Final Examination

STA 711: Probability \& Measure Theory

Monday, 2018 Dec 17, 2:00-5:00 pm

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in closed form with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible simplify.

Good luck.

1.	$/ 20$	5.	$/ 20$
2.	$/ 20$	6.	$/ 20$
3.	$/ 20$	7.	$/ 20$
4.	$/ 20$	8.	$/ 20$
$\quad 180$		$/ 80$	
Total:	$/ 160$		

Print Name: \qquad

Problem 1: Let $\left\{A_{n}\right\} \subset \mathcal{F}$ be independent events with probabilities $\mathrm{P}\left[A_{n}\right]=1 / n$, and let $X_{n}:=\mathbf{1}_{A_{n}}$ be their indicator RV s.
a) (5) Does $\sum_{n} X_{n}$ converge $a . s$. to an \mathbb{R}-valued limit X ? \bigcirc Yes \bigcirc No Why?
b) (5) Does $\sum_{n} X_{n^{2}}$ converge a.s. to an \mathbb{R}-valued limit X ? \bigcirc Yes \bigcirc No Why?
c) (5) Does $\sum_{n} X_{n^{2}}$ converge in L_{1} to an \mathbb{R}-valued limit X ? \bigcirc Yes \bigcirc No Why?
d) (5) Does $\sum_{n} n X_{2^{n}}$ converge in L_{p} to an \mathbb{R}-valued limit X for each $0<p<\infty$? 〇 Yes ○ No Why?

Problem 2: Let $\left\{X_{n}\right\}$ and Y be real-valued random variables on $(\Omega, \mathcal{F}, \mathrm{P})$ such that $X_{n} \rightarrow Y$ a.s. For each $n \in \mathbb{N}, \mathrm{E}\left[X_{n}^{2}\right] \leq 100$.
a) (5) Does it follow that $Y \in L_{2}$? \bigcirc Yes \bigcirc No Why?
b) (5) Does it follow that $X_{n} \rightarrow Y$ in L_{2} ? \bigcirc Yes \bigcirc No Proof or counter-example:
c) (5) Is $\mathrm{P}\left[\left|X_{n}-Y\right|>\epsilon\right]$ summable for each $\epsilon>0$? \bigcirc Yes \bigcirc No Proof or counter-example:
d) (5) Is $\mathrm{P}\left[\left|X_{1}-Y\right|^{2}>n \epsilon\right]$ summable for each $\epsilon>0$? \bigcirc Yes \bigcirc No Proof or counter-example:

Problem 3: Let $X \sim \operatorname{Ex}(\lambda)$ and $Y \sim \operatorname{Ge}(p)$ be independent, with pdf $f(x)=\lambda e^{-\lambda x} \mathbf{1}_{\{x>0\}}$ and $\operatorname{pmf} p(y)=p q^{y}, \quad y \in \mathbb{N}_{0}$, respectively, where $q:=1-p$.
a) (5) Find $\mathrm{P}[Y>X]=$
b) (5) Is the distribution $\mu(d z)$ of $Z:=X+Y \bigcirc$ Absolutely Continuous, \bigcirc Discrete, or \bigcirc Neither? Give its survival function at all $z \in \mathbb{R}$. $\bar{F}(z):=\mathrm{P}[Z>z]=$

Problem 3 (cont'd): Still $X \sim \operatorname{Ex}(\lambda) \Perp Y \sim \operatorname{Ge}(p)$ and $Z:=X+Y$.
c) (6) Find the characteristic functions of all three RVs:
$\chi_{X}(\omega)=$
$\chi_{Y}(\omega)=$
$\chi_{Z}(\omega)=$
d) (4) Find the indicated conditional expectation:
$\mathrm{E}[Z \mid X]=$

Problem 4: Let $Z \sim \operatorname{No}(0,1)$ and set $X:=(Z \vee 0)$, the maximum of Z and zero.
a) (5) Is the distribution $\mu(d x)$ of $X:=(Z \vee 0) \bigcirc$ Absolutely Continuous, \bigcirc Discrete, or \bigcirc Neither? Give its survival function at all $x \in \mathbb{R}$., or some other representation of its distribution.
$\bar{F}(x):=\mathrm{P}[X>x]=$
b) (5) Find the moment generating function (MGF) of X. Your expression may include the normal $\operatorname{CDF} \Phi(\cdot)$.
$M(t):=\mathrm{E}\left[e^{t X}\right]=$
c) (5) Find the mean of X (use any method you like).
$\mathrm{E}[X]=$
d) (5) Every MGF satisfies $M(0)=1$. Is there any other $t^{*} \neq 0$ for which this $M\left(t^{*}\right)=1$? Why, or why not?

Problem 5: Let $\left\{\xi_{n}\right\} \sim \operatorname{Po}\left(n^{2}\right)$.
a) (5) Find the \log ch.f. ${ }^{1}$ for $X_{n}:=\xi_{n} / n^{2}$:
$\phi_{n}(\omega)=\log \mathrm{E}\left[e^{i \omega X_{n}}\right]=$
b) (5) Show that $\phi_{n}(\omega)$ converges as $n \rightarrow \infty$, and find the limit $\phi(\omega)$. What distribution has ch.f. $\exp (\phi(\omega))$?

