Midterm Examination I

STA 711: Probability & Measure Theory Wednesday, 2017 Oct 04, 1:25 – 2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible, **Simplify**.

Good luck!

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
Total:	/100

Problem 1: Let $\Omega := \{1, 2, \dots, 100\}$ be the integers from one to 100, and let $\mathcal{C} := \{\{i, j\}: i, j \in \Omega, i < j\}$ be all subsets of two distinct elements. Set $A := \{1, \dots, 50\}$ and $B := \{42\}$.

a) (5) Describe¹ the π -system $\pi(\mathcal{C})$ determined by \mathcal{C} , and answer (by checking): Is $A \in \pi(\mathcal{C})$? \bigcirc Yes \bigcirc No Is $B \in \pi(\mathcal{C})$? \bigcirc Yes \bigcirc No .

b) (5) Describe the λ -system $\lambda(\mathcal{C})$. Is $A \in \lambda(\mathcal{C})$? \bigcirc Yes \bigcirc No Is $B \in \lambda(\mathcal{C})$? \bigcirc Yes \bigcirc No .

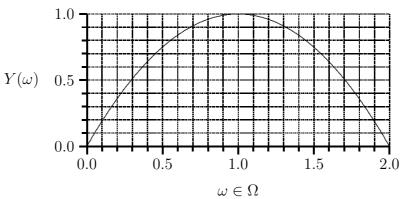
c) (5) Describe the field $\mathcal{F}(\mathcal{C})$. Is $A \in \mathcal{F}(\mathcal{C})$? \bigcirc Yes \bigcirc No Is $B \in \mathcal{F}(\mathcal{C})$? \bigcirc Yes \bigcirc No .

d) (5) Describe the σ -field $\sigma(\mathcal{C})$. How many elements does it have?

¹Show understanding, don't just give the definition. How can you tell if an event is in $\pi(\mathcal{C})$ or not?

Problem 2: Let $Y := \omega(2 - \omega)$ be a random variable on the space $\Omega := (0, 2]$ with $\mathcal{F} := \mathcal{B}(\Omega)$, the Borel sets (Y is plotted below).

a) (8) Find (2pts) and plot (6 pts) a non-negative simple random variable $X \in \mathcal{E}_+$ satisfying $0 \le X(\omega) \le Y(\omega)$ and $|Y(\omega) - X(\omega)| \le 0.4$ for all $\omega \in \Omega$.



 $X(\omega) =$

b) (6) Find EX and EY for the probability measure $\mathsf{P}(d\omega) := d\omega/2$ (i.e., $\mathsf{P}\{(a,b]\} = (b-a)/2$ for all $0 \le a \le b \le 2$):

 $\mathsf{E} X = \underline{\hspace{1cm}} \mathsf{E} Y = \underline{\hspace{1cm}}$

c) (6) Let $Z:=1_{(0,1]}(\omega).$ Are Y and Z independent on $(\Omega,\mathcal{F},\mathsf{P})$? \bigcirc Yes \bigcirc No Why?

Problem 3: Let $\Omega := \{a, b, c, d\}$ with $\mathcal{F} := 2^{\Omega}$ and P that assigns probabilities 0.20, 0.60, and 0.05 respectively to the singleton sets $\{a\}$, $\{b\}$ and $\{c\}$. Consider the two fields

$$C_1 := \{\emptyset, \{a, b\}, \{c, d\}, \Omega\}$$
$$C_2 := \{\emptyset, \{a, c\}, \{b, d\}, \Omega\}$$

a) (8) Are C_1 and C_2 independent? Give a proof or counterexample. Y N Why?

b) (6) Find a real random variable X that is $C_1 \setminus \mathcal{B}$ -measurable but not $C_2 \setminus \mathcal{B}$ -measurable (be careful not to mix up 1 and 2).

$$X(a) =$$
 $X(b) =$ $X(c) =$ $X(d) =$

c) (6) Find all random variables that are both $C_1 \setminus \mathcal{B}$ and $C_2 \setminus \mathcal{B}$ -measurable. Justify your answer.

Problem 4 : Let (Ω, \mathcal{F}, P) be the nonnegative integers $\Omega = \mathbb{Z}_+ := \{0, 1, 2, \dots\}$ with $\mathcal{F} = 2^{\Omega}$ and $P[A] := e^{-2} \sum_{\omega \in A} (2^{\omega}/\omega!)$ for $A \in \mathcal{F}$.
a) (7) Fix $p > 0$. Is the random variable $X(\omega) := 2^{\omega}$ in $L_p(\Omega, \mathcal{F}, P)$? If so, find $ X _p$ in closed form. If not, tell why. If this depends on p , explain. \bigcirc Yes \bigcirc No \bigcirc It Depends Reasoning?
$ X _p = \underline{\hspace{1cm}}$
b) (6) Is $Z(\omega) := \omega$ in $L_1(\Omega, \mathcal{F}, P)$? If so, find $E Z$ (a numerical answer). If not, explain. \bigcirc Yes \bigcirc No Reasoning:
E Z =

c) (7) For $n \in \mathbb{N}$ define a random variable Y_n by $Y_n(\omega) = n$ if $\omega \geq n$, $Y_n(\omega) = 0$ if $\omega < n$. Does the Dominated Convergence Theorem apply to $\{Y_n\}$? If so, tell what DCT says and show why it applies; if not, explain why. \bigcirc Yes \bigcirc No Reasoning:

d) (XC) Find $\mathsf{E}[Z^2]$ (see b)).

Problem 5: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think the question is ambiguous or tricky. All random variables are real on some $(\Omega, \mathcal{F}, \mathsf{P})$. The notation " $A \perp \!\!\!\perp B$ " means that A and B are independent, for events or RVs.

- a) TF There does not exist a field \mathcal{F} with exactly 42 elements.
- b) TF If $A_n \subset A_{n+1}$ for every n, then $P[A_n] \to 1$.
- c) TF If P[A] < P[B] and $X \ge 0$ then $E[X\mathbf{1}_A] \le E[X\mathbf{1}_B]$.
- d) TF If $|X| \leq Y^2$ and $Y \in L_4$ then $X \in L_8$.
- e) TF If P[A] + P[B] + P[C] > 1 then $A \cap B \cap C \neq \emptyset$.
- f) TF If $X \perp \!\!\!\perp Y$ then $X^{-1}(A) \perp \!\!\!\perp Y^{-1}(B)$ for all $A, B \in \mathcal{B}(\mathbb{R})$.
- g) TF The finite subsets of $\Omega = \mathbb{N}$ form a π -system.
- h) TF If $A \in \mathcal{F}$ then $\mathcal{G} := \{B \in \mathcal{F} : A \perp \!\!\!\perp B\}$ is a λ -system.
- i) TF If X and X^2 are independent, then X is constant a.s.
- j) TF If $A \notin \mathcal{F}$ and $B \in \mathcal{F}$ then $(A \cup B) \notin \mathcal{F}$.

Blank Worksheet

6

Another Blank Worksheet

Name	Notation	$\mathrm{pdf}/\mathrm{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q=1-p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	α/λ^2	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
${\bf HyperGeo.}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,eta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} - 1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	lpha q/p	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$\alpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}$ *	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}^*$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ *	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}^*$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
${\bf Snedecor}\ F$	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$ *	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)^2}{\nu_1(\nu_2)^2}$	$\frac{-\nu_2-2)}{(2-4)}^*$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0*	$\nu/(\nu-2)^*$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	