## Midterm Examination I

STA 711: Probability & Measure Theory Wednesday, 2016 Oct 05, 1:25 – 2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, give answers in **closed form** (without any unevaluated sums, integrals, maxima, unreduced fractions, *etc.*) where possible and **simplify**.

Good luck!

| Print Name | Clearly: |  |
|------------|----------|--|
|            |          |  |

| 1.     | /20  |
|--------|------|
| 2.     | /20  |
| 3.     | /20  |
| 4.     | /20  |
| 5.     | /20  |
| Total: | /100 |

**Problem 1**: The "moment generating function" (MGF) for a real-valued random variable X is the positive real-valued function

$$M_X(t) := \mathsf{E} \big[ \exp(tX) \big],$$

defined for all  $t \in \mathbb{R}$  (but possibly equal to  $+\infty$  for some t).

a) (10) Show that, for every  $x \in \mathbb{R}$ ,

$$P[X \ge x] \le M_X(2)e^{-2x}$$

b) (5) If  $M_X(1) + M_X(-1) < \infty$ , show that  $E|X| < \infty$ .

c) (5) If  $E|X| < \infty$ , show that

$$\mathsf{E} X \le \log M_X(1)$$

**Problem 2**: Let  $(\Omega, \mathcal{F}, \mathsf{P})$  be  $\Omega = (0, 1]$  with the Borel sets  $\mathcal{F}$  and Lebesgue measure  $\mathsf{P}$ . For each  $n \in \mathbb{N}$  let

$$\mathcal{F}_n := \{ \cup_j (a_j 2^{-n}, b_j 2^{-n}) \}$$

be the  $\sigma$ -field generated by left-open sets of the form  $(0, b/2^n]$  for non-negative integers  $b \leq 2^n$ . Set  $Y(\omega) := 1/\omega$ , and let  $X_n$  be the largest  $\mathcal{F}_n$ -measurable random variable with  $X_n \leq Y$ .

a) (5) Find  $X_1(\omega)$  for each  $\omega \in \Omega$ .  $X_1(\omega) =$ 

b) (5) Find  $\mathsf{E} X_1$  for your  $X_1$  from part a) above.  $\mathsf{E} X_1 =$ 

c) (5) Find the largest  $\mathcal{F}_2$  random variable  $X_2 \leq Y$ .  $X_2(\omega) =$ 

d) (5) What is the limit  $\lim_{n\to\infty} \mathsf{E} X_n$ ? Why?

**Problem 3**: Let  $\Omega = (0, 1]$  with the Borel sets  $\mathcal{F}$ , and let P be a probability measure on  $(\Omega, \mathcal{F})$  with the property that  $P[\{\omega\}] = 0$  for each  $\omega \in \Omega$ . Fix  $\epsilon > 0$ .

a) (10) For any point  $x \in (0,1)$ , show there exists an open interval  $V \subset \Omega$  with  $x \in V$  and  $\mathsf{P}[V] \leq \epsilon$ .

b) (10) Show that for any countable dense set  $\{x_i\} \subset (0,1)$  there exists an open set  $V \subset \Omega$  such that  $\{x_i\} \subset V$  and  $P[V] \leq \epsilon$ .

**Problem 4:** Let  $\Omega = \{1, 2, 3\}$  with  $\mathcal{F} = 2^{\Omega}$  and  $\mathsf{P}$  determined by  $\mathsf{P}[\{\omega\}] = \omega/6$ . Define random variables on  $(\Omega, \mathcal{F}, \mathsf{P})$  by

$$X(\omega) := \omega$$
  $Y(\omega) := 1/\omega$ 

a) (5) Find  $||X||_p$  for p = 1, p = 2, and  $p = \infty$ . Simplify!

b) (5) Find  $||Y||_p$  for p = 1, p = 2, and  $p = \infty$ . Simplify!

c) (5) Verify that  $\mathsf{E}[XY] < \mathsf{E}[X] \, \mathsf{E}[Y]$ .

**Problem 4 (cont'd)**: Still  $X(\omega) > 0$  and Y = 1/X, but now  $(\Omega, \mathcal{F}, \mathsf{P})$  is arbitrary.

d) (5) For any positive non-constant random variable X > 0 on any probability space  $(\Omega, \mathcal{F}, \mathsf{P})$ , set Y := 1/X and prove that  $\mathsf{E}[X] \, \mathsf{E}[Y] > \mathsf{E}[XY] = 1$ .

