Sta 711: Homework 5

Convergence

1. Let X be a strictly positive random variable. Show that:
(a) $\lim _{n \rightarrow \infty} n \mathrm{E}\left(\frac{1}{X} \mathbf{1}_{[X>n]}\right)=0$.
(b) $\lim _{n \rightarrow \infty} n^{-1} \mathrm{E}\left(\frac{1}{X} \mathbf{1}_{\left[X>n^{-1}\right]}\right)=0$.
2. Let $X \sim \operatorname{Un}(0,4]$ be uniformly distributed on the interval $(0,4]$, and set $Y:=1 / X$ and $Z:=\log (4 Y)$. Suggestion: First find out what is the distribution of Z, by computing $\mathrm{P}[Z>z]$ for $z \in \mathbb{R}$. Use $\varphi(x):=|x|$ for the Markov inequality questions.
(a) What bound does Markov's inequality give for $\mathrm{P}[X>3]$?
(b) What bound does Chebychev's inequality give for $\mathrm{P}[|X-2|>1$?
(c) What bound does Markov's inequality give for $\mathrm{P}[Y>1]$?
(d) What bound does Markov's inequality give for $\mathrm{P}[Z>2]$?
(e) What are the exact values of $\mathrm{P}[X>3], \mathrm{P}[|X-2|>1], \mathrm{P}[Y>1]$, and $\mathrm{P}[Z>2]$?
3. Let A and B be events in $(\Omega, \mathcal{F}, \mathrm{P})$ with probabilities $a=\mathrm{P}(A)$ and $b=\mathrm{P}(B)$ respectively. Show that $\mathrm{P}(A \cap B) \leq \sqrt{a b}$.
4. Suppose $\left\{X_{n}\right\}, X$ are real valued RVs defined on a probability space $(\Omega, \mathcal{F}, \mathrm{P})$ and that $X_{n}(\omega) \rightarrow X(\omega)$ for all $\omega \in \Omega$. Show that for every $\epsilon>0$, there is an event Λ_{ϵ} with $\mathrm{P}\left(\Lambda_{\epsilon}\right)<\epsilon$ and

$$
\sup _{\omega \in \Lambda_{\epsilon}^{c}}\left|X(\omega)-X_{n}(\omega)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Thus the convergence is uniform except on an arbitrarily small set. (For more on this result, called Egorov's Theorem, see page 89 of the text.)
5. For a random variable $X, 1<p<q<\infty$, show 1 that

$$
0 \leq\|X\|_{1} \leq\|X\|_{p} \leq\|X\|_{q} \leq\|X\|_{\infty}
$$

6. For $1<p<q<\infty$, show that

$$
L_{\infty} \subset L_{q} \subset L_{p} \subset L_{1}
$$

where $L_{p}:=\left\{X:\|X\|_{p}<\infty\right\}$.

[^0]7. The "Moment Generating Function" (MGF) of a real-valued random variable X (or of its distribution $\mu(d x))$ is the extended real-valued function $M_{X}(t):=\mathrm{E} \exp (t X)=$ $\int_{\mathbb{R}} e^{t x} \mu(d x)$ of $t \in \mathbb{R}$. Show that a nonnegative random variable $X \geq 0$ is in L_{1} if $M_{X}(t)<\infty$ for any $t>0$. Show that the converse may fail-i.e., there exist $X \geq 0$ in L_{1} for which $M_{X}(t)=\infty$ for all $t>0$.
8. Show that Minkowski's Inequality fails for $0<p<1-$ i.e., find $(\Omega, \mathcal{F}, \mathrm{P})$ and $X, Y \in$ $L_{p}(\Omega, \mathcal{F}, \mathrm{P})$ for which $\|X+Y\|_{p}>\|X\|_{p}+\|Y\|_{p}$ for some $0<p<1$.

[^0]: ${ }^{1}$ Hint: Jensen's inequality may help for some parts

