Sta 711: Homework 8

Convergence Of Series, Strong Law

1. For $n \in \mathbb{N}$ let $j=\left\lfloor\log _{2} n\right\rfloor$ and $i=n-2^{j}$, so $n=i+2^{j}$ with $j \in \mathbb{N}_{0}$ and $0 \leq i<2^{j}$. For $\omega \in \Omega=(0,1]$ set

$$
X_{n}(\omega):=n \mathbf{1}_{\left\{i / 2^{j}<\omega \leq(i+1) / 2^{j}\right\}}
$$

Verify that X_{n} converges pr. but not a.s (for Lebesgue measure P on the Borel sets \mathcal{F}), and find an explicit subsequence that converges almost-surely. What is the limit? Does this subsequence converge in L_{1} ?
2. One version of the SLLN states that if $\left\{X_{n}, n \geq 1\right\}$ are iid with $\mathrm{E}\left|X_{1}\right|<\infty$, then $S_{n} / n \rightarrow \mathrm{E}\left(X_{1}\right)$ a.s. Show that also

$$
S_{n} / n \rightarrow \mathrm{E}\left(X_{1}\right) \quad \text { in } L_{1}
$$

3. Define a sequence $\left\{X_{n}\right\}$ of random variables iteratively as follows. Let $X_{0} \equiv c>0$ be any positive constant and, for $n \in \mathbb{N}$, let X_{n} have a uniform distribution on $\left(0, X_{n-1}\right.$] (independent of $\left\{X_{j}: j<n-1\right\}$). Show that

$$
\frac{1}{n} \log X_{n}
$$

converges a.s. and find the almost sure limit.

Two Fun Concepts

4. Let f_{0} and f_{1} be probability mass functions (pmfs) on the set $\mathcal{S}:=\{1,2, \ldots, 100\}$, i.e., nonnegative functions satisfying $\sum_{y \in \mathcal{S}} f_{\theta}(y)=1$ for $\theta=0,1$. Let $\left\{X_{n}\right\}$ be iid random variables with pmf f_{0}, so $\mathrm{P}\left[X_{n}=y\right]=f_{0}(y)$ for $y \in \mathcal{S}$. Set

$$
\Lambda_{n}:=\prod_{i=1}^{n} \frac{f_{1}\left(X_{i}\right)}{f_{0}\left(X_{i}\right)}
$$

Prove that $\Lambda_{n} \rightarrow 0$ almost surely if $f_{0}(y) \neq f_{1}(y)$ for at least one $y \in \mathcal{S}$. Be careful about any points where $f_{0}(y)=0$ or $f_{1}(y)=0$. The quantity Λ_{n} is called the Bayes factor or likelihood ratio against the "null hypothesis" f_{0}. This shows that the Likelihood Ratio Test always succeeds (eventually!). ${ }^{1}$
5. Suppose $g: \mathbb{R}_{+} \mapsto \mathbb{R}$ is measurable and Lebesgue integrable. Let $\left\{X_{n}, n \geq 1\right\} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(1)$ be standard exponential random variables with pdf $f(x)=e^{-x} 1_{\{x>0\}}$ and define $Y_{n}:=$ $g\left(X_{n}\right) \exp \left(X_{n}\right)$. What is the limit as $n \rightarrow \infty$ of $\bar{Y}_{n}=\sum_{i=1}^{n} Y_{i} / n$? In what sense, and why? If $g \in L_{2}\left(\mathbb{R}_{+}, e^{x} d x\right)$, find the variance of \bar{Y}_{n} and show that it converges to zero as $n \rightarrow \infty$. Show how this lets us estimate $\int_{\mathbb{R}_{+}} g(x) d x$.

[^0]
[^0]: ${ }^{1}$ Hint: $(\forall x \in \mathbb{R}) e^{x} \geq 1+x$ (with equality only at $x=0$), and so $(\forall y>0) \log y \leq y-1$. Or, for another approach, apply Jensen's inequality to the convex function $-\log y$ on \mathbb{R}_{+}.