**Problem 5**: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think the question is ambiguous or tricky. All random variables are real on some  $(\Omega, \mathcal{F}, \mathsf{P})$ . The notation " $A \perp \!\!\!\perp B$ " means that A and B are independent, for events or RVs.

- a) TF If P[N] = 0 then  $N \perp \!\!\! \perp A$  for every  $A \in \mathcal{F}$ .
- b) T F The subsets of  $\Omega = \{1, 2, \dots, 9\}$  with an even number of elements form a  $\lambda$ -system.
- c) T F The subsets of  $\Omega=\{1,2,\cdots,9\}$  with an even number of elements form a  $\pi$ -system.
  - d) TF If events  $A \perp \!\!\!\perp B$  then RVs  $\mathbf{1}_A \perp \!\!\!\!\perp \mathbf{1}_B$ .
  - e) TF If  $A \cap B = \emptyset$  then A and B are independent.
  - f) TF If  $B_n \supset B_{n+1}$  for every n, then  $P[B_n] \to 0$ .
  - g) TF If P[A] + P[B] > 1 then  $A \cap B \neq \emptyset$ .
- h) TF If  $f: \mathbb{R} \to \mathbb{R}_+$  is continuous and monotone increasing, then  $g(x) := \frac{f(x)}{1+f(x)}$  is uniformly continuous.
  - i) TF If X and 1/X are independent, then X is constant a.s.
  - j) TF For any  $B \in \mathcal{F}$ ,  $\{B\}$  is a  $\pi$ -system on  $(\Omega, \mathcal{F}, \mathsf{P})$ .

