Final Examination

STA 711: Probability & Measure Theory

Saturday, 2017 Dec 16, 7:00 – 10:00 pm

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible **simplify**.

Good luck.

1.	/20	5.	/20
2.	/20	6.	/20
3.	/20	7.	/20
4.	/20	8.	/20
	/80		/80
Total:			/160

Problem 1: Let $\xi_1, \xi_2, ...$ be iid random variables with the $\mathsf{Ex}(1/2)$ distribution (hence mean $\mathsf{E}[\xi_j] = 2...$ see distribution reference sheet, p.15).

a) (8) Find non-random $a_n \in \mathbb{R}, b_n > 0$ such that $S_n := \sum_{1 \leq j \leq n} \xi_j$ satisfies

$$\mathsf{P}[(S_n - a_n)/b_n \le x] \to F(x)$$

for a non-trivial df F (i.e., one for a distribution not concentrated at a single point). Give a_n , b_n , and F. Justify your answer.

Problem 1 (cont'd): Still $\{\xi_j\} \stackrel{\text{iid}}{\sim} \mathsf{Ex}(1/2)$.

b) (6) Find non-random $a_n \in \mathbb{R}, b_n > 0$ such that $X_n := \min_{1 \le j \le n} \xi_j$ satisfies:

$$\mathsf{P}[(X_n - a_n)/b_n \le x] \to G(x)$$

for a non-trivial df G. Give a_n , b_n , and G. Justify your answer.

c) (6) Find non-random $a_n \in \mathbb{R}, b_n > 0$ such that $Y_n := \max_{1 \le j \le n} \xi_j$ satisfies

$$P[(Y_n - a_n)/b_n \le x] \to H(x)$$

for a non-trivial df H. Give a_n , b_n , and H. Justify your answer.

Problem 2: Let $\{X_n\}$ and Y be real-valued random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ such that $X_n \to Y$ (pr).

a) (10) Set $A_n := \{\omega : |X_n(\omega)| > n\}$. Prove that $\mathsf{P}(A_n) \to 0$ as $n \to \infty$.

b) (10) Prove that $\exp(-X_n^2) \to \exp(-Y^2)$ in $L_1(\Omega, \mathcal{F}, \mathsf{P})$.

Problem 3: For each part below, select "True" or "False" and sketch a **short explanation** or counter-example to support your answer:

a) (4) T F If $\{X_j\}$ are L_1 random variables and $\sum \|X_j\|_1 < \infty$ then $S_n := \sum_{1 \le j \le n} X_j$ converges in L_1 to a limit $S \in L_1(\Omega, \mathcal{F}, \mathsf{P})$.

b) (4) T F If $\{X_n\}$, Y are L_2 random variables with $||X_n||_2 \le 10$ and if $X_n \to Y$ in L_1 then $\mathsf{P}[X_n \to Y] = 1$.

c) (4) T F If $\{X_n\}$, Y are L_1 random variables with $X_1 \leq 42$ a.s. and if $X_n \searrow Y$ decreases to Y a.s., then $X_n \to Y$ in L_1 .

d) (4) T F If $\{X_j\}$ are independent L_1 random variables with zero mean $\mathsf{E}[X_j] = 0$ then $Y_n := 1 + \sum_{1 \leq j \leq n} j^2 X_j$ is a martingale.

e) (4) T F If $X \in L_p$ for every $0 then also <math>X \in L_\infty$, because $||X||_p \to ||X||_\infty$ as $p \to \infty$.

