Sta 711: Homework 2

σ-Algebras and partitions.

Fields and σ-fields generated by partitions (finite or countable collections of nonempty disjoint events $\Lambda_{j} \in \mathcal{F}$ with $\cup \Lambda_{j}=\Omega$), and probability assignments on them, are especially easy to describe. Let $\{A, B\} \subset \mathcal{F}$ be two events in a probability space $(\Omega, \mathcal{F}, \mathrm{P})$, not necessarily nonempty or disjoint. Let $\mathcal{P}=\mathcal{P}(A, B)$ be the partition generated by these events, i.e., the smallest partition for which $\{A, B\} \subset \sigma(\mathcal{P})$.

1. Enumerate all possible elements of the partition \mathcal{P}. How many distinct nonempty elements does \mathcal{P} have, at most? How many, at minimum?
2. How many distinct elements does the σ-algebra $\sigma(\mathcal{P})$ contain, at most? At minimum? Describe them in words (don't list them, there are too many).

Null sets.

3. Let $\left\{A_{n}, n \in \mathbb{N}\right\}$ be events with $\mathrm{P}\left(A_{n}\right)=1$. Prove that $\mathrm{P}\left(\cap_{n=1}^{\infty} A_{n}\right)=1$.
4. Now consider uncountably many events $\left\{B_{\alpha}\right\}$, all with $\mathrm{P}\left(B_{\alpha}\right)=1$. Does it follow necessarily that $\mathrm{P}\left(\cap_{\alpha} B_{\alpha}\right)=1$? Give a proof or a counter example.
5. Let $n \in \mathbb{N}$ and let $\left\{C_{k}\right\}$ be a collection of n events such that $\sum_{k=1}^{n} \mathrm{P}\left(C_{k}\right)>n-1$. Show that $\mathrm{P}\left(\cap_{k=1}^{n} C_{k}\right)>0$.

Distribution functions and continuity.

6. Give an example ${ }^{1}$ of a real-valued function on \mathbb{R} which is continuous, but not uniformly continuous.
7. Let G be a continuous distribution function on \mathbb{R}. Show ${ }^{2}$ that G is in fact uniformly continuous, i.e., that $(\forall \epsilon>0)(\exists \delta>0)(\forall x, y \in \mathbb{R})|x-y|<\delta \Rightarrow|G(x)-G(y)|<\epsilon$.
8. Show that any distribution function F on \mathbb{R} can have at most countably many discontinuities. Hint: Consider the open intervals $(F(x-), F(x))$ for discontinuity points x, where $F(x-):=\lim _{y \not \lambda_{x}} F(y)$ denotes the limit from the left.
9. Let $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{F}$ be increasing in the sense that each $A_{n} \subset A_{n+1}$. Prove that $\mathrm{P}\left(A_{n}\right) \rightarrow$ $\mathrm{P}\left(\cup_{n \in \mathbb{N}} A_{n}\right)$, a property called "continuity". What happens for $\left\{B_{n}\right\} \subset \mathcal{F}$ with $B_{n} \supset B_{n+1}$? [Recall that \subset and \subseteq mean the same thing in this class].
[^0]
π - \& λ - systems.

10. Consider the following collecton of subsets of the real line:

$$
\mathcal{B}=\{(-\infty, b]: b \in \mathbb{R}\}
$$

(a) Show that \mathcal{B} is a π - system, but not a λ system.
(b) What is the λ - system generated by \mathcal{B} ? Why?
11. Consider the following collections of subsets of the unit square $\Omega=(0,1]^{2} \subset \mathbb{R}^{2}$:

$$
\mathcal{A}=\{(a, b] \times(c, d]: 0 \leq a \leq b \leq 1,0 \leq c \leq d \leq 1\}
$$

(a) Is \mathcal{A} a π - system? Why or why not?
(b) Is \mathcal{A} a λ - system? Why or why not?

π - systems and fields.

Let \mathcal{C} be a nonempty collection of subsets of a space Ω.
12. Let $\mathcal{F}(\mathcal{C})$ be the smallest field containing \mathcal{C}. Show that for each $B \in \mathcal{F}(\mathcal{C})$ there exists a finite subcollection $\mathcal{C}_{B} \subset \mathcal{C}$ for which $B \in \mathcal{F}\left(\mathcal{C}_{B}\right)$. Note \mathcal{C}_{B} may depend on B. You should be able to do this without using (13). Suggestion: Let $\mathcal{G}:=\{B \in \mathcal{F}(\mathcal{C}): B \in$ $\mathcal{F}\left(C_{B}\right)$ for some finite $\left.\mathcal{C}_{B} \subset \mathcal{C}\right\}$. How can you show $\mathcal{F}(\mathcal{C}) \subset \mathcal{G}$?
13. The smallest field $\mathcal{F}(\mathcal{C})$ containing any nonempty collection $\mathcal{C} \subset 2^{\Omega}$ is precisely:

$$
\mathcal{G}:=\left\{B: B=\cup_{i=1}^{m} B_{i}, \quad B_{i}=\cap_{j=1}^{n_{i}} A_{i j} \text { for some } m \in \mathbb{N},\left\{n_{i}\right\} \subset \mathbb{N}\right\}
$$

with each $A_{i j} \in \mathcal{C}$ or $A_{i j}^{c} \in \mathcal{C}$, and with the m sets $\left\{B_{i}\right\}$ disjoint. Thus every set in the field $\mathcal{F}(\mathcal{C})$ can be represented explicitly (interestingly, this is impossible for σ-fields). To prove this (which you do not have to do), one would have to show five things:
(a) $\Omega \in \mathcal{G}$
(d) $\mathcal{C} \subset \mathcal{G}$
(b) $A \in \mathcal{G} \Rightarrow A^{c} \in \mathcal{G}$
(e) $\mathcal{C} \subset \mathcal{H}$ and \mathcal{H} a field $\Rightarrow \mathcal{G} \subset \mathcal{H}$
(c) $A, B \in \mathcal{G} \Rightarrow A \cup B \in \mathcal{G}$

Items (a,b,c) show \mathcal{G} is a field; (d) shows it contains \mathcal{C}; and (e) shows it's smallest. Verify just (a), (d), and (e). Conditions (b) and (c) are routine but tedious.
14. Show that if two probability measures $\mathrm{P}_{1}, \mathrm{P}_{2}$ agree on a π system \mathcal{C}, then they must also agree on the field $\mathcal{F}(\mathcal{C})$ generated by \mathcal{C}. Don't just quote the result from the text.
15. Find two probability measures $\mathrm{P}_{1}, \mathrm{P}_{2}$ on some measurable space (Ω, \mathcal{F}) that agree on a nonempty collection of subsets \mathcal{C}, but not on $\mathcal{F}(\mathcal{C})$. Obviously from (14) above \mathcal{C} cannot be a π-system. Hint: It's enough to have an outcome space Ω with just four points, and $\mathcal{C}=\{A, B\} \subset 2^{\Omega}$ with just two events; give Ω, A, B, P_{1}, and P_{2} explicitly. Would Ω with three points be enough?

[^0]: ${ }^{1}$ and, of course, prove that your example satisfies the criteria.
 ${ }^{2}$ Hint: Consider points $\left\{x_{i}\right\}$ for which $G\left(x_{i}\right)=i / n$ for $1 \leq i<n$. Must these exist? If they do, are they determined uniquely? Does that matter? Draw a graph!

