Sta 711: Homework 6

Independence

1. Let $\left\{B_{i}\right\}$ be independent events. For $n \in \mathbb{N}$ show that

$$
\mathrm{P}\left(\bigcup_{i=1}^{n} B_{i}\right)=1-\prod_{i=1}^{n}\left[1-\mathrm{P}\left(B_{i}\right)\right] \geq 1-\exp \left\{-\sum_{i=1}^{n} \mathrm{P}\left(B_{i}\right)\right\}
$$

and conclude that $\mathrm{P}\left[\cup_{i=1}^{\infty} B_{i}\right]=1$ if each $\mathrm{P}\left[B_{i}\right] \geq \epsilon$ for some $\epsilon>0$. Show that this conclusion would be false without the assumption of independence.
2. If $\left\{A_{n}, n \in \mathbb{N}\right\}$ is a sequence of events such that $\mathrm{P}\left[A_{n}\right]=1 / 3$ for each n and

$$
(\forall n \neq m \in \mathbb{N}) \quad \mathrm{P}\left(A_{n} \cap A_{m}\right)=\mathrm{P}\left(A_{n}\right) \mathrm{P}\left(A_{m}\right)
$$

does it follow that the events $\left\{A_{n}\right\}$ are independent? Give a proof or counter-example. Note $1 / 3 \neq 1 / 2$.
3. Show that a random variable Y is independent of itself if and only if, for some constant $c \in \mathbb{R}$, $\mathrm{P}[Y=c]=1$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Borel measurable, and X a non-constant random variable. Can $Y:=f(X)$ and X be independent? Explain your answer.
4. Give an example to show that an event $A \in \mathcal{F}$ may be independent of each B in some collection $\mathcal{C} \subset \mathcal{F}$ of events, but not independent of $\sigma(\mathcal{C})$. Prove this is impossible if \mathcal{C} is a π-system (i.e., in that case A must be independent of $\sigma(\mathcal{C})$).
5. Give a simple example to show that two random variables on the same space (Ω, \mathcal{F}) may be independent according to one probability measure P_{1} but dependent with respect to another P_{2}.

Fubini's Theorem

6. Let $X \geq 0$ be a positive random variable and $\alpha>0$. Show that

$$
\mathrm{E}\left(X^{\alpha}\right)=\alpha \int_{0}^{\infty} t^{\alpha-1} \mathrm{P}(X>t) d t .
$$

Note that the distribution $\mu(d x)$ of X need not be absolutely continuous (so X may not have a pdf). Where did you use Fubini's theorem?
7. Define measure spaces $\left(\Omega_{i}, \mathcal{F}_{i}, \mu_{i}\right)$, for $i=1,2$ as follows. Let each $\Omega_{i}:=(0,1]$, the unit interval, with σ-algebras

$$
\mathcal{F}_{1}=\mathcal{B}=\text { Borel sets of }(0,1] \quad \mathcal{F}_{2}=2^{\Omega}=\text { All subsets of }(0,1],
$$

and let $\mu_{1}=\lambda$ be Lebesgue measure and μ_{2} counting measure - so $\mu_{1}(A)$ is the length of any Borel set $A \in \mathcal{F}_{1}$ and $\mu_{2}(B)$ is the cardinality of $B \subset(0,1]$. Define

$$
f(x, y):=\mathbf{1}_{x=y}(x, y)
$$

Set

$$
I_{1}:=\int_{\Omega_{1}}\left[\int_{\Omega_{2}} f(x, y) \mu_{2}(d y)\right] \mu_{1}(d x) \quad I_{2}:=\int_{\Omega_{2}}\left[\int_{\Omega_{1}} f(x, y) \mu_{1}(d x)\right] \mu_{2}(d y)
$$

Compute I_{1} and I_{2}. Is $I_{1}=I_{2}$? Are the measures μ_{1} and $\mu_{2} \sigma$-finite? Why doesn't Fubini's theorem hold here?
8. This problem is a probabilistic version of the familiar integration-by-parts formula from calculus. Suppose F and G are two distribution functions with no common points of discontinuity on an interval $(a, b]$. Show that

$$
\int_{(a, b]} G(x) F(d x)=F(b) G(b)-F(a) G(a)-\int_{(a, b]} F(x) G(d x)
$$

where " $G(d x)$ " denotes the measure on $(\mathbb{R}, \mathcal{B})$ with $\operatorname{DF} G(x)$. Show that the formula fails if F and G have common discontinuities.

Zero-One Laws

9. Let $\left\{X_{n}\right\}$ be a sequence of Bernoulli random variables with

$$
\mathrm{P}\left(X_{n}=1\right)=n^{-p} \quad \mathrm{P}\left(X_{n}=0\right)=1-n^{-p}
$$

for some $p>0$. For $p=2$ show that the partial sum

$$
S_{n}:=\sum_{k=1}^{n} X_{k}
$$

converges almost-surely, whether or not the $\left\{X_{n}\right\}$ are independent. If the $\left\{X_{n}\right\}$ are independent, for which $p>0$, does S_{n} converge? Why?
10. Let $\left\{X_{n}\right\}$ be an iid sequence of random variables with a non-degenerate distribution (i.e., for some $\left.B \in \mathcal{B}, 0<\mathrm{P}\left[X_{n} \in B\right]<1\right)$. Show that

$$
\mathrm{P}\left[\omega: X_{n}(\omega) \text { converges }\right]=0
$$

11. Use the Borel-Cantelli lemma to prove that for any sequence of real-valued random variables $\left\{X_{n}\right\}$ (not necessarily independent or identically-distributed), there exist constants $c_{n} \rightarrow \infty$ such that

$$
\mathrm{P}\left(\lim _{n \rightarrow \infty} \frac{X_{n}}{c_{n}}=0\right)=1 .
$$

Give a careful description of how you choose c_{n} (it will depend on the distributions of the X_{n}). Find a suitable sequence $\left\{c_{n}\right\}$ explicitly for an iid sequence $\left\{X_{n}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(1)$ of unit-rate exponentially-distributed random variables to ensure that $X_{n} / c_{n} \rightarrow 0$ almost surely.

