Midterm Examination II

STA 711: Probability \& Measure Theory

Wednesday, 2018 Nov 14, 1:25-2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in closed form with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible, Simplify.

Good luck!

1.	$/ 20$
2.	$/ 20$
3.	$/ 20$
4.	$/ 20$
5.	$/ 20$
Total:	$/ 100$

Problem 1: Let $\Omega:=(0, \infty)$ with the Borel sets for \mathcal{F} and probability measure given by

$$
\operatorname{P}\{(a, b]\}=e^{-a}-e^{-b}, \quad 0<a<b<\infty .
$$

Let $X_{n}(\omega):=\omega^{n} / n!$ and $Y_{n}:=X_{n} / 2^{n}$ on Ω for $n \in \mathbb{N}_{0}=\{0,1,2, \cdots\}$, with partial sums $S_{n}:=\sum_{j=0}^{n} X_{j}$ and $T_{n}:=\sum_{j=0}^{n} Y_{j}$.
a) (2) Find the limits. Simplify!:
$S:=\lim _{n \rightarrow \infty} S_{n}=\quad T:=\lim _{n \rightarrow \infty} T_{n}=$
b) (2) Show that $\mathrm{E}\left[X_{n}\right]=1$ for all $n \in \mathbb{N}_{0}$.
c) (4) For all $n \in \mathbb{N}_{0}$ and $p \geq 1$, find
$\left\|X_{n}\right\|_{p}=$ \qquad

Problem 1 (cont'd): Still $\mathrm{P}(d \omega)=e^{-\omega} d \omega$ on $\Omega=\mathbb{R}_{+}, X_{n}(\omega):=\omega^{n} / n$!, $Y_{n}:=X_{n} / 2^{n}, S_{n}:=\sum_{j=0}^{n} X_{j}$ and $T_{n}:=\sum_{j=0}^{n} Y_{j}$.
d) (4) Does the Monotone Convergence Theorem apply to $\left\{S_{n}\right\}$?Yes No. If so, what does it say? If not, why not?
e) (4) Does the Dominated Convergence Theorem apply to $\left\{S_{n}\right\}$?YesNo. If so, what does it say? What's the dominator? If not, why not?
f) (4) Does the Dominated Convergence Theorem apply to $\left\{T_{n}\right\}$?YesNo. If so, what does it say? What's the dominator? If not, why not?

Problem 2: Let $\left\{X_{n}\right\}$ be iid with CDF

$$
F(x)=\mathrm{P}\left[X_{n} \leq x\right]=1-(1+x)^{-2}, \quad x>0
$$

and set $S_{n}:=\sum_{j=1}^{n} X_{j}$ and $M_{n}:=\min _{1 \leq j \leq n} X_{j}$.
a) (2) Find the probability density function $f(x)$ for X_{n}.
b) (4) Fix $n \in \mathbb{N}$. For which $p>0$ is $X_{n} \in L_{p}$?
c) (5) Does S_{n} / n converge as $n \rightarrow \infty$? Yes \square No If so, to what limit, in what sense ${ }^{1}$, and why? If not, why not?
d) (5) Fix $n \in \mathbb{N}$. For what $p>0$ is $M_{n} \in L_{p}$?
e) (4) Does M_{n} converge as $n \rightarrow \infty$? 〇 Yes \bigcirc No If so, to what limit, in what sense ${ }^{1}$, and why? If not, why not?

[^0]Problem 3: \quad Still $\left\{X_{n}\right\}$ are IID with CDF $F(x)=1-(1+x)^{-2}$ for $x>0$.
a) (4) Does the Central Limit Theorem apply to $\left\{X_{n}\right\}$? \bigcirc Yes \bigcirc No If so, what does it say? If not, why not?
b) (4) Let $Y_{n}:=\mathbf{1}_{\left\{X_{n}>1\right\}}$ and $T_{n}:=\sum_{j=1}^{n} Y_{j}$.

Find the mean and variance of Y_{n} and T_{n} :

$$
\begin{array}{ll}
\mathrm{E}\left[Y_{n}\right]= & \mathrm{E}\left[T_{n}\right]= \\
\mathrm{V}\left[Y_{n}\right]= & \mathrm{V}\left[T_{n}\right]= \\
\hline
\end{array}
$$

Problem 3 (cont'd): Still $\left\{X_{n}\right\}$ are IID with CDF $F(x)=1-(1+x)^{-2}$ for $x>0$ and $T_{n}:=\sum_{j=1}^{n} Y_{j}$ with $Y_{j}:=\mathbf{1}_{\left\{X_{j}>1\right\}}$.
c) (6) Find the ch.f. $\phi_{n}(\omega):=\mathrm{E} \exp \left(i \omega Z_{n}\right)$ for $Z_{n}:=\left(T_{n}-n / 4\right) / \sqrt{n}$: $\phi_{n}(\omega)=$
d) (6) For large n this has to be approximately $\phi_{n}(\omega) \approx \exp \left(-\kappa \omega^{2} / 2\right)$ for some $\kappa>0$. What theorem says so? And what is κ ? $\kappa=$