[^0]Problem 5 (cont'd): Still $\left\{\xi_{n}\right\} \sim \operatorname{Po}\left(n^{2}\right)$.
c) (5) Find the \log ch.f. for $Y_{n}:=\left(\xi_{n} / n\right)-n$:
$\psi_{n}(\omega)=$
d) (5) Show that $\psi_{n}(\omega)$ converges as $n \rightarrow \infty$, and find the limit $\psi(\omega)$. Identify the limiting distribution of $\left\{Y_{n}\right\}$, which has ch.f. $\exp (\psi(\omega))$.

Problem 6: Let $X_{0}:=1$ and, for $n \in \mathbb{N}$, let $X_{n}=2 X_{n-1}$ or $X_{n}=0$ with probability $1 / 2$ each. Set $\tau:=\inf \left\{n: X_{n}=0\right\}$ and $\mathcal{F}_{n}:=\sigma\left\{X_{j}: 1 \leq j \leq n\right\}$.
a) (6) Prove that $\left(X_{n}, \mathcal{F}_{n}\right)$ is a martingale (reminder: there are two conditions to verify).
b) (4) For each $p>0$: is $\left\{X_{n}\right\}$ uniformly bounded in L_{p} ? If so, by what?
c) (4) Does $\left\{X_{n}\right\}$ converge to some limit X_{∞} as $n \rightarrow \infty$? If so, to what limit, and in what sense(s)? If not, why not?
d) (4) Is τ in L_{1} ? Prove it (and find $\mathrm{E}[\tau]$) or disprove it.
e) (2) Find:
$\mathrm{E}\left[X_{\tau}\right]=$
$\mathrm{E}\left[X_{\tau \wedge 10}\right]=$

Problem 7: Let A, B, C be independent with probabilities a, b, c, respectively on $(\Omega, \mathcal{F}, \mathrm{P})$. Find:
a) (5) $\mathrm{P}[A \cup B]=$
b) (5) $\mathrm{P}[A \cup B \mid B \cup C]=$
c) (5) $\mathrm{P}[A \cup B \cup C]=$
d) (5) $\mathrm{P}[A \mid A \cup B \cup C]=$

Problem 8: True or false? Circle one, for 2 points each. No explanations are needed. All random variables are real on the same space $(\Omega, \mathcal{F}, \mathrm{P}) ; \phi, \psi$ are arbitrary Borel functions on \mathbb{R}.
a) T F If $X_{n} \rightarrow X$ a.s. then $\liminf _{n \rightarrow \infty} X_{n}=X$.
b) T F If $X=\phi(Z)$ and $Y=\psi(Z)$ then X, Y can't be independent.
c) TF If $g(\cdot)$ is continuous and $X_{n} \rightarrow X(p r$.$) then g\left(X_{n}\right) \rightarrow g(X)(p r$.$) .$
d) T F If $X \Perp Y$ and ϕ, ψ are bounded functions $\mathbb{R} \rightarrow \mathbb{R}$ then $\mathrm{E}[\exp (\phi(X)+\psi(Y))]=\mathrm{E}[\exp (\phi(X))] \cdot \mathbf{E}[\exp (\psi(Y))]$.
e) T F If $A, B \in \mathcal{F}$ then $\sigma\{A, B\}=\sigma\left\{\mathbf{1}_{A}+2 \mathbf{1}_{B}\right\}$.
f) $\mathrm{T} F$ If $X \in L_{1}(\Omega, \mathcal{F}, \mathrm{P})$ and $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$ then

$$
\mathrm{E}[\mathrm{E}[X \mid \mathcal{H}] \mid \mathcal{G}]=\mathrm{E}[X \mid \mathcal{G}]
$$

g) T F If $\emptyset \neq \Lambda_{1} \subsetneq \Lambda_{2} \subsetneq \cdots \subsetneq \Lambda_{n}=\Omega$, then $\sigma\left\{\Lambda_{j}: 1 \leq j \leq n\right\}$ has 2^{n} elements.
h) TF If probability measures P, Q agree on a field \mathcal{G}_{0} then they agree on the σ-field $\mathcal{G}=\sigma\left(\mathcal{G}_{0}\right) \subset \mathcal{F}$ it generates.
i) T F If $0 \leq X \in L_{1}$ then $Y:=\log (1+X)$ satisfies $Y \in L_{1}$.
j) T F If each $X_{j} \in L_{p_{j}}$ for some $\left\{p_{j}\right\} \subset \mathbb{R}_{+}$and if $\sum p_{j}<\infty$ then $X_{+}:=\sum X_{j}$ converges in L_{1}.

Fall 2018

Blank Worksheet

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\operatorname{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\left.\binom{A}{x} \begin{array}{c}B \\ n-x\end{array}\right)}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	$\operatorname{Lo}(\mu, \beta)$	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta}\right]^{2}}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=(\alpha / \epsilon)(1+x / \epsilon)^{-\alpha-1}$	$x \in \mathbb{R}_{+}$	$\frac{\epsilon}{\alpha-1}$ if $\alpha>1$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} \text { if } \alpha>2$
		$f(y)=\alpha \epsilon^{\alpha} / y^{\alpha+1}$	$y \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}$ if $\alpha>1$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} \text { if } \alpha>2 \quad(y=x+\epsilon)$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{(11}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$ if $\nu_{2}>2$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)} \text { if } \nu_{2}>4$
		$x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}}$			
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0 if $\nu>1$	$\frac{\nu}{\nu-2}$ if $\nu>2$
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	$\mathrm{We}(\alpha, \beta)$	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$

[^0]: ${ }^{1}$ Suggestion: First compute the ch.f. $\phi(\theta):=\mathrm{E}\left[e^{i \theta X}\right]$ for $X \sim \operatorname{Po}(\lambda)$.

