Sta 711: Homework 1

Fields and σ -fields

- 1. Enumerate the class \aleph of all σ -fields \mathcal{F} on the three-point set $\Omega = \{a, b, c\}$ that contain the singleton $\{a\}$, *i.e.*, that satisfy $\mathcal{C} \subset \mathcal{F}$ for $\mathcal{C} := \{\{a\}\}$. What is $\sigma(\mathcal{C})$?
- 2. Prove that for any two fields \mathcal{F}_1 and \mathcal{F}_2 on any set Ω , the intersection $\mathcal{F}_1 \cap \mathcal{F}_2$ is also a field.
- 3. Find a set Ω and two fields \mathcal{F}_1 and \mathcal{F}_2 on Ω for which $\mathcal{F}_1 \cup \mathcal{F}_2$ is not a field.
- 4. Suppose a collection $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of σ -fields on a set Ω satisfies the relation $\mathcal{F}_j \subset \mathcal{F}_{j+1}$ for every $j \in \mathbb{N}$. Does it follow that $\cup \mathcal{F}_j$ is a field? (the answer is "yes"—show why)
- 5. Under the same conditions, must $\cup \mathcal{F}_j$ be a σ -field? (this one is "no"—find a counter-example. The idea is to find a sequence $A_n \in \mathcal{F}_n$ with $\cup_n A_n \notin \mathcal{F}_j$ for every j, hence $\cup_n A_n \notin \cup_j \mathcal{F}_j$).

Dyadic Rational Probability Spaces

For problems 6–9, let $\Omega = \mathbb{Q}_2 := \{j/2^n : j \in \{1, 2, \dots, 2^n\}, n \in \mathbb{N}\}$ be the dyadic rational numbers in the half-open unit interval, and let

$$C = \{ (0, b] \cap \mathbb{Q}_2 : b \in \mathbb{Q}_2, \ 0 < b < 1 \}$$
 (1)

denote the collection of half-open intervals of dyadic rationals $(0, b] = \{q \in \mathbb{Q}_2 : 0 < q \le b\}$ with left endpoint zero. Every Ω on this page contains only dyadic rational numbers.

Recall that a real-valued set function P on a σ -algebra \mathcal{G} of subsets of a space Ω is a "probability measure" (PM) if and only if it satisfies the three rules:

- $(\forall A \in \mathcal{G}) \ \mathsf{P}(A) \ge 0;$
- $(\forall \{A_i\} \subset \mathcal{G}, A_i \cap A_j = \emptyset) \ \mathsf{P}(\cup A_i) = \sum \mathsf{P}(A_i);$
- $P(\Omega) = 1$.
- 6. Let $n \in \mathbb{N}$ be a FIXED positive integer (like three) and set

$$\mathcal{B}_n := \{(0, j/2^n], j \in \{0, 1, ..., 2^n\}\},\$$

the collection of half-open intervals in Ω of dyadic rationals from zero up to an integral multiple of 2^{-n} . Describe the elements of the σ -field

$$\mathcal{F}_n := \sigma(\mathcal{B}_n)$$

generated by \mathcal{B}_n , for fixed $n \in \mathbb{N}$. How many elements does \mathcal{B}_n have? How many distinct elements does \mathcal{F}_n have? What are they? Suggestion: Try \mathcal{B}_0 , \mathcal{B}_1 and \mathcal{B}_2 first, by hand. Is there a partition that generates \mathcal{F}_n ?

- 7. What is the field $\mathcal{F}_0 := \mathcal{F}(\mathcal{C})$ of subsets of \mathbb{Q}_2 generated by the class \mathcal{C} of Eqn (1)? (hint: Do problems (4) and (6) first). Try to describe it in just a few words, without using any symbols besides \mathbb{Q}_2 . Don't just echo the definition!
- 8. Describe simply and clearly in no more than five words or symbols (seriously, three should be enough) the σ -field $\mathcal{F} := \sigma(\mathcal{C})$ of subsets of \mathbb{Q}_2 generated by \mathcal{C} . Don't just echo the definition!
- 9. Define a set function λ_0 on \mathcal{C} by

$$\lambda_0 \big((0, b] \big) = b$$

Show that there does **not** exist a probability measure λ on $(\mathbb{Q}_2, \mathcal{F})$ that extends λ_0 , *i.e.*, one for which $\lambda((0,b]) = b$ for all $b \in \mathbb{Q}_2$ (Hint: Exactly what does the function $F(x) := \lambda((0,x])$, $0 \le x \le 1$ look like near $x \in \mathbb{Q}_2$, for any PM λ on \mathbb{Q}_2 ?).

Last edited: September 3, 2018