Sta 711: Homework 1

Fields and σ-fields

1. Enumerate the class \aleph of all σ-fields \mathcal{F} on the three-point set $\Omega=\{a, b, c\}$ that contain the singleton $\{a\}$, i.e., that satisfy $\mathcal{C} \subset \mathcal{F}$ for $\mathcal{C}:=\{\{a\}\}$. What is $\sigma(\mathcal{C})$?
2. Prove that for any two fields \mathcal{F}_{1} and \mathcal{F}_{2} on any set Ω, the intersection $\mathcal{F}_{1} \cap \mathcal{F}_{2}$ is also a field.
3. Find a set Ω and two fields \mathcal{F}_{1} and \mathcal{F}_{2} on Ω for which $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is not a field.
4. Suppose a collection $\left\{\mathcal{F}_{n}: n \in \mathbb{N}\right\}$ of σ-fields on a set Ω satisfies the relation $\mathcal{F}_{j} \subset \mathcal{F}_{j+1}$ for every $j \in \mathbb{N}$. Does it follow that $\cup \mathcal{F}_{j}$ is a field? (the answer is "yes" - show why)
5. Under the same conditions, must $\cup \mathcal{F}_{j}$ be a σ-field? (this one is "no" - find a counterexample. The idea is to find a sequence $A_{n} \in \mathcal{F}_{n}$ with $\cup_{n} A_{n} \notin \mathcal{F}_{j}$ for every j, hence $\left.\cup_{n} A_{n} \notin \cup_{j} \mathcal{F}_{j}\right)$.

Dyadic Rational Probability Spaces

For problems $6-9$, let $\Omega=\mathbb{Q}_{2}:=\left\{j / 2^{n}: j \in\left\{1,2, \cdots, 2^{n}\right\}, n \in \mathbb{N}\right\}$ be the dyadic rational numbers in the half-open unit interval, and let

$$
\begin{equation*}
\mathcal{C}=\left\{(0, b] \cap \mathbb{Q}_{2}: b \in \mathbb{Q}_{2}, 0<b \leq 1\right\} \tag{1}
\end{equation*}
$$

denote the collection of half-open intervals of dyadic rationals $(0, b]=\left\{q \in \mathbb{Q}_{2}: 0<q \leq b\right\}$ with left endpoint zero. Every Ω on this page contains only dyadic rational numbers.

Recall that a real-valued set function P on a σ-algebra \mathcal{G} of subsets of a space Ω is a "probability measure" (PM) if and only if it satisfies the three rules:

- $(\forall A \in \mathcal{G}) \mathrm{P}(A) \geq 0 ;$
- $\left(\forall\left\{A_{i}\right\} \subset \mathcal{G}, A_{i} \cap A_{j}=\emptyset\right) \mathrm{P}\left(\cup A_{i}\right)=\sum \mathrm{P}\left(A_{i}\right) ;$
- $\mathrm{P}(\Omega)=1$.

6. Let $n \in \mathbb{N}$ be a FIXED positive integer (like three) and set

$$
\mathcal{B}_{n}:=\left\{\left(0, j / 2^{n}\right], j \in\left\{0,1, \ldots, 2^{n}\right\}\right\}
$$

the collection of half-open intervals in Ω of dyadic rationals from zero up to an integral multiple of 2^{-n}. Describe the elements of the σ-field

$$
\mathcal{F}_{n}:=\sigma\left(\mathcal{B}_{n}\right)
$$

generated by \mathcal{B}_{n}, for fixed $n \in \mathbb{N}$. How many elements does \mathcal{B}_{n} have? How many distinct elements does \mathcal{F}_{n} have? What are they? Suggestion: Try $\mathcal{B}_{0}, \mathcal{B}_{1}$ and \mathcal{B}_{2} first, by hand. Is there a partition that generates \mathcal{F}_{n} ?
7. What is the field $\mathcal{F}_{0}:=\mathcal{F}(\mathcal{C})$ of subsets of \mathbb{Q}_{2} generated by the class \mathcal{C} of Eqn (1)? (hint: Do problems (4) and (6) first). Try to describe it in just a few words, without using any symbols besides \mathbb{Q}_{2}. Don't just echo the definition!
8. Describe simply and clearly in no more than five words or symbols (seriously, three should be enough) the σ-field $\mathcal{F}:=\sigma(\mathcal{C})$ of subsets of \mathbb{Q}_{2} generated by \mathcal{C}. Don't just echo the definition!
9. Define a set function λ_{0} on \mathcal{C} by

$$
\lambda_{0}((0, b])=b
$$

Show that there does not exist a probability measure λ on $\left(\mathbb{Q}_{2}, \mathcal{F}\right)$ that extends λ_{0}, i.e., one for which $\lambda((0, b])=b$ for all $b \in \mathbb{Q}_{2}$ (Hint: Exactly what does the function $F(x):=\lambda((0, x]), 0 \leq x \leq 1$ look like near $x \in \mathbb{Q}_{2}$, for any $\mathrm{PM} \lambda$ on \mathbb{Q}_{2} ?).

