Sta 711: Homework 2

σ -Algebras and partitions.

Fields and σ -fields generated by partitions (finite or countable collections of nonempty disjoint events $\Lambda_j \in \mathcal{F}$ with $\cup \Lambda_j = \Omega$), and probability assignments on them, are especially easy to describe. Let $\{A, B\} \subset \mathcal{F}$ be two events in a probability space $(\Omega, \mathcal{F}, \mathsf{P})$, not necessarily nonempty or disjoint. Let $\mathcal{P} = \mathcal{P}(A, B)$ be the partition generated by these events, *i.e.*, the smallest partition for which $\{A, B\} \subset \sigma(\mathcal{P})$.

- 1. Enumerate all possible elements of the partition \mathcal{P} . How many distinct nonempty elements does \mathcal{P} have, at most? How many, at minimum?
- 2. How many distinct elements does the σ -algebra $\sigma(\mathcal{P})$ contain, at most? At minimum? Describe them in words (don't list them, there are too many).

Null sets.

- 3. Let $\{A_n, n \in \mathbb{N}\}$ be events with $\mathsf{P}(A_n) = 1$. Prove that $\mathsf{P}(\cap_{n=1}^{\infty} A_n) = 1$.
- 4. Now consider uncountably many events $\{B_{\alpha}\}$, all with $P(B_{\alpha}) = 1$. Does it follow necessarily that $P(\cap_{\alpha} B_{\alpha}) = 1$? Give a proof or a counter example.
- 5. Let $n \in \mathbb{N}$ and let $\{C_k\}$ be a collection of n events such that $\sum_{k=1}^n \mathsf{P}(C_k) > n-1$. Show that $\mathsf{P}(\cap_{k=1}^n C_k) > 0$.

Distribution functions and continuity.

- 6. Give an example 1 of a real-valued function on \mathbb{R} which is continuous, but **not** uniformly continuous.
- 7. Let G be a continuous distribution function on \mathbb{R} . Show² that G is in fact uniformly continuous, i.e., that $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x, y \in \mathbb{R}) |x y| < \delta \Rightarrow |G(x) G(y)| < \epsilon$.
- 8. Show that any distribution function F on \mathbb{R} can have at most countably many discontinuities. Hint: Consider the open intervals (F(x-), F(x)) for discontinuity points x, where $F(x-) := \lim_{y \nearrow x} F(y)$ denotes the limit from the left.
- 9. Let $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{F}$ be increasing in the sense that each $A_n\subset A_{n+1}$. Prove that $\mathsf{P}(A_n)\to \mathsf{P}(\cup_{n\in\mathbb{N}}A_n)$, a property called "continuity". What happens for $\{B_n\}\subset\mathcal{F}$ with $B_n\supset B_{n+1}$? [Recall that \subset and \subseteq mean the same thing in this class].

¹and, of course, *prove* that your example satisfies the criteria.

²Hint: Consider points $\{x_i\}$ for which $G(x_i) = i/n$ for $1 \le i < n$. Must these exist? If they do, are they determined uniquely? Does that matter? Draw a graph!

π - & λ - systems.

10. Consider the following collecton of subsets of the real line:

$$\mathcal{B} = \{(-\infty, b]: b \in \mathbb{R}\}$$

- (a) Show that \mathcal{B} is a π system, but not a λ system.
- (b) What is the λ system generated by \mathcal{B} ? Why?
- 11. Consider the following collections of subsets of the unit square $\Omega = (0,1]^2 \subset \mathbb{R}^2$:

$$A = \{(a, b) \times (c, d) : 0 \le a \le b \le 1, 0 \le c \le d \le 1\}$$

- (a) Is A a π system? Why or why not?
- (b) Is A a λ system? Why or why not?

π - systems and fields.

Let \mathcal{C} be a nonempty collection of subsets of a space Ω .

- 12. Let $\mathcal{F}(\mathcal{C})$ be the smallest field containing \mathcal{C} . Show that for each $B \in \mathcal{F}(\mathcal{C})$ there exists a *finite* subcollection $\mathcal{C}_B \subset \mathcal{C}$ for which $B \in \mathcal{F}(\mathcal{C}_B)$. Note \mathcal{C}_B may depend on B. You should be able to do this without using (13). Suggestion: Let $\mathcal{G} := \{B \in \mathcal{F}(\mathcal{C}) : B \in \mathcal{F}(\mathcal{C}_B) \}$ for some finite $\mathcal{C}_B \subset \mathcal{C}$. How can you show $\mathcal{F}(\mathcal{C}) \subset \mathcal{G}$?
- 13. The smallest field $\mathcal{F}(\mathcal{C})$ containing any nonempty collection $\mathcal{C} \subset 2^{\Omega}$ is precisely:

$$\mathcal{G} := \left\{ B : B = \bigcup_{i=1}^m B_i, \quad B_i = \bigcap_{i=1}^{n_i} A_{ij} \text{ for some } m \in \mathbb{N}, \ \{n_i\} \subset \mathbb{N} \right\}$$

with each $A_{ij} \in \mathcal{C}$ or $A_{ij}^c \in \mathcal{C}$, and with the m sets $\{B_i\}$ disjoint. Thus every set in the field $\mathcal{F}(\mathcal{C})$ can be represented explicitly (interestingly, this is impossible for σ -fields). To prove this (which you do *not* have to do), one would have to show five things:

- (a) $\Omega \in \mathcal{G}$ (d) $\mathcal{C} \subset \mathcal{G}$
- (b) $A \in \mathcal{G} \Rightarrow A^c \in \mathcal{G}$ (e) $\mathcal{C} \subset \mathcal{H}$ and \mathcal{H} a field $\Rightarrow \mathcal{G} \subset \mathcal{H}$
- (c) $A, B \in \mathcal{G} \Rightarrow A \cup B \in \mathcal{G}$

Items (a,b,c) show \mathcal{G} is a field; (d) shows it contains \mathcal{C} ; and (e) shows it's smallest. Verify just (a), (d), and (e). Conditions (b) and (c) are routine but tedious.

- 14. Show that if two probability measures P_1 , P_2 agree on a π system \mathcal{C} , then they must also agree on the field $\mathcal{F}(\mathcal{C})$ generated by \mathcal{C} . Don't just quote the result from the text.
- 15. Find two probability measures P_1 , P_2 on some measurable space (Ω, \mathcal{F}) that agree on a nonempty collection of subsets \mathcal{C} , but not on $\mathcal{F}(\mathcal{C})$. Obviously from (14) above \mathcal{C} cannot be a π -system. Hint: It's enough to have an outcome space Ω with just four points, and $\mathcal{C} = \{A, B\} \subset 2^{\Omega}$ with just two events; give Ω , A, B, P_1 , and P_2 explicitly. Would Ω with three points be enough?

Last edited: September 10, 2018