Problem 4: \quad On $(\Omega, \mathcal{F}, \mathrm{P})=((0,1], \mathcal{B}, \lambda)$, let $\mathcal{F}_{n}=\sigma\left\{\left(0, j / 2^{n}\right]: 1 \leq j \leq 2^{n}\right\}$ and let $X(\omega):=1 / \omega, Y(\omega):=\omega^{2}, Z(\omega):=1_{\{(0,3 / 8]\}}$.
a) (4) Is $\mathrm{E}\left[X \mid \mathcal{F}_{2}\right]$ well-defined? \bigcirc Yes \bigcirc No

If so, give its value at $\omega=1 / 3$; if not, say why.
$\mathrm{E}\left[X \mid \mathcal{F}_{2}\right](1 / 3)=$
b) (4) Is $\mathrm{E}\left[Y \mid \mathcal{F}_{2}\right]$ well-defined? \bigcirc Yes \bigcirc No

If so, give its value at $\omega=1 / 3$; if not, say why.
$\mathrm{E}\left[Y \mid \mathcal{F}_{2}\right](1 / 3)=$
c) (4) Is $\mathrm{E}\left[Z \mid \mathcal{F}_{2}\right]$ well-defined?Yes ○ No
If so, give its value at $\omega=1 / 3$; if not, say why.
$\mathrm{E}\left[Z \mid \mathcal{F}_{2}\right](1 / 3)=$
d) (4) Find the indicated conditional expectation:
$\mathrm{E}[Y \mid Z]=$
e) (4) Find the indicated conditional expectation:
$\mathrm{E}[Z \mid Y]=$

Problem 5: True or false? Circle one, for 2 points each. No explanations are needed. All random variables are real on the same space $(\Omega, \mathcal{F}, \mathrm{P})$.
a) T F If RVs X_{n} decrease to a limit $X \in L_{1}$, and if each $X_{n} \leq Z$ for some $Z \in L_{1}$, then $X_{n} \rightarrow X$ in L_{1}.
b) T F If $\left\{X_{j}\right\}$ are independent $\mathrm{w} /$ ch.f.s $\phi_{j}(\omega):=\mathrm{E}\left[e^{i \omega X_{j}}\right]$, then $\sum_{j=1}^{n} X_{j}$ has ch.f. $\phi(\omega):=\prod_{j=1}^{n} \phi_{j}(\omega)$.
c) T F If $\{X, Y, Z\}$ are iid and $\mathrm{P}[X>0]=1$ then $\mathrm{E}[X /(Y+Z)]=1 / 2$.
d) T F If X and Y are independent and Y has pdf $f(y)$ then $Z:=$ $X+Y$ has an absolutely-continuous distribution too with some pdf $g(z)$.
e) T F If $\left\{X_{n}\right\}$ satisfy $\mathrm{P}\left[\left|X_{n}\right| \leq n\right]=1$ and converge a.s. to a limit X, then $X_{n} \rightarrow X$ in L_{1}.
f) T F If $\mathrm{E} \sqrt{\left|X_{n}\right|} \rightarrow 0$ then also $\mathrm{E}\left|X_{n}\right|^{2} \rightarrow 0$.
g) $\quad \mathrm{T} F$ If $\mathrm{P}[A] \leq 1 / 4$ then $\left\|X \mathbf{1}_{A}\right\|_{1} \leq \frac{1}{2}\|X\|_{2}$ for any RV X.
h) \quad TF \quad If $\mathcal{G} \subset \mathcal{F}, Y:=\mathrm{E}[X \mid \mathcal{G}]$, and $0 \leq X \in L_{2}$, then $\|X\|_{2} \geq\|Y\|_{2}$.
i) T F If X has ch.f. $\phi(\omega)$ then $Y:=\sqrt{X}$ has ch.f. $\phi(\omega / 2)$.
j) T F If $X_{n} \rightarrow X$ in L_{2} then, for some $n_{k} \rightarrow \infty, X_{n_{k}} \rightarrow X$ in L_{4}.

Blank Worksheet

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\operatorname{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\left.\binom{A}{x} \begin{array}{c}B \\ n-x\end{array}\right)}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	$\operatorname{Lo}(\mu, \beta)$	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta}\right]^{2}}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=(\alpha / \epsilon)(1+x / \epsilon)^{-\alpha-1}$	$x \in \mathbb{R}_{+}$	$\frac{\epsilon}{\alpha-1}$ if $\alpha>1$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} \text { if } \alpha>2$
		$f(y)=\alpha \epsilon^{\alpha} / y^{\alpha+1}$	$y \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}$ if $\alpha>1$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} \text { if } \alpha>2 \quad(y=x+\epsilon)$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{(11}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$ if $\nu_{2}>2$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)} \text { if } \nu_{2}>4$
		$x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}}$			
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0 if $\nu>1$	$\frac{\nu}{\nu-2}$ if $\nu>2$
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	$\mathrm{We}(\alpha, \beta)$	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$

[^0]: ${ }^{1}$ In case it converges in more than one sense, give any correct sense with a matching answer to "why?".

