Sta 711: Homework 7

Almost-sure Convergence

1. Let $\left\{X_{n}\right\}$ be a monotonically increasing sequence of RVs such that $X_{n} \rightarrow X$ in probability (pr.). Show that $X_{n} \rightarrow X$ almost surely (a.s.)
2. Let $\left\{X_{n}\right\}$ be any sequence of RVs. Show that $X_{n} \rightarrow X$ a.s. if and only if

$$
\sup _{k \geq n}\left|X_{k}-X\right| \rightarrow 0 \quad p r .
$$

3. Let $\left\{X_{n}\right\}$ be an arbitrary sequence of RVs and set $S_{n}:=\sum_{i=1}^{n} X_{i}$. Show that $X_{n} \rightarrow 0$ a.s. implies that $S_{n} / n \rightarrow 0$ a.s.

In-probability Convergence

4. Let $\left\{X_{n}\right\} \subset L_{2}$ be independent and identically distributed. For each $\delta>0$ show that $n \mathrm{P}\left[\left|X_{1}\right|>\delta \sqrt{n}\right] \rightarrow 0$. Use this to show that the maximum $\bigvee_{i=1}^{n}\left|X_{i}\right| / \sqrt{n} \rightarrow 0$ pr. Thus, the maximum of n iid L_{2} random variables grows slower than \sqrt{n}.
5. For random variables X, Y define

$$
\rho(X, Y):=\mathrm{E}\left\{\frac{|X-Y|}{1+|X-Y|}\right\}
$$

The function ρ is a metric (you do not have to prove that), i.e., it's non-negative, symmetric, satisfies the triangle inequality, and vanishes if and only if $X=Y$ a.s. Show that $X_{n} \rightarrow X$ $p r$. if and only if $\rho\left(X_{n}, X\right) \rightarrow 0$. Thus, convergence in probability is metrizable. ${ }^{1}$

L_{p} Convergence

6. Find a sequence of $\operatorname{RVs}\left\{X_{n}\right\} \subset L_{2}$ which converge in L_{1} but not in L_{2}.
7. Let $(\Omega, \mathcal{F}, \mathrm{P}):=((0,1], \mathcal{B}, \lambda)$ be the unit interval with Borel sets and Lebesgue measure and define $X_{n}(\omega):=\omega^{n}$ for $n \in \mathbb{N}, \omega \in \Omega$. For what $p \in[1, \infty]$, does the sequence $\left\{X_{n}\right\}$ converge in L_{p} ? To what limit? Explain your answer.
8. Verify Hölder's inequality for $p=1, q=\infty$ and all random variables X, Y :

$$
\mathrm{E}|X Y| \leq\|X\|_{1}\|Y\|_{\infty}
$$

where $\|Y\|_{\infty}:=\sup \{c<\infty: \mathrm{P}[|Y|>c]>0\}$.
9. Verify Minkowski's inequality for $p=\infty$ and all random variables X, Y :

$$
\|X+Y\|_{\infty} \leq\|X\|_{\infty}+\|Y\|_{\infty}
$$

[^0]
Uniform Integrability (UI)

10. Fix $p>0$ and set $X_{n}:=n^{p} 1_{\{0<\omega \leq 1 / n\}}$ on $(\Omega, \mathcal{F}, \mathrm{P})$ with $\Omega=(0,1], \mathcal{F}=\mathcal{B}(\Omega)$, and $\mathrm{P}=\lambda$. Show explicitly that $\left\{X_{n}\right\}$ is UI for $p<1$ and not for $p \geq 1$, by verifying that $\mathrm{E}\left[X_{n} \mathbf{1}_{\left\{X_{n}>t\right\}}\right]$ converges to zero uniformly as $t \rightarrow \infty$ for $p<1$ and not for $p \geq 1$.
11. Let $\left\{X_{n}\right\}$ be an iid sequence of L_{1} random variables and set $S_{n}:=\sum_{i=1}^{n} X_{i}$. Show that the sequence of random variables $\left\{\bar{X}_{n}\right\}$ defined by $\bar{X}_{n}:=S_{n} / n$ is UI.
12. Let $\left\{X_{n}\right\}$ be iid and L_{1}. Show ${ }^{2}$:

$$
\mathrm{P}\left(\lim _{n \rightarrow \infty} \frac{X_{n}}{n}=0\right)=1
$$

13. If $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are UI, show that so is $\left\{X_{n}+Y_{n}\right\}$.
14. Let $\phi(x) \geq 0$ be a nonnegative function which grows faster than x at infinity, i.e., $\phi(x) / x \rightarrow \infty$ as $x \rightarrow \infty$. Let \mathcal{C} be a collection of random variables such that, for some fixed $B<\infty$ and all $Z \in \mathcal{C}$,

$$
\mathrm{E}(\phi(|Z|)) \leq B
$$

Show that \mathcal{C} is UI. In particular, any collection of random variables that is bounded uniformly in L_{p} for some $p>1$ is also UI.

[^1]
[^0]: ${ }^{1}$ Many other metrics would work too- like $\mathrm{E}(|X-Y| \wedge 1)$ or $\inf \{\epsilon>0: \mathrm{P}[|X-Y|>\epsilon] \leq \epsilon\}$.

[^1]: ${ }^{2}$ Although $\left\{X_{i}\right\}$ are UI, that won't be a factor in solving this problem. Is independence needed?

