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1 Convergence in Distribution

What should it mean for us to say that two distributions are close, or that
a sequence pu, of distributions of some random variables X,, taking values
in some state space X converges to another distribution p of some random
variable X7 Certainly we’ll need to know if X,, and X are close, so we’ll
restrict ourselves to state spaces X that are sigma-compact metric spaces
(and to avoid needless technical difficulties we’ll take those metric spaces
to be complete and separable, or “Polish”— so-called because they were
first studied by Sierpinski, Kuratowski, Tarski, and other Polish mathemati-
cians). One approach would be to require that the sequence p,(B) should
converge to u(B ) for some class of Borel sets B C X, or that integrals
= [y h(x) pn(dx) should converge to ER(X fX ) for
some class of Borel measurable functions h(z) : X — ]R It is seldom useful
to ask that p,,(B) converge for all Borel B (or that [ h(x) ju,(dz) should
converge for too wide a class of functions h). In this sectlon we discuss
the most successful and most common notion of convergence, simply called
“convergence in distribution”, the one that arises in most presentations of
the Central Limit Theorem; below in Section (2) we will consider some al-
ternatives, and in Section (3) will look at a recent approach to proving new
CLT-like results.
A sequence py, of distributions on the Borel sets of any Polish space X
(usually R or R™) is said to “converge in distribution” to a distribution g

(written: g, = p) if
/ h(x) pin(dz) — / () ulde) (1)
X X
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as n — oo for every bounded continuous function A(-) on X. This turns
out to be equivalent to requiring only the convergence of [ h(xz)puy(dz) to
[ h(z)u(dz) for smaller classes D of functions h(-) on X, such as the space
D = (C° of infinitely-differentiable functions that converge to zero at infinity
or, in X = R?, just the complex exponentials D = {hw(x) =W e ]Rd},
so Eqn (1) reduces to the requirement that Fourier transforms converge
pointwise. One way to quantify the discrepancy between two distributions
pand v on X is

Do(pv) =sup| [ hia)uds) [ hia)vlde)
heD ! Jx X
for various classes D; we'll see several examples (and alternatives) in a few
weeks.
In the special case of distributions of real-valued random variables, so
X = R, convergence in distribution (1) is equivalent to requiring that the
distribution functions

(=0, 2] = Fu(2) = F() = p(~0,a]

converge at each point x € R where F(x) is continuous (or, equivalently, for
any countable dense set of points {x;} C & = R). They might fail to con-
verge where F'(x) has jumps (can you give an example?) and, even if each
F,(-) is absolutely continuous, the density functions cannot be expected to
converge pointwise. In fact, discrete distributions can converge to a con-
tinuous one (examples?) and continuous ones can converge to discrete ones
(examples?).

Convergence in distribution can be metrized by the Lévy-Prokhorov met-
ric. On a complete separable metric space (X, d), let

m(p,v) = inf{e >0: p(A) <v(A®) +e
and  v(A) < u(A°) + ¢ for all A € B(X)}

where A = {y € X' : (Jz € A) d(z,y) < €} = UgeaBc(x), the union of
open e-balls around each point in A. In d = 1 dimension this reduces to the
Lévy metric for the DFs F and G of p and v,

m(F,G) :=inf{e > 0| F(x —€) < G(v) < F(x +¢) for all z € R}

We now show that convergence in distribution is weaker than any of the
other forms of convergence we’ve seen for random variables.
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Proposition 1. If X;, — X pr. for some X-valued RVs X,, X on a
probability space (Q, F,P), then the distributions pu, = P o X, ! of X,
converge to that p =Po X! of X.

In this case we often write “X,, = X7 rather than the more pedantic
o, = fi.
Proof. Let h : X — R be a bounded (say, by |h(z)| < B < o0) and
continuous real-valued function on the g-compact complete separable metric
space (X,d). Fix e > 0 and (by o-compactness) let K C X be compact with
u(K) > 1 —¢€/2B. Since h is uniformly continuous on K, find § > 0 such
that € K and y € X with d(z,y) < § implies |h(x) — h(y)| < €, and find
N, € N such that

(Vo> N,) Pld(Xn, X) > 6] < ¢/2B.

