Final Examination

STA 711: Probability \& Measure Theory

Sunday, 2016 Dec 18, 2:00-5:00 pm

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in closed form with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible simplify.

Good luck.

1.	$/ 20$	5.	$/ 20$		
2.	$/ 20$	6.	$/ 20$		
3.	$/ 20$	7.	$/ 20$		
4.	$/ 20$	8.	$/ 20$		
$\quad / 80$			$/ 80$		
Total:	$/ 160$				

Print Name: \qquad

Problem 1: Let \mathcal{A} be a collection of subsets of a nonempty set Ω such that
(i) $\Omega \in \mathcal{A}$
(ii) $A, B \in \mathcal{A} \Rightarrow A \backslash B:=A \cap B^{c} \in \mathcal{A}$.
a) (8) Prove that \mathcal{A} is a field.
b) (8) Let $\Omega=\{a, b, c, d\}$ and let $\mathcal{B}=\{B \subset \Omega: \#(B)$ is even $\}$, the sets with 0,2 , or 4 elements. Show that \mathcal{B} is a λ-system.
c) (4) Is \mathcal{B} a field? \bigcirc Yes \bigcirc No Why?

Problem 2: For $0<p<1$ let $\left\{X_{i}: i \in \mathbb{N}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Ge}(p)$ be iid with the geometric probability distribution with probability mass function (pmf)

$$
\mathrm{P}\left[X_{i}=k\right]=p q^{k}, \quad k \in \mathbb{N}_{0}:=\{0,1,2, \cdots\}, \quad q:=(1-p) .
$$

a) (8) Find ${ }^{1}$ the pmf for $Y_{n}:=\max _{1 \leq i \leq n} X_{i}$:
b) (8) Find 2 the pmf for $Z_{n}:=\min _{1 \leq i \leq n} X_{i}$:
c) (4) Find the chf (Characteristic Function) for $S_{n}:=\sum_{1 \leq i \leq n} X_{i}$:

[^0]Problem 3: The random variables $\left\{X_{i}\right\}$ are all independent and all satisfy $\mathrm{E}\left[X_{i}{ }^{4}\right] \leq 1.0$, but they may have different distributions. Let $S_{n}:=$ $\sum_{i=1}^{n} X_{i}$ be their partial sum.
a) (8) Does it follow without any further assumptions that S_{n} / n converges almost surely? \bigcirc Yes \bigcirc No Give a proof or counter-example.
b) (8) If in addition we know $X_{n} \rightarrow 0$ in probability, for which (if any) $0<p<\infty$ does it follow that $X_{n} \rightarrow 0$ in L_{p} ? Why?
c) (4) Give the best bound you can: (+1 xc for showing it's best possible)

$$
\mathrm{P}\left[X_{1} \geq 2\right] \leq
$$

Problem 4: Let $\Omega=\mathbb{R}_{+}=[0, \infty)$ be the positive half-line, with Borel sets $\mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right)$and probability measure P given on Ω by $\mathrm{P}(d \omega)=e^{-\omega} d \omega$ or, equivalently,

$$
\mathrm{P}[(a, b]]=e^{-a}-e^{-b} \quad 0 \leq a \leq b<\infty .
$$

For each $n \in \mathbb{N}:=\{1,2, \cdots\}$ define a random variable on $(\Omega, \mathcal{F}, \mathbf{P})$ by

$$
X_{n}(\omega)=\mathbf{1}_{[n, \infty)}(\omega):= \begin{cases}0 & \text { if } \omega<n \\ 1 & \text { if } \omega \geq n\end{cases}
$$

a) (4) Find the mean $m_{n}=\mathrm{E}\left[X_{n}\right]$ for each $n \in \mathbb{N}$ and the covariance $\Sigma_{m n}=\mathrm{E}\left[\left(X_{m}-m_{m}\right)\left(X_{n}-m_{n}\right)\right]$ for each $m \leq n \in \mathbb{N}$:

$$
m_{n}=\quad \Sigma_{m n}=
$$

b) (4) Give the probability distribution measure $\mu(\cdot)$ for the random variable $Y(\omega):=\sqrt{\omega}$:
$\mu(B)=$

