Final Examination

STA 711: Probability & Measure Theory

Sunday, 2016 Dec 18, 2:00 - 5:00 pm

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible **simplify**.

Good luck.

1.	/20	5.	/20
2.	/20	6.	/20
3.	/20	7.	/20
4.	/20	8.	/20
	/80		/80
Total:			/160

Problem 1: Let \mathcal{A} be a collection of subsets of a nonempty set Ω such that

- (i) $\Omega \in \mathcal{A}$
- (ii) $A, B \in \mathcal{A} \Rightarrow A \backslash B := A \cap B^c \in \mathcal{A}$.
 - a) (8) Prove that \mathcal{A} is a field.

b) (8) Let $\Omega = \{a, b, c, d\}$ and let $\mathcal{B} = \{B \subset \Omega : \#(B) \text{ is even}\}$, the sets with 0, 2, or 4 elements. Show that \mathcal{B} is a λ -system.

c) (4) Is \mathcal{B} a field? \bigcirc Yes \bigcirc No Why?

For $0 let <math>\{X_i : i \in \mathbb{N}\} \stackrel{\text{iid}}{\sim} \mathsf{Ge}(p)$ be iid with the Problem 2: geometric probability distribution with probability mass function (pmf)

$$P[X_i = k] = pq^k, \quad k \in \mathbb{N}_0 := \{0, 1, 2, \dots\}, \quad q := (1 - p).$$

a) (8) Find¹ the pmf for $Y_n := \max_{1 \le i \le n} X_i$:

b) (8) Find² the pmf for $Z_n := \min_{1 \le i \le n} X_i$:

c) (4) Find the chf (Characteristic Function) for $S_n := \sum_{1 \leq i \leq n} X_i$:

¹Suggestion: Find the CDFs for X_i and then for Y_n first.

²What's the probability $\mathsf{P}[Z_n \geq z]$ for $z \in \mathbb{N}_0$? How about $\mathsf{P}[Z_n \geq z+1]$?

Problem 3: The random variables $\{X_i\}$ are all independent and all satisfy $\mathsf{E}[X_i^4] \leq 1.0$, but they may have different distributions. Let $S_n := \sum_{i=1}^n X_i$ be their partial sum.

a) (8) Does it follow without any further assumptions that S_n/n converges almost surely? \bigcirc Yes \bigcirc No Give a proof or counter-example.

b) (8) If in addition we know $X_n \to 0$ in probability, for which (if any) $0 does it follow that <math>X_n \to 0$ in L_p ? Why?

c) (4) Give the best bound you can: (+1xc for showing it's best possible)

 $\mathsf{P}[X_1 \ge 2] \le \underline{\hspace{1cm}}$

Problem 4: Let $\Omega = \mathbb{R}_+ = [0, \infty)$ be the positive half-line, with Borel sets $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$ and probability measure P given on Ω by $\mathsf{P}(d\omega) = e^{-\omega} d\omega$ or, equivalently,

$$P[(a,b]] = e^{-a} - e^{-b}$$
 $0 \le a \le b < \infty$.

For each $n \in \mathbb{N} := \{1, 2, \dots\}$ define a random variable on $(\Omega, \mathcal{F}, \mathsf{P})$ by

$$X_n(\omega) = \mathbf{1}_{[n,\infty)}(\omega) := \begin{cases} 0 & \text{if } \omega < n \\ 1 & \text{if } \omega \ge n \end{cases}$$

a) (4) Find the mean $m_n = \mathsf{E}[X_n]$ for each $n \in \mathbb{N}$ and the covariance $\Sigma_{mn} = \mathsf{E}\big[(X_m - m_m)(X_n - m_n)\big]$ for each $m \le n \in \mathbb{N}$:

$$m_n = \Sigma_{mn} =$$

b) (4) Give the probability distribution measure $\mu(\cdot)$ for the random variable $Y(\omega) := \sqrt{\omega}$: $\mu(B) =$

Problem 4 (cont'd): As before, $\Omega = \mathbb{R}_+$, $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$, $\mathsf{P}(d\omega) = e^{-\omega} d\omega$, and $X_n(\omega) := \mathbf{1}_{[n,\infty)}(\omega)$ for $n \in \mathbb{N}$:

c) (4) For each fixed $n \in \mathbb{N}$ give the σ -algebra $\mathcal{G}_n := \sigma(X_n)$ explicitly: $\mathcal{G}_n = \left\{ \right.$

d) (4) Does the σ -algebra $\mathcal{G} := \sigma(X_1, X_2, ...)$ generated by all the X_n 's contain all the Borel sets in \mathbb{R}_+ ? \bigcirc Yes \bigcirc No If so, say why; if not, find a Borel set $B \in \mathcal{F}$ that is not in \mathcal{G} .

e) (4) Are X_1 and X_2 independent? \bigcirc Yes \bigcirc No Justify your answer.

Problem 5: As in Problem 4, $\Omega = \mathbb{R}_+$, $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$, $\mathsf{P}(d\omega) = e^{-\omega} d\omega$, and $X_n(\omega) := \mathbf{1}_{[n,\infty)}(\omega)$ for $n \in \mathbb{N}$.

a) (4) Prove that the partial sums $S_n := \sum_{j=1}^n X_j$ converge almost surely as $n \to \infty$ to some limiting random variable $S := \sum_{j=1}^{\infty} X_j$.

b) (4) Do the partial sums $S_n := X_1 + \cdots + X_n$ converge to S in L_1 as $n \to \infty$? \bigcirc Yes \bigcirc No Justify your answer.

c) (4) Give the name³ and the mean of the probability distribution of the limit $S = \sum_{j=1}^{\infty} X_j$.

d) (8) For $n \in \mathbb{N}$ set $\mathcal{F}_n := \sigma\{X_1, \dots, X_n\}$, the σ -algebra generated by the first n of the X_k 's. Find the indicated conditional expectations:

$$\mathsf{E}[X_4 \mid \mathcal{F}_2] = \qquad \qquad \mathsf{E}[S \mid \mathcal{F}_2] =$$

³Remember, there's a list of distributions with names and means at the back of this exam. Exactly what must ω be to make S=0? S=2? S=k?

