Midterm Examination II

STA 711: Probability \& Measure Theory

Wednesday, 2015 Nov 11, 1:25-2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in closed form with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible simplify.

Good luck!

1.	$/ 20$
2.	$/ 20$
3.	$/ 20$
4.	$/ 20$
5.	$/ 20$
Total $:$	$/ 100$

Problem 1: Let $\Omega:=\mathbb{N}=\{1,2, \ldots\}$ be the natural numbers. The sum $\zeta(p):=\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is infinite for $p \leq 1$ but finite for all $p>1$. For $p=4$ it is $\zeta(4)=\sum_{n=1}^{\infty}\left(1 / n^{4}\right)=\pi^{4} / 90$, so the set-function

$$
\mathrm{P}[A]:=\frac{90}{\pi^{4}} \sum_{n \in A} \frac{1}{n^{4}}
$$

is a probability measure on the power set $\mathcal{F}=2^{\Omega}$ of all subsets of Ω. Define a random variable on $(\Omega, \mathcal{F}, \mathrm{P})$ by $X(\omega) \equiv \omega$.
a) (5) For $p>0$, is $X \in L_{p}(\Omega, \mathcal{F}, \mathbf{P})$? If this depends on p, tell which L_{p} spaces contain X. Choose one and give your reasoning:
$\bigcirc X \in L_{p}$ for no $0<p<\infty$$X \in L_{p}$ for \qquad $<p<$ \qquad
b) (5) Define a sequence of sequence of truncated approximations to X by $X_{n}(\omega) \equiv \min (n, \omega)$. Are they in L_{p} ? Why?
$\bigcirc X_{n} \in L_{p}$ for no $0<p<\infty$
$\bigcirc X_{n} \in L_{p}$ for \qquad $<p<$ \qquad
c) (5) Does $X_{n} \rightarrow X$ almost-surely? \bigcirc Yes \bigcirc No Explain:
d) (5) Does $X_{n} \rightarrow X$ in L_{1} ? Pick one: \bigcirc Yes \bigcirc No Explain:

Problem 2: Let $\left\{U_{n}\right\}_{n \in \mathbb{N}} \stackrel{\text { iid }}{\sim} \operatorname{Un}(0,1]$ be independent uniformly-distributed random variables on the unit interval.
a) (5) What is the probability that at least one of the events

$$
A_{n}:=\left\{\omega: U_{n}(\omega)<\frac{1}{n+1}\right\}
$$

occurs? _ Why?
b) (5) What is the probability that all of the events

$$
B_{n}:=\left\{\omega: U_{n}(\omega) \leq \exp \left(-2^{-n}\right)\right\}
$$

occur? _ Why?
c) (5) What is the probability that infinitely-many of the events

$$
C_{n}:=\left\{\omega: U_{1}(\omega)<U_{2}(\omega)<\ldots<U_{n}(\omega)\right\}
$$

occur? __ Why?
d) (5) Does the sequence of random variables $X_{n}:=\left(\max _{1 \leq i \leq n} U_{i}\right)^{n}$ converge to zero in probability? \bigcirc Yes \bigcirc No Why?

Problem 3: For two sequences of real numbers $\left\{a_{n}\right\} \subset \mathbb{R},\left\{b_{n}\right\} \subset(0,1]$ and a sequence $\left\{U_{n}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Un}(0,1]$ of independent uniform random on $(0,1]$, define random variables by

$$
X_{n}:=a_{n} \mathbf{1}_{\left(0, b_{n}\right]}\left(U_{n}\right)= \begin{cases}a_{n} & 0<U_{n} \leq b_{n} \\ 0 & b_{n}<U_{n} \leq 1\end{cases}
$$

The random variables $\left\{X_{n}\right\}$ converge to zero in L_{1} if and only if the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy the condition $\left|a_{n}\right| b_{n} \rightarrow 0$.
a) (5) What condition must $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy for $X_{n} \rightarrow 0$ in L_{2} ?
b) (5) What condition must $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy for $X_{n} \rightarrow 0$ in L_{∞} ?
c) (5) What condition must $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy for $X_{n} \rightarrow 0$ pr.?
d) (5) What condition must $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy for $X_{n} \rightarrow 0$ a.s.?

