Midterm Examination II

STA 711: Probability \& Measure Theory

Wednesday, 2017 Nov 15, 1:25-2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in closed form with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible, Simplify.

Good luck!

1.	$/ 20$
2.	$/ 20$
3.	$/ 20$
4.	$/ 20$
5.	$/ 20$
Total $:$	$/ 100$

Problem 1: Let X and Y be independent, each with mean $\mathrm{E} X=\mathrm{E} Y=$ 2, but not identically distributed- X has a Geometric distribution ${ }^{1}$ with $\operatorname{pmf} \mathrm{P}[X=x]=p(1-p)^{x}$ for $x \in \mathbb{Z}_{0}=\{0,1, \ldots\}$ for some $0<p<1$, and Y has an Exponential distribution with pdf $\lambda e^{-\lambda y} \mathbf{1}_{\{y>0\}}$ for some $\lambda>0$. Find the indicated quantities (as numeric values). Show your work.
a) (4) $\mathrm{P}[X \geq 1]=$
$\mathrm{P}[Y \geq 1]=$
b) (4) $\mathrm{P}[X=1]=$
$\mathrm{P}[Y=1]=$
c) (4) $\mathrm{P}[Y \geq X]=$

$$
\mathrm{V}[X-Y]=
$$

[^0]Problem 1 (cont'd): Still $X \Perp Y$ and $\mathrm{E} X=\mathrm{E} Y=2$, with $X \sim \operatorname{Ge}(p)$ and $Y \sim \operatorname{Ex}(\lambda)$ for some $p \in(0,1)$ and $\lambda>0$:
d) (4) $\mathrm{E} \exp (i \omega X)=$
$\mathrm{E} \exp (i \omega Y)=$
$(\omega \in \mathbb{R})$
e) (4) $\mathrm{E}(1 / X!)=$
$E Y^{5}=$

Problem 2: Let $\left\{X_{n}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(1)$ be iid unit-rate exponential random varaiables on some space $(\Omega, \mathcal{F}, \mathrm{P})$. In each part below, indicate in which (if any) sense(s) the sequence $\left\{Y_{n}\right\}$ converges to zero. No explanations are necessary.
a) (5) $Y_{n}:=X_{n} / n$:a.s. ○pr. ○ $L_{1}$$L_{2}$$L_{\infty}$
b) (5) $Y_{n}:=\left\{\prod_{1 \leq j \leq n} X_{j}\right\}^{1 / n}: \bigcirc$ a.s. $\bigcirc p r . \bigcirc L_{1} \bigcirc L_{2} \bigcirc L_{\infty}$
c) (5) $Y_{n}:=\frac{1}{n} \sum_{1 \leq j \leq n}\left(X_{j}-1\right): \bigcirc$ a.s. $\bigcirc p r . \bigcirc L_{1} \bigcirc L_{2} \bigcirc L_{\infty}$
d) (5) $Y_{n}:=\min _{1 \leq j \leq n} X_{j}: \quad \bigcirc$ a.s. $\bigcirc p r . \bigcirc L_{1} \bigcirc L_{2} \bigcirc L_{\infty}$
e) (XC) Prove that $Y_{n}:=\left\{\prod_{1 \leq j \leq n} X_{j}\right\} \rightarrow 0$ a.s. but not in L_{1}.

Problem 3: Let $\left\{X_{n}\right\} \stackrel{\text { ind }}{\sim} \mathrm{Pa}(n, 1)$ be independent Pareto random variables with $\mathrm{P}\left[X_{n}>x\right]=x^{-n}$ for $x>1$ and $n \in \mathbb{N}$. Show your work in finding:
a) (4) For every $0<p \leq \infty$ and $n \in \mathbb{N}$, find:
$\left\|X_{n}\right\|_{p}=$
b) (4) For $n \neq m$, find: $\mathrm{P}\left[X_{m}>X_{n}\right]=$
c) (4) Does X_{n} converge almost-surely? Prove your answer. \bigcirc Yes \bigcirc No Why?

Problem 3 (cont'd): Still $\left\{X_{n}\right\} \stackrel{\text { ind }}{\sim} \mathrm{Pa}(n, 1) \mathrm{w} / \mathrm{P}\left[X_{n}>x\right]=x^{-n}$ for $x>1$.
d) (4) Set $T_{n}:=\prod_{j=1}^{n} X_{j}$ and $Z_{n}:=\prod_{j=1}^{n} X_{j^{2}}$. Show that $T_{n} \rightarrow \infty$ a.s. but $Z_{n} \rightarrow Z$ pr. for some finite RV Z.
e) (4) Set $Y_{n}:=\left(X_{n}-1\right) / X_{n}$. Does $\sum_{n=1}^{\infty} Y_{n}$ converge in L_{1} ? \bigcirc Yes \bigcirc No If so, prove it; if not, find a subsequence n_{k} s.t. $\sum_{k=1}^{\infty} Y_{n_{k}}$ converges.