## Blank Worksheet

## Another Blank Worksheet

| Notation              | $\mathrm{pdf}/\mathrm{pmf}$                                                                                                                                                                                                                                                               | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean $\mu$                                           | Variance $\sigma^2$                                                                |                                                      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|
| $Be(\alpha,\beta)$    | $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$                                                                                                                                                                                            | $x \in (0,1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\alpha}{\alpha+\beta}$                        | $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$                             |                                                      |
| Bi(n,p)               | $f(x) = \binom{n}{x} p^x q^{(n-x)}$                                                                                                                                                                                                                                                       | $x \in 0, \cdots, n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n p                                                  | $n \ p \ q$                                                                        | (q=1-p)                                              |
| $Ex(\lambda)$         | $f(x) = \lambda e^{-\lambda x}$                                                                                                                                                                                                                                                           | $x \in \mathbb{R}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1/\lambda$                                          | $1/\lambda^2$                                                                      |                                                      |
| $Ga(\alpha,\lambda)$  | $f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$                                                                                                                                                                                                            | $x \in \mathbb{R}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\alpha/\lambda$                                     | $\alpha/\lambda^2$                                                                 |                                                      |
| Ge(p)                 | $f(x) = p q^x$                                                                                                                                                                                                                                                                            | $x \in \mathbb{Z}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | q/p                                                  | $q/p^2$                                                                            | (q=1-p)                                              |
|                       | $f(y) = p  q^{y-1}$                                                                                                                                                                                                                                                                       | $y \in \{1, \ldots\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/p                                                  | $q/p^2$                                                                            | (y = x + 1)                                          |
| HG(n,A,B)             | $f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$                                                                                                                                                                                                                                | $x \in 0, \cdots, n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n P                                                  | $n P (1-P) \frac{N-n}{N-1}$                                                        | $(P = \frac{A}{A+B})$                                |
| $Lo(\mu,\beta)$       | $f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$                                                                                                                                                                                                                         | $x \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mu$                                                | $\pi^2 \beta^2/3$                                                                  |                                                      |
| $LN(\mu,\sigma^2)$    | $f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$                                                                                                                                                                                                                    | $x \in \mathbb{R}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $e^{\mu + \sigma^2/2}$                               | $e^{2\mu+\sigma^2} \left(e^{\sigma^2}-1\right)$                                    |                                                      |
| $NB(\alpha,p)$        | $f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$                                                                                                                                                                                                                                             | $x \in \mathbb{Z}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\alpha q/p$                                         | $\alpha q/p^2$                                                                     | (q = 1 - p)                                          |
|                       | $f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$                                                                                                                                                                                                                                   | $y \in \{\alpha, \ldots\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\alpha/p$                                           | $\alpha q/p^2$                                                                     | $(y = x + \alpha)$                                   |
| $No(\mu,\sigma^2)$    | $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$                                                                                                                                                                                                                           | $x \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mu$                                                | $\sigma^2$                                                                         |                                                      |
| $Pa(\alpha,\epsilon)$ | $f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$                                                                                                                                                                                                                                  | $x \in \mathbb{R}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\epsilon}{\alpha-1}$ *                        | $\frac{\epsilon^2\alpha}{(\alpha-1)^2(\alpha-2)}^*$                                |                                                      |
|                       | $f(y) = \alpha  \epsilon^{\alpha} / y^{\alpha + 1}$                                                                                                                                                                                                                                       | $y\in (\epsilon,\infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{\epsilon \alpha}{\alpha - 1}$ *               | $\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}^*$                               | $(y = x + \epsilon)$                                 |
| $Po(\lambda)$         | $f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$                                                                                                                                                                                                                                                | $x \in \mathbb{Z}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\lambda$                                            | $\lambda$                                                                          |                                                      |
| $F( u_1, u_2)$        | $f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$                                                                                                                                                             | $x \in \mathbb{R}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\nu_2}{\nu_2 - 2} *$                          | $\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)^2}{\nu_1(\nu_2)^2}$ | $\frac{-\nu_2-2)}{(2-4)}^*$                          |
|                       | L - 4 J                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                                                    |                                                      |
| t( u)                 | $f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$                                                                                                                                                                                    | $x \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0*                                                   | $\nu/(\nu-2)^*$                                                                    |                                                      |
| Un(a,b)               | $f(x) = \frac{1}{b-a}$                                                                                                                                                                                                                                                                    | $x \in (a, b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{a+b}{2}$                                      | $\frac{(b-a)^2}{12}$                                                               |                                                      |
| $We(\alpha,\beta)$    | $f(x) = \alpha \beta  x^{\alpha - 1}  e^{-\beta  x^{\alpha}}$                                                                                                                                                                                                                             | $x \in \mathbb{R}_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$     | $\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$               |                                                      |
|                       | $egin{aligned} & Be(lpha,eta) \ & Bi(n,p) \ & Ex(\lambda) \ & Ga(lpha,\lambda) \ & Ge(p) \ & HG(n,A,B) \ & Lo(\mu,eta) \ & LN(\mu,\sigma^2) \ & NB(lpha,p) \ & No(\mu,\sigma^2) \ & Pa(lpha,\epsilon) \ & Po(\lambda) \ & F( u_1, u_2) \ & t( u) \ & Un(a,b) \ & Un(a,b) \ \end{aligned}$ | $\begin{split} & \text{Be}(\alpha,\beta) & f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \\ & \text{Bi}(n,p) & f(x) = \binom{n}{x} p^x q^{(n-x)} \\ & \text{Ex}(\lambda) & f(x) = \lambda e^{-\lambda x} \\ & \text{Ga}(\alpha,\lambda) & f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \\ & \text{Ge}(p) & f(x) = p q^x \\ & f(y) = p q^{y-1} \\ & \text{HG}(n,A,B) & f(x) = \frac{\binom{A}{x} \binom{B}{n-x}}{\binom{A+B}{n}} \\ & \text{Lo}(\mu,\beta) & f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2} \\ & \text{LN}(\mu,\sigma^2) & f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log x-\mu)^2/2\sigma^2} \\ & \text{NB}(\alpha,p) & f(x) = \binom{y-1}{x} p^{\alpha} q^x \\ & f(y) = \binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha} \\ & \text{No}(\mu,\sigma^2) & f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} \\ & \text{Pa}(\alpha,\epsilon) & f(x) = (\alpha/\epsilon)(1+x/\epsilon)^{-\alpha-1} \\ & f(y) = \alpha \epsilon^{\alpha}/y^{\alpha+1} \\ & \text{Po}(\lambda) & f(x) = \frac{\lambda^x}{x!} e^{-\lambda} \\ & F(\nu_1,\nu_2) & f(x) = \frac{\Gamma(\frac{\nu_1+\nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times \\ & x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}} \\ & t(\nu) & f(x) = \frac{\Gamma(\frac{\nu_1+1}{2})}{\Gamma(\frac{\nu_2}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2} \\ & \text{Un}(a,b) & f(x) = \frac{1}{b-a} \end{split}$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$                               | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |