Midterm Examination I

STA 711: Probability \& Measure Theory

Wednesday, 2018 Oct 03, 1:25-2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in closed form with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible, Simplify.

Good luck!

\qquad

1.	$/ 20$
2.	$/ 20$
3.	$/ 20$
4.	$/ 20$
5.	$/ 20$
Total:	$/ 100$

Version a

Problem 1: \quad Let $\Omega=(0,1], \mathcal{F}=\mathcal{B}(\Omega)$, and $\mathrm{P}=\lambda$ (Lebesgue measure), with random variables

$$
X_{n}(\omega):=\sqrt{n} \mathbf{1}_{\{\omega<1 / n\}} \quad Y_{n}(\omega):=\frac{1}{2 \sqrt{n \omega}}
$$

a) (6) Find the indicated expectations (simplify!):

$$
\mathrm{E}\left[X_{n}\right]=
$$

\qquad

$$
\mathrm{E}\left[Y_{n}\right]=
$$

\qquad
b) (8) Prove that for each $\omega, X_{n} \rightarrow 0$ and $Y_{n} \rightarrow 0$, as follows. For each $0<\epsilon<1$, find the smallest $N_{\epsilon}(\omega)$ such that:

$$
\begin{array}{ll}
n \geq N_{\epsilon} \Rightarrow\left|X_{n}(\omega)\right| \leq \epsilon: & N_{\epsilon}(\omega)= \\
n \geq N_{\epsilon} \Rightarrow\left|Y_{n}(\omega)\right| \leq \epsilon: & N_{\epsilon}(\omega)=
\end{array}
$$

\qquad
\qquad

Problem 1 (cont'd): Still $\Omega=(0,1], \mathcal{F}=\mathcal{B}(\Omega), \mathrm{P}=\lambda$, and

$$
X_{n}(\omega):=\sqrt{n} \mathbf{1}_{\{\omega<1 / n\}}, \quad Y_{n}(\omega):=\frac{1}{2 \sqrt{n \omega}}
$$

c) (6) For each $n \in \mathbb{N}$, find the indicated probabilities:

$$
\begin{aligned}
& \mathrm{P}\left[X_{n} \geq 10\right]= \\
& \mathrm{P}\left[Y_{n} \geq 10\right]= \\
& \mathrm{P}\left[Y_{n} \geq X_{n}\right] \\
& \hline
\end{aligned}
$$

Problem 2: \quad Let $\Omega=(0,1], \mathcal{F}=\mathcal{B}(\Omega)$, and $\mathrm{P}=\lambda$ (Lebesgue measure), with random variables

$$
X_{n}(\omega):=\sqrt{n} \mathbf{1}_{\{\omega<1 / n\}} \quad Y_{n}(\omega):=\frac{1}{2 \sqrt{n \omega}}
$$

a) (6) For which $0<p<\infty$ is X_{n} in L_{p} ? How about Y_{n} ?
X_{n} :
$Y_{n}:$
b) (8) Does the Dominated Convergence Theorem apply to X_{n} and Y_{n} ? If so, find a dominating RV $Z \in L_{1}$; if not, explain why.
$X_{n}: \bigcirc$ Yes \bigcirc No $Z=$
$Y_{n}: \bigcirc$ Yes \bigcirc No $Z=$
c) (6) Does the Monotone Convergence Theorem apply to X_{n} and Y_{n} ? $X_{n}: \bigcirc$ Yes \bigcirc No Why?
$Y_{n}: \bigcirc$ Yes \bigcirc No Why?

Problem 3: Let $\Omega:=\{a, b, c, d\}$ with $\mathcal{F}:=2^{\Omega}$ and P that assigns probabilities $0.20,0.40$, and 0.10 respectively to the singleton sets $\{a\},\{b\},\{c\}$. Let X and Y be RVs given by the following table

	a	b	c	d
$X:$	5	0	1	1
$Y:$	7	2	7	2

a) (8) Are X and Y independent?

Y N Why?
b) (6) Give the σ-algebras $\sigma(X)$ and $\sigma(Y)$ explicitly, by listing their members (no explanations needed):
$\sigma(X)=$
$\sigma(Y)=$
c) (6) Describe the σ-algebra $\sigma(Z)$ for the $\mathrm{RV} Z:=X+Y$.

Justify your answer.