Problem 4: Let $\left\{U_{n}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Un}(0,1)$ and set

$$
X_{n}:=-\log U_{n} \quad S_{n}:=\sum_{k=1}^{n} X_{k} \quad Y_{n}:=\left(1-U_{n}\right) / U_{n} \quad T_{n}:=\sum_{k=1}^{n} Y_{k}
$$

a) (4) For $t>0$, find:

$$
\mathrm{P}\left[X_{n}>t\right]=\square \quad \mathrm{P}\left[Y_{n}>t\right]=
$$

b) (4) Find the indicated moments (Page 8 may let you avoid integration):

$$
\mathrm{E}\left[X_{n}\right]=\ldots \mathrm{E}\left[X_{n}^{2}\right]=\ldots \mathrm{E}\left[Y_{n}\right]=\ldots
$$

c) (4) In what way and to what limit does S_{n} / n converge as $n \rightarrow \infty$? Why?
d) (4) In what way and to what limit does T_{n} / n converge as $n \rightarrow \infty$? Why?
e) (4) In what way and to what limit does $\left(S_{n}-n\right) / \sqrt{n}$ converge as $n \rightarrow \infty$? Why?

Problem 5: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think a question seems ambiguous or tricky.
a) T F If $X_{n} \rightarrow X$ pr. then $\mathrm{E} e^{i t X_{n}} \rightarrow \mathrm{E} e^{i t X}$ for all $t \in \mathbb{R}$.
b) $\mathrm{T} F \quad$ For any $Y \in L_{2}$ and any $a>0, \mathrm{P}[Y>a] \leq\|Y\|_{2}^{2} / a^{2}$.
c) T F For any $Y \in L_{2},(\mathrm{E}|Y|)^{4} \leq\left(\mathrm{E} Y^{2}\right)^{2} \leq \mathrm{E} Y^{4}$.
d) T F Two random variables X and Y are independent if and only if $\mathrm{E}[f(X \cdot Y)]=\mathrm{E}[f(X)] \mathrm{E}[f(Y)]$ for each bounded Borel function $f(x)$ on \mathbb{R}.
e) T F Two σ-algebras $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ are independent if and only if $\mathrm{E}[X Y]=\mathrm{E} X \cdot \mathrm{E} Y$ for all random variables $X \in L_{\infty}(\Omega, \mathcal{G}, \mathrm{P}), Y \in L_{\infty}(\Omega, \mathcal{H}, \mathrm{P})$.
f) T F If $\mathrm{P}\left[\left|X_{n}-X\right|>\epsilon\right] \rightarrow 0$ for each $\epsilon>0$, then $\mathrm{E}\left|X_{n}-X\right| \rightarrow 0$.
g) T F If E $\left|X_{n}-X\right|^{2} \rightarrow 0$, then $\mathrm{P}\left[\left|X_{n}-X\right|>\epsilon\right] \rightarrow 0$ for each $\epsilon>0$.
h) T F If E $\left|X_{n}-X\right|^{2} \rightarrow 0$, then $\mathrm{E}\left|X_{n}-X\right| \rightarrow 0$.
i) T F If $\left\{X_{i}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(1)$ are independent with the standard exponential distribution and $S_{n}:=\sum_{i=1}^{n} X_{i}$, then $\left(S_{n}-n\right) / n$ converges to one $a . s$. as $n \rightarrow \infty$.
j) T F If $\left\{X_{i}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(1)$ and $S_{n}:=\sum_{i=1}^{n} X_{i}$, then $\left(S_{n}-n\right) / \sqrt{n}$ has approximately a $\mathrm{No}(0,1)$ distribution for large n.

Name:
STA 711: Prob \& Meas Theory

Blank Worksheet

Name:
STA 711: Prob \& Meas Theory

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}	
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q$	$(q=1-p)$
Exponential	Ex(λ)	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$	
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}	
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	q / p^{2}	$(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	q / p^{2}	($y=x+1$)
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\binom{A}{A}\binom{B}{-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1}$	$\left(P=\frac{A}{A+B}\right)$
Logistic	$\operatorname{Lo}(\mu, \beta)$	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta]^{2}}\right.}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$	
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$	
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2}$	$(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2}$	$(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}	
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=(\alpha / \epsilon)(1+x / \epsilon)^{-\alpha-1}$	$x \in \mathbb{R}_{+}$	$\frac{\epsilon}{\alpha-1}{ }^{*}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}{ }^{*}$	
		$f(y)=\alpha \epsilon^{\alpha} / y^{\alpha+1}$	$y \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}{ }^{*}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} *$	$(y=x+\epsilon)$
Poisson	$\operatorname{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ	
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\left.\begin{array}{rl} f(x) & =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \end{array}\right)$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2} *$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}\right.}{\nu_{1}}$	${ }_{2-2)}{ }^{*}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0^{*}	$\nu /(\nu-2)^{*}$	
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$	
Weibull	We (α, β)	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$	

