Sta 711: Homework 7

Almost-sure Convergence

- 1. Let $\{X_n\}$ be a monotonically increasing sequence of RVs such that $X_n \to X$ in probability (pr.). Show that $X_n \to X$ almost surely (a.s.)
- 2. Let $\{X_n\}$ be any sequence of RVs. Show that $X_n \to X$ a.s. if and only if

$$\sup_{k \ge n} |X_k - X| \to 0 \qquad pr.$$

3. Let $\{X_n\}$ be an arbitrary sequence of RVs and set $S_n := \sum_{i=1}^n X_i$. Show that $X_n \to 0$ a.s. implies that $S_n/n \to 0$ a.s.

In-probability Convergence

- 4. Let $\{X_n\} \subset L_2$ be independent and identically distributed. For each $\delta > 0$ show that $n \mathsf{P}[|X_1| > \delta \sqrt{n}] \to 0$. Use this to show that the maximum $\bigvee_{i=1}^n |X_i|/\sqrt{n} \to 0$ pr. Thus, the maximum of n iid L_2 random variables grows slower than \sqrt{n} .
- 5. For random variables X, Y define

$$\rho(X,Y) := \mathsf{E}\left\{\frac{|X-Y|}{1+|X-Y|}\right\}$$

The function ρ is a metric (you do *not* have to prove that), *i.e.*, it's non-negative, symmetric, satisfies the triangle inequality, and vanishes if and only if X = Y a.s. Show that $X_n \to X$ pr. if and only if $\rho(X_n, X) \to 0$. Thus, convergence in probability is metrizable.¹

L_p Convergence

- 6. Find a sequence of RVs $\{X_n\} \subset L_2$ which converge in L_1 but not in L_2 .
- 7. Let $(\Omega, \mathcal{F}, \mathsf{P}) := ((0, 1], \mathcal{B}, \lambda)$ be the unit interval with Borel sets and Lebesgue measure and define $X_n(\omega) := \omega^n$ for $n \in \mathbb{N}$, $\omega \in \Omega$. For what $p \in [1, \infty]$, does the sequence $\{X_n\}$ converge in L_p ? To what limit? Explain your answer.
- 8. Verify Hölder's inequality for $p=1, q=\infty$ and all random variables X,Y:

$$E|XY| \le ||X||_1 ||Y||_{\infty}$$

 $\text{ where } \|Y\|_{\infty} := \sup\{c < \infty: \ \mathsf{P}\big[|Y| > c\big] > 0\}.$

9. Verify Minkowski's inequality for $p = \infty$ and all random variables X, Y:

$$||X + Y||_{\infty} \le ||X||_{\infty} + ||Y||_{\infty}$$

¹Many other metrics would work too—like $\mathsf{E}(|X-Y|\wedge 1)$ or $\inf\{\epsilon>0:\mathsf{P}[|X-Y|>\epsilon]\leq\epsilon\}$.

Uniform Integrability (UI)

- 10. Fix p > 0 and set $X_n := n^p \mathbf{1}_{\{0 < \omega \le 1/n\}}$ on $(\Omega, \mathcal{F}, \mathsf{P})$ with $\Omega = (0, 1]$, $\mathcal{F} = \mathcal{B}(\Omega)$, and $\mathsf{P} = \lambda$. Show explicitly that $\{X_n\}$ is UI for p < 1 and not for $p \ge 1$, by verifying that $\mathsf{E}\big[X_n\mathbf{1}_{\{X_n > t\}}\big]$ converges to zero uniformly as $t \to \infty$ for p < 1 and not for $p \ge 1$.
- 11. Let $\{X_n\}$ be an iid sequence of L_1 random variables and set $S_n := \sum_{i=1}^n X_i$. Show that the sequence of random variables $\{\bar{X}_n\}$ defined by $\bar{X}_n := S_n/n$ is UI.
- 12. Let $\{X_n\}$ be iid and L_1 . Show²:

$$\mathsf{P}\left(\lim_{n\to\infty}\frac{X_n}{n}=0\right)=1.$$

- 13. If $\{X_n\}$ and $\{Y_n\}$ are UI, show that so is $\{X_n + Y_n\}$.
- 14. Let $\phi(x) \geq 0$ be a nonnegative function which grows faster than x at infinity, i.e., $\phi(x)/x \to \infty$ as $x \to \infty$. Let \mathcal{C} be a collection of random variables such that, for some fixed $B < \infty$ and all $Z \in \mathcal{C}$,

$$\mathsf{E}(\phi(|Z|)) \leq B.$$

Show that C is UI. In particular, any collection of random variables that is bounded uniformly in L_p for some p > 1 is also UI.

Last edited: October 31, 2017

²Although $\{X_i\}$ are UI, that won't be a factor in solving this problem. Is independence needed?