Problem 4: \quad Let $(\Omega, \mathcal{F}, \mathrm{P})$ be the nonnegative integers $\Omega=\mathbb{N}:=\{1,2,3, \ldots\}$ with $\mathcal{F}=2^{\Omega}$ and $\mathrm{P}[A]:=\frac{90}{\pi^{4}} \sum_{\omega \in A} \omega^{-4}$ for $A \in \mathcal{F}$ (see footnote ${ }^{1}$).
a) (2) Show that for any positive decreasing function $\phi: \mathbb{R} \rightarrow \mathbb{R}_{+}$,

$$
\sum_{n=2}^{\infty} \phi(n) \leq \int_{1}^{\infty} \phi(x) d x \leq \sum_{n=1}^{\infty} \phi(n)
$$

b) (6) For $p>0$, is the random variable $X(\omega):=\omega$ in $L_{p}(\Omega, \mathcal{F}, \mathrm{P})$? If this depends on p, explain.YesNoIt Depends
Reasoning?
$p \in$ \qquad
c) (XC) If so, give an explicit upper bound for $\|X\|_{p}$.

$$
\|X\|_{p} \leq
$$

\qquad

[^0]Fall 2018

Problem 4 (cont'd): Still $\Omega=\mathbb{N}, \mathcal{F}=2^{\Omega}$, and $\mathrm{P}[A]:=\frac{90}{\pi^{4}} \sum_{\omega \in A} \omega^{-4}$.
d) (6) For $n \in \mathbb{N}$ set $Y_{n}(\omega):=\omega^{3} \mathbf{1}_{\{\omega \leq n\}}$. Does the Dominated Convergence Theorem apply to $\left\{Y_{n}\right\}$? If so, tell what L_{1} function Y dominates $\left\{Y_{n}\right\}$; if not, explain why. \bigcirc Yes \bigcirc No $\quad Y(\omega)=$ Reasoning?
e) (6) For $n \in \mathbb{N}$ set $Z_{n}(\omega):=\omega^{2} \mathbf{1}_{\{\omega \leq n\}}$. Does the Monotone Convergence Theorem apply to $\left\{Z_{n}\right\}$? If so, tell what MCT says and show why it applies; if not, explain why. \bigcirc Yes \bigcirc No Reasoning:

Problem 5: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think the question is ambiguous. All random variables are real on some $(\Omega, \mathcal{F}, \mathrm{P})$.
a) T F If $A \subsetneq B$ (so $B \backslash A \neq \emptyset$) then $\mathrm{P}[A]<\mathrm{P}[B]$.
b) T F If $\mathrm{P}[A]>\mathrm{P}[B]>\mathrm{P}[A \cap B]>0$ then $\mathrm{P}[A \mid B]>\mathrm{P}[B \mid A]$.
c) T F If $\{X, Y, Z\}$ are iid and $\mathrm{P}[X<Y<Z]=1 / 6$ then X has a continuous distribution.
d) $\mathrm{T} F$ If $\mathrm{P}[Z>0]=1$ then $\mathrm{E}[Z] \cdot \mathrm{E}[1 / Z] \geq 1$.
e) T F Every σ-algebra is a π-system.
f) T F If $\mathrm{P}\left[X_{n} \rightarrow X\right]=1$ then $\cos \left(X_{n}\right) \rightarrow \cos (X)$ in L_{2}.
g) T F If $\mathrm{P}\left[X_{n} \rightarrow X\right]=1$ and if $g: \mathbb{R} \rightarrow \mathbb{R}$ is Borel, then $\mathrm{P}\left[g\left(X_{n}\right) \rightarrow g(X)\right]=1$.
h) T F If $\sum \mathrm{P}\left[A_{n}\right]<\infty$ then $\mathrm{P}\left[\lim \sup A_{n}\right]=0$, whether or not $\left\{A_{n}\right\}$ are independent.
i) T F If $\left\{X_{\alpha}\right\}$ are independent and $\left\{g_{\alpha}\right\}$ are Borel then $\left\{g_{\alpha}\left(X_{\alpha}\right)\right\}$ are independent too.
j) T F If E $|X|^{p}<\infty$ for all $p>0$ then $X \in L_{\infty}$.

Blank Worksheet

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\operatorname{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\left.\binom{A}{x} \begin{array}{c}B \\ n-x\end{array}\right)}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	$\operatorname{Lo}(\mu, \beta)$	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta}\right]^{2}}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=(\alpha / \epsilon)(1+x / \epsilon)^{-\alpha-1}$	$x \in \mathbb{R}_{+}$	$\frac{\epsilon}{\alpha-1}$ if $\alpha>1$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} \text { if } \alpha>2$
		$f(y)=\alpha \epsilon^{\alpha} / y^{\alpha+1}$	$y \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}$ if $\alpha>1$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} \text { if } \alpha>2 \quad(y=x+\epsilon)$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{1 / 2}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$ if $\nu_{2}>2$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)} \text { if } \nu_{2}>4$
		$x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}}$			
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0 if $\nu>1$	$\frac{\nu}{\nu-2}$ if $\nu>2$
Uniform	$\mathrm{Un}(a, b)$	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	$\mathrm{We}(\alpha, \beta)$	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$

[^0]: ${ }^{1}$ Recall that $\zeta(2)=\sum_{n=1}^{\infty} n^{-2}=\pi^{2} / 6$ and $\zeta(4)=\sum_{n=1}^{\infty} n^{-4}=\pi^{4} / 90$

