Sta 711: Homework 3

Random variables

1. Let $(\Omega, \mathcal{F}, \mathrm{P})=((0,1], \mathcal{B}, \lambda)$ for Lebesgue measure λ on the Borel sets of the unit interval. For $\omega \in \Omega$ define:

$$
X_{1}(\omega):=\min (\omega, 0.6) \quad X_{2}(\omega):=\mathbf{1}_{(0,1 / 3]}(\omega) \quad X_{3}(\omega):=\sqrt{\omega}
$$

Plot each of the CDFs $F_{k}(x):=\mathrm{P}\left[X_{k} \leq x\right], x \in \mathbb{R}$, and describe explicitly the σ algebras $\mathcal{F}_{k}:=\sigma\left(X_{k}\right)$.
2. Let X be a random variable with $\operatorname{CDF} F(x):=\mathrm{P}(X \leq x)$. Set $Y:=F(X)$. If X has a continuous distribution (i.e., if F is a continuous function), show that Y is a random variable and that Y has a uniform distribution on $[0,1]$. Warning: $F(x)$ may not be strictly increasing, and so may not be one-to-one; also it may not be differentiable.
3. A random variable Y is real-valued if $Y(\omega) \in \mathbb{R}$ for every $\omega \in \Omega$, and is bounded if there is a fixed finite number $0 \leq B<\infty$ for which $|Y(\omega)| \leq B$ for all $\omega \in \Omega$. Give an example of a real-valued random variable X that is not bounded.
4. Let X be a real valued random variable (so $\mathrm{P}[|X|<\infty]=1$) with CDF $F(x)$. For each $\epsilon>0$, construct a bounded random variable Y_{ϵ} such that

$$
\mathrm{P}\left(X \neq Y_{\epsilon}\right)<\epsilon
$$

Measurable functions

5. Let $\Omega=\mathbb{R}$. Show that $\mathcal{S}:=\{\emptyset,(-\infty, 0],(0, \infty), \Omega\}$ is a σ-algebra. Describe all functions $f: \Omega \rightarrow \mathbb{R}$ that are $\mathcal{S} \backslash \mathcal{B}$-measurable.
6. If X is a real-valued random variable on any probability space $(\Omega, \mathcal{F}, \mathrm{P})$, then show that $|X|$ is also a random variable. Show by an example that the converse need not be true (Hint: A finite Ω will suffice)
7. Let $\Omega=\mathbb{R}$, and let $\mathcal{S}_{0}:=\{\emptyset, \Omega\}$ be the trivial σ-algebra. Find all measurable functions $X:\left(\Omega, \mathcal{S}_{0}\right) \rightarrow(\mathbb{R}, \mathcal{B})$.
8. Let $\mathcal{F}_{X}:=\sigma(X)$ be the σ-algebra generated by the function $X(\omega):=\omega^{2}$ on $\Omega=\mathbb{R}$. Is the set $A=(-\infty, 0]$ in \mathcal{F}_{X} ? How about $B=[-4,4]$? Why?
9. Let $\left\{X_{n}, n \geq 0\right\}$ be real-valued random variables on $(\Omega, \mathcal{F}, \mathrm{P})$ that satisfy

$$
\limsup _{n \rightarrow \infty} X_{n}(\omega)=+\infty
$$

for every $\omega \in \Omega$, and let $B<\infty$ be a real number. Prove that the integer-valued quantity

$$
\tau(\omega):=\inf \left\{n \geq 0: X_{n}(\omega) \geq B\right\}
$$

is a random variable.
Extra credit: Prove that X_{τ} is also a random variable.

Random Variables and σ-Algebras

10. All parts of this problem concern the same probability space $(\Omega, \mathcal{F}, \mathrm{P})$ with $\Omega=(0,1]$, $\mathcal{F}=\mathcal{B}(\Omega)$ the Borel sets, and $\mathrm{P}=\lambda$ Lebesgue measure. Let $\delta_{n}(\omega)$ be the nth bit in the binary expansion of ω, given by

$$
\delta_{n}(\omega):=\left\lceil 1+2^{n} \omega\right\rceil \quad(\bmod 2)
$$

where $\lceil x\rceil$ is the least integer $\geq x$, and set

$$
\mathcal{F}_{n}:=\sigma\left\{\delta_{1}, \ldots, \delta_{n}\right\}=\sigma\left\{\left(0, j / 2^{n}\right]: j=0, \cdots, 2^{n}\right\} .
$$

(a) Find a single real-valued random variable X on $(\Omega, \mathcal{F}, \mathrm{P})$ such that $\mathcal{F}_{3}=\sigma(X)$.
(b) True or False: If Y is any other random variable on $(\Omega, \mathcal{F}, \mathrm{P})$ such that $\mathcal{F}_{3}=\sigma(Y)$, then $Y=g(X)$ for some Borel measurable function $g: \mathbb{R} \rightarrow \mathbb{R}$. Give a proof (find g explicitly) or a counter-example.
(c) Let Z be a random variable on $(\Omega, \mathcal{F}, \mathrm{P})$ for which $\mathcal{F}=\sigma(Z)$ (recall $\mathcal{F}=\mathcal{B}(\Omega)$, $\Omega=(0,1]$, and $\mathbf{P}=\lambda)$. True or false: For each $\omega_{1} \neq \omega_{2}$, necessarily $Z\left(\omega_{1}\right) \neq$ $Z\left(\omega_{2}\right)$. Explain.

