuous with supremum $M:=$ $\sup _{x \in K} f(x)$ on a compact set $K \subset \mathcal{X}$, prove that there exists some $x^{*} \in K$ for which $f\left(x^{*}\right)=M$.

Problem 5:

a. Give an example of a closed set $C \subset \mathbb{R}$ that is not compact.
b. Give an example of a set $A \subset \mathbb{R}$ that is neither closed nor open.
c. Give an example of a set $B \subset \mathbb{R}$ that is both closed and open.

Problem 6: Evaluate the sums and integrals below for every value of $p \in \mathbb{R}$ (some expressions might be infinite or undefined for some values of p):
a. $\int_{0}^{1} x^{p} d x=$
b. $\int_{0}^{\infty} e^{-p x} d x=$
c. $\sum_{n=2}^{9} p^{n}=$
d. $\sum_{n=1}^{\infty} p^{n}=$
e. $\sum_{n=7}^{\infty} n p^{n}=$
f. $\int_{0}^{\infty} x e^{-p x^{2}} d x=$
g. $\int_{0}^{x} \sin (\ln u) d u=$
h. $\int_{0}^{\pi} e^{-p \cos (x)} \sin (x) d x=$

Problem 7: Which of the following sums and integrals converges (to a finite limit)? Why? You need not evaluate the limit.
a. T F $\int_{2}^{\infty} \frac{\ln \left(e^{x}-2\right)}{x^{3}+1} d x$ converges:
b. T F $\sum_{n=0}^{\infty} \frac{3^{n}(n!)^{2}}{(2 n)!}$ converges:
c. T F $\sum_{n=1}^{\infty} \frac{\ln n+\sin n}{n^{3 / 2}}$ converges:
d. T F $\int_{0}^{\infty} \frac{\sin x}{x^{3 / 2}} d x$ converges:
e. T F $\int_{0}^{\infty} \frac{d x}{\sqrt{x}+x^{2}}$ converges:
f. T F $\int_{0}^{1} \frac{\tan x}{x^{2}} d x$ converges:

[^0]: ${ }^{1}$ Find N_{ϵ} explicitly. You may find the function $\lfloor x\rfloor:=\max \{k \in \mathbb{Z}: k \leq x\}$ (the greatest integer less than or equal to x) to be useful, or perhaps $\lceil x\rceil:=\min \{k \in \mathbb{Z}: k \geq x\}$.

[^1]: ${ }^{2}$ The Heine-Borel theorem says in Euclidean space any closed \& bounded set is compact, but that doesn't hold in general. For example, the unit ball $B:=\left\{f: \int_{0}^{1}|f(x)|^{2} d x \leq 1\right\}$ is closed and bounded in $L_{2}((0,1])$ but is not compact, since the sequence of functions $\left\{f_{n}(x):=\sqrt{2} \sin (n \pi x)\right\} \subset B$ has no limit point in B.
 ${ }^{3}$ Suggestion: take $K=[0,1]$ on $\mathcal{X}=\mathbb{R}$, and define $f(x)$ by cases. What cases?