Problem 6: Let $\{X_j\}_{1 \leq j \leq 3}$ be independent random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ representing the outcomes on three independent fair 6-sided dice.

a) (6) Is is possible to find iid X_1, X_2, X_3 each uniform on $\{1, 2, 3, 4, 5, 6\}$ on the space $(\Omega, \mathcal{F}, \mathsf{P})$ with $\Omega = \{a, b, c, d, e, f\}$ and $\mathsf{P}(A) = (\#A)/6$ on the power set $\mathcal{F} = 2^{\Omega}$? Yes \bigcirc No. If so, give a possible version of $X_1: \Omega \to \mathbb{R}$ (+1xc for all three, X_1, X_2, X_3); if not, why?

b) (6) Is is possible to find iid X_1, X_2, X_3 each uniform on $\{1, 2, 3, 4, 5, 6\}$ on the space $(\Omega, \mathcal{F}, \mathsf{P})$ with $\Omega = (0, 1]$ and $\mathsf{P} = d\omega$ Lebesgue measure on the Borel sets $\mathcal{F} = \mathcal{B}$? \bigcirc Yes \bigcirc No. If so, give a possible version of $X_1: \Omega \to \mathbb{R}$ (+1xc for all three, X_1, X_2, X_3); if not, why?

c) (8) Set $Y := X_1 + X_2$ and $Z := X_2 + X_3$. Find⁴: $\mathsf{E}[Y \mid Z] =$

⁴Suggestion: First find $E[X_1 \mid X_2, X_3]$ and $E[X_2 \mid Z := X_2 + X_3]$.

Problem 7: The random variables X and Y have a distribution generated by the following mechanism: A fair coin is tossed. If it falls Heads, then X=Y=0; if it falls Tails, then X and Y are drawn independently from the standard normal $\operatorname{No}(0,1)$ distribution with CDF $\Phi(z):=\int_{-\infty}^z e^{-t^2/2} dt/\sqrt{2\pi}$.

a) (4) Are X and Y independent? \bigcirc Yes \bigcirc No Why?

b) (4) Set Z:=3X+4Y. If the coin falls Tails (in which case $X,Y\stackrel{\text{iid}}{\sim} \text{No}(0,1)$), find the conditional CDF for Z (you may use $\Phi(\cdot)$ in your expression):

$$P[Z \le z \mid Tails] =$$

c) (6) Now find the unconditional CDF for Z := 3X + 4Y:

and sketch a very very rough plot of it:

Fall 2016

Problem 7 (cont'd): Still Z := 3X + 4Y.

d) (6) Let $\mathcal{G} := \sigma(Z)$ be the σ -algebra generated by Z. Find the conditional expectation of X, given $\mathcal{G} = \sigma(Z)$:⁵

$$\mathsf{E}[X \mid \mathcal{G}] = \underline{\hspace{1cm}}$$

9

⁵If random variables X, Z have a Gaussian joint distribution, then $\mathsf{E}[X \mid Z] = a + bZ$ is always a linear function of Z, for *some* coefficients $a, b \in \mathbb{R}$.

Problem 8: Let $\{X_n > 0\}$ and X > 0 be positive random variables with $X_n \to X$ a.s. Choose True or False below; no need to explain (unless you can't resist). Each is 2pt.

- a) TF $\log(X_n) \to \log(X)$ in probability.
- b) TF $X_n \to X$ in L_2 if each $E[|X_n|^3] \le \pi$.
- c) TF $\log(X_n) \to \log(X)$ in L_1 if each $\mathsf{E}[|X_n|^3] \le \pi$.
- d) TF $(\inf_{k>n} X_k) \to X$ a.s. as $n \to \infty$.
- e) TF $\limsup_{n\to\infty} \mathsf{E}[\log(1+X_n)] \le \mathsf{E}[\log(1+X)].$
- f) TF $\exp(iX_n^2) \to \exp(iX^2)$ in L_1 .
- g) TF $X \in L_2$ if, for some t > 0, $\mathsf{E}[\exp(t \cdot X)] < \infty$.
- h) TF $X \in L_2$ if, for some t < 0, $E[\exp(t \cdot X)] < \infty$.
- i) TF $\exp(1/X_n) \Rightarrow \exp(1/X)$ in distribution.
- j) TF $(\forall \epsilon > 0)$ $\sum_{n} P[|X_n X| > \epsilon] < \infty$.

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathrm{pdf/pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0, 1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	n p	n p q	(q=1-p)
${\bf Exponential}$	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	α/λ	$lpha/\lambda^2$	
${\bf Geometric}$	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
${\bf HyperGeo.}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
$\mathbf{Logistic}$	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	α/p	$\alpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}$ *	$\frac{\epsilon^2\alpha}{(\alpha-1)^2(\alpha-2)}^*$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ *	$\frac{\epsilon^2\alpha}{(\alpha-1)^2(\alpha-2)}^*$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
${\bf Snedecor}\ F$	$F(u_1, u_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2} *$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1-\nu_1)}{\nu_1(\nu_1-\nu_2)}$	$\frac{(-\nu_2-2)}{(\nu_2-4)}^*$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
$\mathbf{Student}\ t$	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0*	$\nu/(\nu-2)^*$	
$\mathbf{Uniform}$	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	