Sta 711: Homework 9

Uniform Integrability

1. True or false? Answer whether each of the following statements is true or false. If true, answer why; if false, give a simple counter example.
(a) If $\left\{X_{n}, n \in \mathbb{N}\right\}$ is a uniformly integrable (UI) collection of random variables, then X_{n} is uniformly bounded in L_{1}.
(b) Define a sequence $\left\{X_{n}\right\}$ of random variables on the unit interval with Lebesgue measure, (Ω, \mathcal{F}, P) with $\Omega=(0,1], \mathcal{F}=\mathcal{B}$, and $\mathrm{P}=\lambda$, by $X_{n}:=\sqrt{n} \mathbf{1}_{\left(0, \frac{1}{n}\right]}$. Then $\left\{X_{n}\right\}$ is UI.
(c) Let $\left\{X_{n}\right\}$ be a sequence of random variables for which $e^{\left|X_{n}\right|}$ is uniformly bounded in L_{1}, i.e., satisfies $\mathrm{E} e^{\left|X_{n}\right|} \leq B$ for some $B<\infty$ and all n. Then $\left\{X_{n}\right\}$ is UI.
(d) Let $\left\{X_{n}\right\}$ be a sequence of random variables that is uniformly bounded in L_{1}, i.e., satisfies $\mathrm{E}\left|X_{n}\right| \leq B$ for some $B<\infty$ and all n. Then $\left\{X_{n}\right\}$ is UI.

Characteristic Functions

2. Let X be a random variable, and define

$$
\phi_{X}(\theta):=\mathbf{E}\left(e^{i \theta X}\right), \quad \theta \in \mathbb{R}
$$

Show that $\phi_{X}(\theta)$ is uniformly continuous in \mathbb{R}.
3. Find the characteristic functions of the following random variables:
(a) $W:=c^{1} \quad$ (The superscripts in (a)-(c) are footnote indicators, not exponents)
(b) $X \sim \operatorname{Un}(a, b)^{2}$
(c) $Y \sim \mathrm{Ga}(\alpha, \lambda)^{3}$
(d) $Z_{n}=\left(Y_{1}+Y_{2}+\cdots+Y_{n}\right) / n, \quad Y_{j} \stackrel{\mathrm{iid}}{\sim} \mathrm{Ga}(\alpha, \lambda)$

What is the distribution of Z_{n} ? What happens as $n \rightarrow \infty$?
4. The distribution of a random variable X is called infinitely divisible if, for every $n \in \mathbb{N}$, there exist n iid random variables $\left\{Y_{i}\right\}$ such that X has the same distribution as $\sum_{i=1}^{n} Y_{i}$. Use characteristic functions to show that if $X \sim \operatorname{Po}(\lambda)$, then X is infinitely divisible. ${ }^{4}$

[^0]5. Suppose $\left\{A_{n}, n \in \mathbb{N}\right\}$ are independent events satisfying $\mathrm{P}\left(A_{n}\right)<1, \forall n \in \mathbb{N}$. Show that $\mathrm{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=1$ if and only if $\mathrm{P}\left(A_{n}\right.$ i.o. $)=1$ ("i.o." means "infinitely often", so the question concerns $\left.\lim \sup A_{n}\right)$. Give an example to show that the condition $\mathrm{P}\left(A_{n}\right)<1$ cannot be dropped.
6. Let $\left\{A_{n}\right\}$ be a sequence of events with $\mathrm{P}\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$. Prove that there exists a subsequence $\left\{n_{k}\right\}$ tending to infinity such that $\mathrm{P}\left(\cap_{k} A_{n_{k}}\right)>0$.
7. Let A_{n} be a sequence of events that all satisfy $\mathrm{P}\left(A_{n}\right) \geq \epsilon$ for some $\epsilon>0$. Does there necessarily exist a subsequence $\left\{n_{k} \rightarrow \infty\right\}$ with $\mathrm{P}\left(\cap_{k} A_{n_{k}}\right)>0$? Why or why not?
8. Let $\left\{X_{n}\right\}$ be non-negative iid random variables, with tail σ-field
$$
\mathcal{T}:=\bigcap_{n \in \mathbb{N}} \mathcal{F}_{n}^{\prime}, \quad \mathcal{F}_{n}^{\prime}:=\sigma\left\{X_{m}: m>n\right\}
$$

Is the event

$$
\begin{aligned}
E & =\left\{\text { There exists } \epsilon>0 \text { such that } X_{n}>n \epsilon \text { for infinitely-many } n\right\} \\
& =\bigcup_{\epsilon>0} \bigcap_{n \geq 1} \bigcup_{m \geq n}\left\{\omega: X_{m}(\omega)>m \epsilon\right\}
\end{aligned}
$$

in \mathcal{T} ? Prove or disprove it.
Express the probability $\mathrm{P}[E]$ in terms of the random variables' common distributionfor example, using their common $\operatorname{CDF} F(x):=\mathrm{P}\left[X_{n} \leq x\right]$ or moments $\mathrm{E}\left[\left|X_{n}\right|^{p}\right]$ for some $p>0$.

[^0]: ${ }^{1} \mathrm{~A}$ constant random variable with value $c \in \mathbb{R}$
 ${ }^{2}$ Uniform, on the interval $(a, b) \subset \mathbb{R}$
 ${ }^{3}$ Gamma, with rate parameterization- with pdf $f(y \mid \lambda)=\lambda^{\alpha} y^{\alpha-1} e^{-\lambda y} / \Gamma(\alpha), y>0$.
 ${ }^{4}$ Hint: If $\left\{Y_{i}\right\}$ are independent with sum $Y_{+}:=\sum Y_{i}$, then $\phi_{Y_{+}}(\theta)=\prod \phi_{Y_{i}}(\theta)$ for all $\theta \in \mathbb{R}$.