Then for n > N,

‘ [ 1@ i)~ [ i) ntan

= |EA(Xy) — ER(X))|

< E[R(Xn) — h(X)]
= E[h(Xy) = MX)|Lixek, a(x,,x)<s}
+ E[n(X5) — M(X)|Lix¢k, d(x,,X)<6)
+ E|h(Xn) — h(X)[Lia(x, x)>6)
< (e)P[Q] + (2B)P[X ¢ K]+ (2B)P[d(Xy, X) > 4]
< e 0

For another (perhaps simpler) proof, in order show:

e X, — X(pr) if and only if every increasing sequence N 3 nj 0o has
a subsequence ng; oo for which Xy, = X (a.s) (by contradiction);

o If X}, » X(pr) and Y,, = ¢(X,,), ¥ = ¢(X) for any continuous ¢ :
R — R, then Y,, — Y (pr);

o If X;, —» X(pr) and YV, = ¢(X,,), Y = ¢(X) for a bounded continuous
¢ : R = R, then Y,, = Y(L,) for any p < oo (by DCT) and, in
particular, g, =Po X, ' = u=Po XL

For yet another, show h(X,) — h(X) pr. and apply the DCT.
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Since every notion of convergence of random variables we have seen so
far (pr., a.s, Lo, Ly, L1) impies convergence in probability, all of them also
imply convergence in distribution. Note that the convergence of random
variables’ distributions p,(A) = P[X,, € A] depends only on the distribu-
tions p, themselves on the Borel sets B(X') of the state space— since the
random variables X, : 2,, — X don’t even have to be defined on the same
probability space, clearly convergence in distribution cannot imply any of
the other convergence notions listed above for random variables. For exam-
ple, we could set X, (w) = w/n on

Q. =1{1,2,....n},  F,=2", P,(A) =#(A)/n

to find
1 n
pn(d) = — > 0inldr) = p(dr) = 10,1y (x) A(dw)
7j=1

Although {X,} converges in distribution (to the standard uniform), there
is no “set of w on which X,, converge” because the {X,,} are all defined on
different probability spaces (£2,, Fp, Py).

For X = R there is a partial converse, however: if u, = p then there
exists a probabilty space (€2, F,P) (the unit interval with Borel measure
will do) and random variables X,,, X on (£, F,P) with these distributions
for which X,, — X a.s. The construction is simple, by the inverse CDF
method.

Example 1 (Empirical DF). Let {X,,} x p(dz) be independent with an

arbitrary common distribution p(A) = P[X,, € A]; for n € N the empirical
distribution s

1 & .
pn(dz) = = Oy, (dw), e,
j=1

pn(A) = #{j € {1,..n}: X; € A}/n
= %Z1A(Xj).
then

Kn = [y

i.e., the empirical distribution converges to the true distribution.
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2 Metrics for Convergence

One way to quantify the discrepancy between two distributions ¢ and v on
X is
Do(v) i=sup | [ ha)ldo) ~ [ (o) viao)
heD ' Jx X

for various classes D; let’s consider several examples and some alternatives.

2.1 Total Variation

The total variation distance between two distributions p, v on any Polish
(i.e., complete separable metric) space X is given by

TV (1, = sup {Ju(4) — v(4)| A € BX)}
=infPX#Y: X ~pu, YV ~v (2)

so TV is Dp for D = { Indicators h =14} or for D = {h: |h| <1} or
D ={h: 0<h<1}. This is an exceptionally strong notion of ‘closeness’,
too strong for most applications; for example, every discrete distribution
has (maximal) distance one from every continuous distribution. If A is any
sigma-finite measure that dominates both p and v (so they will each have a
density function, by the Radon-Nikodym theorem), then also

dy  dv
TVu,Vzl/‘———
(,v) =3 x| AN dA

half the L;-distance between their density functions.

),

2.2 Hellinger

H(p,v) = {% /X (Vau/ax - \/du/d)\)2 dA}l/z
:{1 _/X\/(du/d)\)(du/d)\) d)\}l/z

for any measure A that dominates both y and v (for example, one can al-
ways take A\ = p + v; the usual choice is Lebesgue measure when p and v
have deunsities, or counting measure when they’re both discrete. Just as with
TV (u,v), the value of H(u,v) doesn’t depend on what A is used). Hellinger
and Total Variation determine the same topology, i.e., so a sequence con-
verges in one if and only if it does in the other.
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2.3 Kolmogorov-Smirnov

For X =R,

KS(u,v) = igg{‘u((—oo,x]) — I/((—OO,ZL‘])‘}

Obviously KS is Dp for D = {1(_o,: = € R}. Kolmogorov (1933) and
Smirnov (1939) famously (and independently) showed that 1/4/n times the
KS distance from any continuous distribution to the empirical distribution
for n iid replicates has the same distribution, which converges asymptotically
to that of the maximum of the standard Brownian bridge stochastlc process

leading to an omnibus non-parametric test of the hypothesis {X;} ~ u(dx)
If one of pu, v has a point mass where the other doesn’t, then their K-S
distance will be at least the size of that atom; this makes it a poor choice
in some applications.

2.4 (Lévy-)Prokhorov

On a complete separable metric space (X, d),

m(p,v) = inf{e >0: p(A) <v(A%) +e
and  v(A) < u(A°) + ¢ for all A € B(X)}
where A° = {y € X : (Jo € A) d(z,y) < €} = UzeaB(z), the union
of open e-balls around each point in A. This exactly metrizes convergence
in distribution (i.e., a sequence p,, = p if and only if 7(p,, ) — 0); every
other metric in this section is strictly stronger, in the sense that convergence

of p, to p in that metric implies (but is not implied by) convergence in
distribution.

2.5 Wasserstein

On a complete separable metric space (X,d), for p > 1 the Wasserstein
distance between two distributions is

1/p
Wass, (i1, ) := (76%115 //X . (x,y)? v(dx dy)>
vV X
S (X - Vil X~ Y~}
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where I'(u, ) is the space of probability measures on X2 with marginals u
and v. The case p = 1 is most important:

pu(dz) /f v(dz)

displaying Wass; on R as Dp for D = {Unit Lipschitz continuous h(-)}.
Sometimes called the “transportation metric,” this can be interpreted as
the minimum cost of moving the support of o to that of v if moving cost is
proportional to the product of mass times distance.

Wass (u, ) = sup {
f:X—=R

 Lip(f) < 1},

2.6 Kullback-Leibler Divergence

The “Kullback-Leibler divergence” (Kullback and Leibler, 1951), also called
Relative Entropy, from distribution p to v on a Polish space A is:

KL(ull) = [ 1oy [ngjﬂ ulde),

when v < p and the integral is finite (otherwise KL(u||v) = o0). It is non-
negative, because logy < y —1 for all y > 0 (or by Jensen’s inequality), but
it is not symmetric in g and v and doesn’t satisfy the triangle inequality
so it can’t be a metric. It does determine a topology, though, and hence a
notion of convergence. Some authors (including Kullback and Leibler them-
selves, also Bernardo) construct symmetric analogues, like the “symmetric,”
“Jensen-Shannon,” and “Intrinsic” divergences

KLayua (11, v) = KL(pullv) + KL(v10),

+ +
KLys (1, v) = & {KL (%HO + KL <" : VH“) }

KL (1, ) := min {KL (), KL(v||)} -

Note KLjg is always finite, and KLy is finite if either KL(u||v) or KL(v| @)
is, but KL(p||v) (and hence KLgym(pt, 7)) will be infinite unless v < p.

2.7 (Fisher) Information Distance

For parametric families of measures {y9 : € € ©} on some space X C R?
(particularly within the exponential family), with density functions pg(dz) =
f(x | 0)v(dr) with respect to some dominating reference measure v, let

1(6) :==E{-V7log f(X | 0)}
=E{(Vlog f(X | 6)) (Vlog f(X |0))}
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be the Fisher information matrix and construct a Riemannian metric on ©

by

(6o, 0;) ;:igf{/ol VAT (V) s ds}

where the infimum is over all differentiable paths ~ : [0,1] — © connecting
Yo = 6y to 71 = 01 and where ¥ = dv,/ds. In one dimension when © C R is
a (possibly infinite) interval, this is just

=7 ([00,61])

for the Jeffreys’-rule prior distribution ;. In any number of dimensions,
the Fisher Information distance on © induces a notion of distance for dis-
tributions, by

FI(ugo,ugl) :=d(6o, 61).

See Amari (2001) or Amari and Nagoaka (2000, §2.2) for more details.

2.8 Relations among the Metrics
o TV(u,v) < H(p,v) < /2TV(u,v)

o H2(u,v) < SKLig(vll) < SKLll) < SR (w10

o KS(,v) < TV (,0)

o KS(u,v) <2y/cWass;(u,v) if g1 or v has a pdf bounded by ¢
o KL(u,v) =~ % I(p,v)? for =~ v (so their topologies coincide)

Thus p, = p (TV) if and only if p, — o (H). Either of these implies that
tn — 1 (KS), and both are implied by p,, — p (KL) or (equivalently, when
FI exists) u, — p (FI).
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3 Stein’s Method

Let h(-) be a continuously differentiable function on R that doesn’t grow too
fast as 2 — +o00 and let ¢(dz) be the standard Normal distribution measure,
with Lebesgue density function ¢(z) = exp(—2z2/2)/v27. Let Z ~ No(0,1)
be a random variable with the standard normal distribution ¢(dz). Then
integrating by parts shows

— 00

| W) =n@ea| - [ neda)
—h()ola) + [ zh)odz)
and in the limit as * — oo we have
E[N(Z) — Zh(Z)] =0 (3)

for every smooth tame function h. The same argument in reverse shows that
if (3) holds for every h € C5° then Z must have the No(0, 1) distribution.
Perhaps any random variable Z for which Eqn (3) holds approzimately will
have an approximately Normal distribution. In 1972 Charles Stein showed
that Eqn (3) characterizes the standard normal distribution completely, and
found a way to use this to bound | [ h(z)u(dz) — [ h(z)¢(dz)| for various
distributions p(dz), including that for the sample mean of n iid random
variables, leading to a new way of viewing and proving the Central Limit
Theorem and to new error bounds for it.

Over the next few decades a wide range of new applications and exten-
sions of the method have emerged (Stein, 1986; Reinert, 2003, 2005; Chat-
terjee, 2007). For example, an integer-valued random variable Y has the
Po(A) Poisson distribution with mean A if and only if

ENA(Y +1) — YA(Y)] =0 (4)

for all real-valued functions h(-) that don’t grow too fast for the expectations
to be well-defined. More generally (we’ll see that Eqns(3,4) are special
cases) if X; is a continuous-time stationary Markov process with stationary
distribution g and generator A, then X ~ p if and only if

E[2AA(X)] = 0 (5)

for each h in the domain of 2[.
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3.1 Stein in Brief

Stein’s method for bounding some notion of the distance between the distri-
bution v of some random variable W ~ v and a target distribution p (and
let Z ~ p have the target distribution) was summarized by Reinert (2003)
as comprising three steps:

1. Find an operator 2 such that X ~ p if and only if E[2h(X)] = 0 for
all suitable h;

2. For each suitable & find a solution f = f, of Stein’s Equation

h(x) — Bh(Z) = Afn(x) (6)

3. Note that this implies
ER(W) — ER(Z) = EAfp,(W)

and hence
‘/Xh(w%u(dm) —/Xh(:r)u(d:r)‘ = [EAfn(W)], (7)

so if we can find a way to bound |2 fy,(z)| uniformly for some suitable class
D = {h} of functions, then we can verify distance bounds.
3.2 Continuous-time Markov Chains

Let X; be a stationary Markov process indexed by ¢ € Ry with stationary
distribution p and define a family of operators for ¢ > 0 and suitable h by:

T,h(x) = E[h(X}) | Xo = .

Then Tyh(x) = h(x) and by the Markov property E[T5(X;) | Xo = «] =
Tiysh(z), so {13} is a continuous semigroup of operators. If we define

An(x) = lim % [Tih(w) — h(2)],

the derivative of T; at t = 0 in the direction h, then formally 7} satisfies

Tih(x) = h(x) + /Ot AT h(x)ds (8)
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and so in some sense we can think of 7} as the exponential T} = e/®. Since
X; has stationary distribution y, then (if LDC or UI apply) we should have

lim Tih(2) = lim ER(X;) = /X h(z)u(dz)

for every w. If the integral exists the limit of Eqn (8) should give (after
rearranging):

h(z) — Eh(Z) = 9{/ Toh(z) ds,
0
exactly Stein’s Eqn (6) with the formal solution
fulw) = [ Lo s
0

= 1li 7)\5T
AI{(% i e sh(x)ds,

formally the resolvent limit (recall Ty ~ e**)
_ug(m+Anlmm,

or something like “f, = —A~'h.” Let’s see some examples.

3.2.1 A Stationary Markov Chain with the Poisson Distribution

For A > 0 consider a continuous-time integer-valued process Markov X; that
evolves by

A€ t=j5+1
PlXive=j [ Xi=i]=o0(e) + {1 - (A+i)e i=]
ie i=j—1

for non-negative ¢,j € Z,. This “linear death with immigration” process
has generator

Ah(x) = A[h(x + 1) — h(z)] — z[h(z) — h(x — 1)]
=AM(x+1) = (A +a)h(x) + zh(z - 1)

A random variable X satisfies E[2(h(X)] = 0 for each h if and only if it
satisfies E[Ag(X)] = 0 with Ag(x) := [Ag(x+1)—xg(x)] for each g (including
the first-difference g(x) = h(x) — h(x — 1)), which happens in turn if and
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only if P[X = k] = (A/k)P[X =k — 1] for each k > 1, i.e., if X ~ Po()\).
Stein’s Equation is solved recursively by f,(0) = 0 and, for integers x > 0,

folz+1) = % h(z) + zfp(z) —e Zh(k))\k/k!
k=0

3.2.2 A Stationary Markov Process with the Normal Dist’n

The standard Ornstein-Uhlenbeck Gaussian process with mean zero and
covariance E[X,X;] = e~ is a diffusion with It6 SDE representation

dX; = a(X;) dt + b(X;) dW; = — X, dt + V2 dW;
and hence with generator

9 Ea 9 | &

A = a(x)a—x + %bz(:t)ax2 =Ty + pYek 9)
A random variable X satisfies “E(h(X) = 0” for each smooth function h
whenever it satisfies “EAg(X) = 0”7 for each smooth function ¢ (including
g = 1), for the first-order operator A = —x + a%' Stein’s Equation is solved
in proving:
Lemma 1. (Stein) Let g: R — R be bounded and measurable and denote
by Ng = [g(z) ¢(dz) the expectation Eg(Z) where Z ~ No(0,1) = ¢(dz).
Then there exists an absolutely-continuous function f . R — R satisfying
Stein’s Eqn (6)

f'(@) - @ f () = g(x) — Ng

and moreover the bounds

1floo SVT/2 9= Ngloo  |F']o0 €219 = Ng|oo-

Proof. Note [f(x)¢(x)] = [f'(x) — 2 f(x)]®, so integrating from minus infin-
ity shows the solution must satisfy

F@ole) = [ [g(e) — Nglolda). so it i

The indicated bounds follow from

sup o(=2) =/7/2 sup xi(_@ =1

2>0 o(x) w>0  9(T)

(the maxima occur at zero and oo, respectively). 0
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3.2.3 CLT as a Stationary Markov Chain

Let {&;} be independent L3 random variables that have been centered and
scaled (if necessary) so that E{; = 0 and Esz- = 1 for each j; they need not
be identically-distributed. First construct a discrete-time Markov chain as
follows: For n € N, set

Zn(o) = (517 - 7671)

Pick an index i € I, = {1,...,n} uniformly, a random variable ¢} with the
same distribution as & but independent of everything, and set

Zn(]-) = (517 s 751;7176;(752'4»17 s 7671)7

i.e., Zp(0) with & replaced by £F. Continue in this fashion to construct a
stationary R"-valued Markov chain. Meanwhile let NV; be a Poisson process
with rate n and construct a continuous-time R!'-valued process W; as:

Zp N
Wi = \/—]%I:n t

Clearly W is a stationary Markov process, whose distribution coincides with
that of

Wo=(&+-+&)/Vn

How far is that distribution from the standard Normal? By Taylor’s theo-
rem, the generator for this process on a smooth function h is:

Anh(w) = lim %E{h(Wt) — (W) | Wy = w}

= Z E{h(w—l— 6;\/_ﬁ§j) — h(w)}

€1y
- e{an [ 52 i3] )

for some w* near w; since E; =0 and Eg;fz =1,

_ Z { =& B (w ;;fyz B (w) + 0(1/n)}

J€EIn
~ —wh'(w) + b (w)

by the definition of Wy = w and the LLN. This is the same second-order
generator 2 found in Eqn (9); again, we may use the first-order A = 8% —x
instead.
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3.3 The Central Limit Theorem

Theorem 1. Suppose {{;} are independent with mean zero, variance one,
and finite third moments. Set

Wo=(&G+ - +&)/Vn.

Then the Wasserstein distance from the distribution p, of Wy, to the stan-
dard normal distribution is bounded by

3 n
Wassi (in, 9) < — 75 > Elg?
7j=1

As an obvious corollary, fi, = No(0, 1), and for iid {;} the convergence rate
is n~1/2. This is similar to (but slightly weaker than) the usual Berry-Esséen
bound on KS(sp, ¢); with a little more work (involving careful estimates of
fn for h = 1(_ ,) the traditional Berry-Esséen bounds are available from
Stein’s Method.
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