Problem 4: Let $\Omega = \mathbb{N} = \{1, 2, \dots\}$ be the natural numbers, with probability measure

$$\mathsf{P}(A) := \frac{6}{\pi^2} \sum_{\omega \in A} \frac{1}{\omega^2}$$

on the power set $A \in \mathcal{F} := 2^{\Omega}$. Note $\mathsf{P}(\Omega) = 1$ because $\sum_{\omega=1}^{\infty} \frac{1}{\omega^2} = \pi^2/6$.

a) (4) Let $E:=\{2j:j\in\mathbb{N}\}$ be the even numbers, $D:=\{2^j:j\in\mathbb{N}\}$ the integer powers of two that are ≥ 2 , and $S:=\{j^2:j\in\mathbb{N}\}$ the squares. How many events are in each of the following classes? (*Events* $A\subset\Omega$, not elements $\omega\in A$)

$$\sigma(E,S)$$
: _____ $\sigma(D,E)$: ____

$$\pi(D,E)$$
: ______ $\sigma(D,E,S)$: _____

b) (8) Find the indicated probabilities:

$$P(E) = P(D) =$$

Problem 4 (cont'd): Still $\Omega = \mathbb{N}$ and $P(A) := \frac{6}{\pi^2} \sum_{\omega \in A} \frac{1}{\omega^2}$.

c) (8) Set
$$X(\omega) = \mathbf{1}_{\{\omega \leq 3\}}$$
. Find:

$$\mathsf{E}(X \mid \sigma(E)) =$$

Problem 5: Let $X_j \stackrel{\text{iid}}{\sim} \mathsf{Po}(1)$ be independent random variables, all with the unit-mean Poisson distribution.

a) (8) Find the logarithm of the ch.f. of X_j , $\phi(\omega) := \mathsf{E}\big[e^{i\omega X_j}\big]$: $\psi(\omega) = \log \phi(\omega) =$

b) (6) For numbers a > 0, find the log ch.f. $\psi_1(\omega)$ of $(X_j - 1)/a$. $\psi_1(\omega) =$

c) (6) Let $S_n = X_1 + \cdots + X_n$ be the partial sum. Find a sequence $a_n > 0$ such that the log characteristic function $\psi_n(\omega)$ of $(S_n - n)/a_n$ converges to $-\omega^2/2$ for every ω , and explain what this says about the limiting probability distribution of S_n (i.e., about the Po(n) distribution for large n).

7

¹Recall the Taylor series $e^x = 1 + x + x^2/2 + o(x^2) \approx 1 + x + x^2/2$ near $x \approx 0$.

Problem 6: Miscellaneous examples & counter-examples. Let $\{X_n\}$, X, and Y be real-valued RVs on a space $(\Omega, \mathcal{F}, \mathsf{P})$, and let $\mu(dx)$ and $\nu(dy)$ be the probability distribution measures of X and Y, respectively.

a) (5) Suppose X and Y are independent, and $g: \mathbb{R}^2 \to \mathbb{R}$ is a Borel function. Sometimes it's okay to switch orders of integration to evaluate the expectation $\mathsf{E}[g(X,Y)] = \iint g(x,y) \, (\mu \otimes \nu) (dx \, dy)$ as either of:

$$\int_{\mathbb{R}}\bigg\{\int_{\mathbb{R}}g(x,y)\mu(dx)\bigg\}\nu(dy)\stackrel{?}{=}\int_{\mathbb{R}}\bigg\{\int_{\mathbb{R}}g(x,y)\nu(dy)\bigg\}\mu(dx)$$

and sometimes it's not. What are the two different sets of broadly-applicable conditions on $g,\,\mu,\,\nu$ given by Fubini's Theorem , either of which will ensure equality of these two expressions?

1.

2.

b) (5) Even if $\{X_n\}$ and X are in L_1 , and $X_n \to X$ in probability, it's possible that $\mathsf{E} X_n$ does not converge to $\mathsf{E} X$ and that $\mathsf{E} |X_n - X|$ does not converge to zero. Give an example of $\{X_n\}$ and X in L_1 where $X_n \to X$ (pr.) but L_1 convergence fails.

Problem 6 (cont'd): More miscellaneous examples & counter-examples.

c) (5) Give an example of an RV X on $(\Omega, \mathcal{F}, \mathsf{P})$ with $\Omega = (0, 1], \mathcal{F} = \mathcal{B}(\Omega)$, and Lebesgue P that is in L_1 but not in L_2 . $X(\omega) =$

d) (5) Give an example of a Martingale (X_n, \mathcal{F}_n) with filtration $\mathcal{F}_n = \sigma\{X_j: 0 \leq j \leq n\}$ and a (finite) stopping time τ for which $\mathsf{E}[X_0] \neq \mathsf{E}[X_\tau]$.

Problem 7: More miscellany.

a) (10) The standard Cauchy distribution Ca(0,1) has pdf

$$f(x) = \frac{1/\pi}{1 + x^2}, \qquad x \in \mathbb{R}$$

and famously has no mean, with $\mathsf{E}\big[|X|\big] = \infty$ for $X \sim \mathsf{Ca}(0,1)$. For any $0 \le p < 1$, however, $\|X\|_p^p = \mathsf{E}\big[|X|^p\big] < \infty$. Find and prove² a (numerical) finite upper bound

Ε	$ X ^{1/2}$	<		

²Suggestion: First use symmetry to focus on \mathbb{R}_+ ; then worry separately about [0,1] and $(1,\infty)$.

Problem 7 (cont'd): Yet more miscellany. Will it never end?

b) (5) Let X, Y be RVs on $(\Omega, \mathcal{F}, \mathsf{P})$, with $X \in L_4$ and $Y \in L_p$. For which p > 0 is $XY \in L_1$? Why?

c) (5) If sequences $\{X_n\}$ and $\{Y_n\}$ of RVs on $(\Omega, \mathcal{F}, \mathsf{P})$ satisfy

$$\mathsf{P}[X_n > Y_n] \le 2^{-n}$$

for each $n \in \mathbb{N}$, does it follow that $\limsup X_n \leq \liminf Y_n$ almost surely? Give a proof or counter-example.

Problem 8: Circle True or False; no explanations are needed.

- a) TF If $X_n \to X$ (pr.) then $\limsup_{n\to\infty} X_n = X$.
- b) T F If X on (Ω, \mathcal{F}, P) has a cont. dist'n then Ω is uncountable.
- c) T F If $g(\cdot)$ is a bounded Borel function on \mathbb{R} and $X_n \to X$ (pr.) then $g(X_n) \to g(X)$ (pr.).
 - d) TF If $0 < X < \infty$ and E[1/X] = 1/E[X] then $X \in L_{\infty}$.
- e) TF If $X \perp \!\!\! \perp Y$ and $\mathsf{P}[X < Y] = \mathsf{P}[X > Y] = 1/2$ then X,Y have the same distribution.
 - f) TF If $X \perp \!\!\! \perp Z$ and $Y \perp \!\!\! \perp Z$ then $(X + Y) \perp \!\!\! \perp Z$.
 - g) TF If $X \perp \!\!\! \perp Z$ and $Y = e^X$ then $Y \perp \!\!\! \perp Z$.
- h) TF If probability measures P, Q agree on a λ -system \mathcal{L} then they agree on the π -system $\mathcal{P} = \pi(\mathcal{L})$ it generates.
- i) T F If $X^* := \limsup_{n \to \infty} X_n$ is a non-constant random variable, then $\{X_n\}$ cannot be independent.
- j) TF If X has a discrete dist'n and Y has a continuous one, then (X+Y) must have a continuous distribution (even if X, Y are not independent).

Fall 2017

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathrm{pdf/pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q=1-p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	α/λ^2	
${f Geometric}$	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu, eta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1 + e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$\alpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha - 1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha > 2$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha > 2$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$		λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2}$ if $\nu_2 > 2$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)^2}{\nu_1(\nu_2)^2}$	$(\frac{\nu_2-2)}{-4}$ if $\nu_2 > 4$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	$t(\nu)$	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0 if $\nu > 1$	$\frac{\nu}{\nu-2}$ if $\nu>2$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	