Problem 4: If X, Y, and Z are i.i.d. L_{1} with common mean μ, ch.f. $\phi(\omega)$, and sums $S:=X+Y+Z$ and $T:=Y+Z$, find:
a) (4) $\mathrm{E}[S \mid Y]=$
b) (4) $\mathrm{E}[Y \mid S]=$
c) (4) $\mathrm{E}[X \mid Y]=$
d) (4) $\mathrm{E}[X+Y \mid T]=$
e) (4) $\mathrm{E}\left[e^{i \omega S} \mid Y\right]=$

Problem 5: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think a question seems ambiguous or tricky. All random variables are real on some $(\Omega, \mathcal{F}, \mathrm{P})$.
a) T F For the Cauchy distribution, $\mathrm{E}[\exp (t X)]$ is infinite for all $t \in \mathbb{R}$ except for $t=0$ because the Cauchy pdf has heavy tails.
b) T F If $\left\{X_{i}\right\}$ are iid w/ch.f. $\phi(\omega)$, then $-\sum_{j=1}^{n} X_{j}$ has ch.f. $\phi(-\omega)^{n}$.
c) T F If $\{X, Y, Z\}$ are iid and $\mathrm{P}[X<Y<Z]=1 / 6$ then X has a continuous distribution.
d) T F If X and Y are independent with pdfs $f(x)$ and $g(y)$, then $Z:=X \cdot Y$ has pdf $h(z):=f(z) g(z)$.
e) T F If $\left\{X_{n}\right\}$ are iid and L_{∞} with mean $\mu=\mathrm{E} X_{n}$ then $(\forall \epsilon>0)\left(\exists c_{\epsilon}>0\right)(\forall n \in \mathbb{N}) \mathrm{P}\left[\left(\bar{X}_{n}-\mu\right)>\epsilon\right] \leq \exp \left(-n c_{\epsilon}\right)$.
f) $\quad \mathrm{T}$ F If $\mathrm{E}\left|X_{n}\right|^{4} \rightarrow 0$ then also $\mathrm{E}\left|X_{n}\right|^{\frac{1}{4}} \rightarrow 0$.
g) $\quad \mathrm{T} F \quad$ If $\mathcal{G} \subset \mathcal{F}$ and $Y=\mathrm{E}[X \mid \mathcal{G}]$ with $0 \leq X \in L_{1}$, then $\|X\|_{1}=$ $\|Y\|_{1}$.
h) $\quad \mathrm{T} F \quad$ If $\mathcal{G} \subset \mathcal{F}$ and $Y=\mathrm{E}[X \mid \mathcal{G}]$ with $0 \leq X \in L_{2}$, then $\|X\|_{2}=$ $\|Y\|_{2}$.
i) T F Every ch.f. $\phi(\omega)=\mathrm{E}\left[e^{i \omega X}\right]$ is a continuous function of ω.
j) T F If $X_{n} \rightarrow X$ in L_{1} then, for some $n_{k} \rightarrow \infty, X_{n_{k}} \rightarrow X$ a.s.

Name:
STA 711: Prob \& Meas Theory

Blank Worksheet

Name: STA 711: Prob \& Meas Theory

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}	
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	
Binomial	$\mathrm{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q$	$(q=1-p)$
Exponential	Ex (λ)	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$	
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}	
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	q / p^{2}	($q=1-p$)
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	q / p^{2}	($y=x+1$)
HyperGeo.	HG($n, A, B)$	$f(x)=\frac{\binom{A}{x}\binom{B}{n-x}}{\binom{\text { + }}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1}$	$\left(P=\frac{A}{A+B}\right)$
Logistic	Lo (μ, β)	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta]^{2}}\right.}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$	
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$	
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2}$	($q=1-p$)
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2}$	$(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}	
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=(\alpha / \epsilon)(1+x / \epsilon)^{-\alpha-1}$	$x \in \mathbb{R}_{+}$	$\frac{\epsilon}{\alpha-1}{ }^{*}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} *$	
		$f(y)=\alpha \epsilon^{\alpha} / y^{\alpha+1}$	$y \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}{ }^{*}$	${\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}}^{*}$	$(y=x+\epsilon)$
Poisson	$\operatorname{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ	
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\left.\begin{array}{rl} f(x) & =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \end{array}\right)$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}{ }^{*}$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}\right.}{\nu_{1}}$	$\left.{ }^{2}-2\right)^{*}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	$0 *$	$\nu /(\nu-2)^{*}$	
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$	
Weibull	We (α, β)	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$	

[^0]: ${ }^{1}$ Common distributions' pdfs/pmfs, means, variances, etc. are attached as page 10.