Problem 4 (cont'd): As before, $\Omega=\mathbb{R}_{+}, \mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right), \mathrm{P}(d \omega)=e^{-\omega} d \omega$, and $X_{n}(\omega):=\mathbf{1}_{[n, \infty)}(\omega)$ for $n \in \mathbb{N}$:
c) (4) For each fixed $n \in \mathbb{N}$ give the σ-algebra $\mathcal{G}_{n}:=\sigma\left(X_{n}\right)$ explicitly: $\mathcal{G}_{n}=\{$

d) (4) Does the σ-algebra $\mathcal{G}:=\sigma\left(X_{1}, X_{2}, \ldots\right)$ generated by all the X_{n} 's contain all the Borel sets in \mathbb{R}_{+}? \bigcirc Yes \bigcirc No
If so, say why; if not, find a Borel set $B \in \mathcal{F}$ that is not in \mathcal{G}.
e) (4) Are X_{1} and X_{2} independent? \bigcirc Yes \bigcirc No Justify your answer.

Problem 5: \quad As in Problem 4, $\Omega=\mathbb{R}_{+}, \mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right), \mathrm{P}(d \omega)=e^{-\omega} d \omega$, and $X_{n}(\omega):=\mathbf{1}_{[n, \infty)}(\omega)$ for $n \in \mathbb{N}$.
a) (4) Prove that the partial sums $S_{n}:=\sum_{j=1}^{n} X_{j}$ converge almost surely as $n \rightarrow \infty$ to some limiting random variable $S:=\sum_{j=1}^{\infty} X_{j}$.
b) (4) Do the partial sums $S_{n}:=X_{1}+\cdots+X_{n}$ converge to S in L_{1} as $n \rightarrow \infty$? 〇 Yes ○ No Justify your answer.
c) (4) Give the name ${ }^{3}$ and the mean of the probability distribution of the limit $S=\sum_{j=1}^{\infty} X_{j}$.
d) (8) For $n \in \mathbb{N}$ set $\mathcal{F}_{n}:=\sigma\left\{X_{1}, \cdots, X_{n}\right\}$, the σ-algebra generated by the first n of the X_{k} 's. Find the indicated conditional expectations:

$$
\mathrm{E}\left[X_{4} \mid \mathcal{F}_{2}\right]=
$$

$$
\mathrm{E}\left[S \mid \mathcal{F}_{2}\right]=
$$

[^1]Problem 6: Let $\left\{X_{j}\right\}_{1 \leq j \leq 3}$ be independent random variables on $(\Omega, \mathcal{F}, \mathbf{P})$ representing the outcomes on three independent fair 6-sided dice.
a) (6) Is is possible to find iid X_{1}, X_{2}, X_{3} each uniform on $\{1,2,3,4,5,6\}$ on the space $(\Omega, \mathcal{F}, \mathrm{P})$ with $\Omega=\{a, b, c, d, e, f\}$ and $\mathrm{P}(A)=(\# A) / 6$ on the power set $\mathcal{F}=2^{\Omega}$? 〇 Yes \bigcirc No. If so, give a possible version of $X_{1}: \Omega \rightarrow \mathbb{R}\left(+1 \mathrm{xc}\right.$ for all three, $\left.X_{1}, X_{2}, X_{3}\right)$; if not, why?
b) (6) Is is possible to find iid X_{1}, X_{2}, X_{3} each uniform on $\{1,2,3,4,5,6\}$ on the space $(\Omega, \mathcal{F}, \mathrm{P})$ with $\Omega=(0,1]$ and $\mathrm{P}=d \omega$ Lebesgue measure on the Borel sets $\mathcal{F}=\mathcal{B}$? \bigcirc Yes \bigcirc No. If so, give a possible version of $X_{1}: \Omega \rightarrow \mathbb{R}\left(+1 \mathrm{xc}\right.$ for all three, $\left.X_{1}, X_{2}, X_{3}\right)$; if not, why?
c) (8) Set $Y:=X_{1}+X_{2}$ and $Z:=X_{2}+X_{3}$. Find ${ }^{4}$: $\mathrm{E}[Y \mid Z]=$

[^2]Problem 7: \quad The random variables X and Y have a distribution generated by the following mechanism: A fair coin is tossed. If it falls Heads, then $X=Y=0$; if it falls Tails, then X and Y are drawn independently from the standard normal $\operatorname{No}(0,1)$ distribution with $\operatorname{CDF} \Phi(z):=\int_{-\infty}^{z} e^{-t^{2} / 2} d t / \sqrt{2 \pi}$.
a) (4) Are X and Y independent? \bigcirc Yes \bigcirc No Why?
b) (4) Set $Z:=3 X+4 Y$. If the coin falls Tails (in which case $X, Y \stackrel{\text { iid }}{\sim}$ No $(0,1)$), find the conditional CDF for Z (you may use $\Phi(\cdot)$ in your expression):

$$
\mathrm{P}[Z \leq z \mid \text { Tails }]=
$$

c) (6) Now find the unconditional CDF for $Z:=3 X+4 Y$:
$\mathrm{P}[Z \leq z]=\{$
and sketch a very very rough plot of it:

Problem 7 (cont'd): Still $Z:=3 X+4 Y$.
d) (6) Let $\mathcal{G}:=\sigma(Z)$ be the σ-algebra generated by Z. Find the conditional expectation of X, given $\mathcal{G}=\sigma(Z):^{5}$
$\mathrm{E}[X \mid \mathcal{G}]=$ \qquad

[^3]Problem 8: Let $\left\{X_{n}>0\right\}$ and $X>0$ be positive random variables with $X_{n} \rightarrow X$ a.s. Choose True or False below; no need to explain (unless you can't resist). Each is 2pt.
a) T F $\log \left(X_{n}\right) \rightarrow \log (X)$ in probability.
b) T F $\quad X_{n} \rightarrow X$ in L_{2} if each $\mathrm{E}\left[\left|X_{n}\right|^{3}\right] \leq \pi$.
c) \quad T F $\quad \log \left(X_{n}\right) \rightarrow \log (X)$ in L_{1} if each $\mathrm{E}\left[\left|X_{n}\right|^{3}\right] \leq \pi$.
d) T F $\quad\left(\inf _{k \geq n} X_{k}\right) \rightarrow X$ a.s. as $n \rightarrow \infty$.
e) T F $\lim \sup _{n \rightarrow \infty} \mathrm{E}\left[\log \left(1+X_{n}\right)\right] \leq \mathrm{E}[\log (1+X)]$.
f) T F $\exp \left(i X_{n}^{2}\right) \rightarrow \exp \left(i X^{2}\right)$ in L_{1}.
g) $\quad \mathrm{T}$ F $\quad X \in L_{2}$ if, for some $t>0, \mathrm{E}[\exp (t \cdot X)]<\infty$.
h) T F $X \in L_{2}$ if, for some $t<0, \mathrm{E}[\exp (t \cdot X)]<\infty$.
i) T F $\exp \left(1 / X_{n}\right) \Rightarrow \exp (1 / X)$ in distribution.
j) T F $(\forall \epsilon>0) \sum_{n} \mathrm{P}\left[\left|X_{n}-X\right|>\epsilon\right]<\infty$.

Blank Worksheet

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\mathrm{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\operatorname{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	Lo (μ, β)	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta]^{2}}\right.}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=(\alpha / \epsilon)(1+x / \epsilon)^{-\alpha-1}$	$x \in \mathbb{R}_{+}$	$\frac{\epsilon}{\alpha-1}^{*}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}{ }^{*}$
		$f(y)=\alpha \epsilon^{\alpha} / y^{\alpha+1}$	$y \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}{ }^{*}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} * \quad(y=x+\epsilon)$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} & f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma} \\ & \Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right) \end{aligned} x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} .$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2} *$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)^{*}}{\nu_{1}\left(\nu_{2}-4\right)}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	$0 *$	$\nu /(\nu-2)^{*}$
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	We (α, β)	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$

[^0]: ${ }^{1}$ Suggestion: Find the CDFs for X_{i} and then for Y_{n} first.
 ${ }^{2}$ What's the probability $\mathrm{P}\left[Z_{n} \geq z\right]$ for $z \in \mathbb{N}_{0}$? How about $\mathrm{P}\left[Z_{n} \geq z+1\right]$?

[^1]: ${ }^{3}$ Remember, there's a list of distributions with names and means at the back of this exam. Exactly what must ω be to make $S=0$? $S=2$? $S=k$?

[^2]: ${ }^{4}$ Suggestion: First find $\mathrm{E}\left[X_{1} \mid X_{2}, X_{3}\right]$ and $\mathrm{E}\left[X_{2} \mid Z:=X_{2}+X_{3}\right]$.

[^3]: ${ }^{5}$ If random variables X, Z have a Gaussian joint distribution, then $\mathrm{E}[X \mid Z]=a+b Z$ is always a linear function of Z, for some coefficients $a, b \in \mathbb{R}$.

