Sta 711: Homework 3

Random variables

1. Let $(\Omega, \mathcal{F}, \mathsf{P}) = ((0, 1], \mathcal{B}, \lambda)$ for Lebesgue measure λ on the Borel sets of the unit interval. For $\omega \in \Omega$ define:

$$X_1(\omega) := \min(\omega, 0.6)$$
 $X_2(\omega) := \mathbf{1}_{(0.1/3]}(\omega)$ $X_3(\omega) := \sqrt{\omega}$

Plot each of the CDFs $F_k(x) := \mathsf{P}[X_k \leq x], \ x \in \mathbb{R}$, and describe explicitly the σ -algebras $\mathcal{F}_k := \sigma(X_k)$.

- 2. Let X be a random variable with CDF $F(x) := P(X \le x)$. Set Y := F(X). If X has a continuous distribution (i.e., if F is a continuous function), show that Y is a random variable and that Y has a uniform distribution on [0, 1]. Warning: F(x) may not be strictly increasing, and so may not be one-to-one; also it may not be differentiable.
- 3. A random variable Y is real-valued if $Y(\omega) \in \mathbb{R}$ for every $\omega \in \Omega$, and is bounded if there is a fixed finite number $0 \leq B < \infty$ for which $|Y(\omega)| \leq B$ for all $\omega \in \Omega$. Give an example of a real-valued random variable X that is not bounded.
- 4. Let X be a real valued random variable (so $P[|X| < \infty] = 1$) with CDF F(x). For each $\epsilon > 0$, construct a bounded random variable Y_{ϵ} such that

$$P(X \neq Y_{\epsilon}) < \epsilon$$
.

Measurable functions

- 5. Let $\Omega = \mathbb{R}$. Show that $\mathcal{S} := \{\emptyset, (-\infty, 0], (0, \infty), \Omega\}$ is a σ -algebra. Describe all functions $f: \Omega \to \mathbb{R}$ that are $\mathcal{S} \setminus \mathcal{B}$ -measurable.
- 6. If X is a real-valued random variable on any probability space $(\Omega, \mathcal{F}, \mathsf{P})$, then show that |X| is also a random variable. Show by an example that the converse need not be true (Hint: A finite Ω will suffice)
- 7. Let $\Omega = \mathbb{R}$, and let $\mathcal{S}_0 := \{\emptyset, \Omega\}$ be the trivial σ -algebra. Find all measurable functions $X : (\Omega, \mathcal{S}_0) \to (\mathbb{R}, \mathcal{B})$.
- 8. Let $\mathcal{F}_X := \sigma(X)$ be the σ -algebra generated by the function $X(\omega) := \omega^2$ on $\Omega = \mathbb{R}$. Is the set $A = (-\infty, 0]$ in \mathcal{F}_X ? How about B = [-4, 4]? Why?
- 9. Let $\{X_n, n \geq 0\}$ be real-valued random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ that satisfy

$$\limsup_{n\to\infty} X_n(\omega) = +\infty$$

for every $\omega \in \Omega$, and let $B < \infty$ be a real number. Prove that the integer-valued quantity

$$\tau(\omega) := \inf\{n \ge 0 : X_n(\omega) \ge B\}$$

is a random variable.

Extra credit: Prove that X_{τ} is also a random variable.

Random Variables and σ -Algebras

10. All parts of this problem concern the same probability space $(\Omega, \mathcal{F}, \mathsf{P})$ with $\Omega = (0, 1]$, $\mathcal{F} = \mathcal{B}(\Omega)$ the Borel sets, and $\mathsf{P} = \lambda$ Lebesgue measure. Let $\delta_n(\omega)$ be the *n*th bit in the binary expansion of ω , given by

$$\delta_n(\omega) := \lceil 1 + 2^n \omega \rceil \pmod{2}$$

where $\lceil x \rceil$ is the least integer $\geq x$, and set

$$\mathcal{F}_n := \sigma \{\delta_1, \dots, \delta_n\} = \sigma \{(0, j/2^n] : j = 0, \dots, 2^n\}.$$

- (a) Find a single real-valued random variable X on $(\Omega, \mathcal{F}, \mathsf{P})$ such that $\mathcal{F}_3 = \sigma(X)$.
- (b) True or False: If Y is any other random variable on $(\Omega, \mathcal{F}, \mathsf{P})$ such that $\mathcal{F}_3 = \sigma(Y)$, then Y = g(X) for some Borel measurable function $g : \mathbb{R} \to \mathbb{R}$. Give a proof (find g explicitly) or a counter-example.
- (c) Let Z be a random variable on $(\Omega, \mathcal{F}, \mathsf{P})$ for which $\mathcal{F} = \sigma(Z)$ (recall $\mathcal{F} = \mathcal{B}(\Omega)$, $\Omega = (0, 1]$, and $\mathsf{P} = \lambda$). True or false: For each $\omega_1 \neq \omega_2$, necessarily $Z(\omega_1) \neq Z(\omega_2)$. Explain.