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1 Convergene in Distribution

What should it mean for us to say that two distributions are lose, or that

a sequene �

n

of distributions of some random variables X

n

taking values

in some state spae X onverges to another distribution � of some random

variable X? Certainly we'll need to know if X

n

and X are lose, so we'll

restrit ourselves to state spaes X that are sigma-ompat metri spaes

(and to avoid needless tehnial diÆulties we'll take those metri spaes

to be omplete and separable, or \Polish"| so-alled beause they were

�rst studied by Sierpi�nski, Kuratowski, Tarski, and other Polish mathemati-

ians). One approah would be to require that the sequene �

n

(B) should

onverge to �(B) for some lass of Borel sets B � X , or that integrals

Eh(X

n

) =

R

X

h(x)�

n

(dx) should onverge to Eh(X) =

R

X

h(x)�(dx) for

some lass of Borel measurable funtions h(x) : X ! R. It is seldom useful

to ask that �

n

(B) onverge for all Borel B (or that

R

X

h(x)�

n

(dx) should

onverge for too wide a lass of funtions h). In this setion we disuss

the most suessful and most ommon notion of onvergene, simply alled

\onvergene in distribution", the one that arises in most presentations of

the Central Limit Theorem; below in Setion (2) we will onsider some al-

ternatives, and in Setion (3) will look at a reent approah to proving new

CLT-like results.

A sequene �

n

of distributions on the Borel sets of any Polish spae X

(usually R or R

n

) is said to \onverge in distribution" to a distribution �

(written: �

n

) �) if

Z

X

h(x)�

n

(dx)!

Z

X

h(x)�(dx) (1)
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as n ! 1 for every bounded ontinuous funtion h(�) on X . This turns

out to be equivalent to requiring only the onvergene of

R

h(x)�

n

(dx) to

R

h(x)�(dx) for smaller lasses D of funtions h(�) on X , suh as the spae

D = C

1

0

of in�nitely-di�erentiable funtions that onverge to zero at in�nity

or, in X = R

d

, just the omplex exponentials D =

�

h

!

(x) = e

i!�x

: ! 2 R

d

	

,

so Eqn (1) redues to the requirement that Fourier transforms onverge

pointwise. One way to quantify the disrepany between two distributions

� and � on X is

D

D

(�; �) = sup

h2D

�

�

�

Z

X

h(x)�(dx) �

Z

X

h(x) �(dx)

�

�

�

for various lasses D; we'll see several examples (and alternatives) in a few

weeks.

In the speial ase of distributions of real-valued random variables, so

X = R, onvergene in distribution (1) is equivalent to requiring that the

distribution funtions

�

n

(�1; x℄ = F

n

(x)! F (x) = �(�1; x℄

onverge at eah point x 2 R where F (x) is ontinuous (or, equivalently, for

any ountable dense set of points fx

j

g � X = R). They might fail to on-

verge where F (x) has jumps (an you give an example?) and, even if eah

F

n

(�) is absolutely ontinuous, the density funtions annot be expeted to

onverge pointwise. In fat, disrete distributions an onverge to a on-

tinuous one (examples?) and ontinuous ones an onverge to disrete ones

(examples?).

Convergene in distribution an be metrized by the L�evy-Prokhorov met-

ri. On a omplete separable metri spae (X ; d), let

�(�; �) := inf

n

� > 0 : �(A) � �(A

�

) + �

and �(A) � �(A

�

) + � for all A 2 B(X )

o

where A

�

= fy 2 X : (9x 2 A) d(x; y) < �g = [

x2A

B

�

(x), the union of

open �-balls around eah point in A. In d = 1 dimension this redues to the

L�evy metri for the DFs F and G of � and �,

�(F;G) := inf f� > 0 j F (x� �) � G(x) � F (x+ �) for all x 2 Rg

We now show that onvergene in distribution is weaker than any of the

other forms of onvergene we've seen for random variables.
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Proposition 1. If X

n

! X pr. for some X -valued RVs X

n

, X on a

probability spae (
;F ;P), then the distributions �

n

= P Æ X

n

�1

of X

n

onverge to that � = P ÆX

�1

of X.

In this ase we often write \X

n

) X" rather than the more pedanti

�

n

) �.

Proof. Let h : X ! R be a bounded (say, by jh(x)j � B < 1) and

ontinuous real-valued funtion on the �-ompat omplete separable metri

spae (X ;d). Fix � > 0 and (by �-ompatness) let K � X be ompat with

�(K) > 1 � �=2B. Sine h is uniformly ontinuous on K, �nd Æ > 0 suh

that x 2 K and y 2 X with d(x; y) < Æ implies jh(x) � h(y)j < �, and �nd

N

�

2 N suh that

(8n � N

�

) P[d(X

n

;X) � Æ℄ < �=2B:

Then for n � N

�

,

�

�

�

�

Z

X

h(x)�

n

(dx)�

Z

X

h(x)�(dx)

�

�

�

�

= jEh(X

n

)� Eh(X)j

� Ejh(X

n

)� h(X)j

= Ejh(X

n

)� h(X)j1

fX2K; d(X

n

;X)<Æg

+ Ejh(X

n

)� h(X)j1

fX =2K; d(X

n

;X)<Æg

+ Ejh(X

n

)� h(X)j1

fd(X

n

;X)�Æg

� (�)P[
℄ + (2B)P[X =2 K℄ + (2B)P[d(X

n

;X) � Æ℄

� 3�

For another (perhaps simpler) proof, in order show:

� X

n

! X(pr) if and only if every inreasing sequene N 3 n

k

%1 has

a subsequene n

k

j

%1 for whih X

n

k

j

! X(a.s) (by ontradition);

� If X

n

! X(pr) and Y

n

= �(X

n

), Y = �(X) for any ontinuous � :

R ! R, then Y

n

! Y (pr);

� If X

n

! X(pr) and Y

n

= �(X

n

), Y = �(X) for a bounded ontinuous

� : R ! R, then Y

n

! Y (L

p

) for any p < 1 (by DCT) and, in

partiular, �

n

= P ÆX

n

�1

) � = P ÆX

�1

.

For yet another, show h(X

n

)! h(X) pr: and apply the DCT.
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Sine every notion of onvergene of random variables we have seen so

far (pr., a.s, L

1

, L

p

, L

1

) impies onvergene in probability, all of them also

imply onvergene in distribution. Note that the onvergene of random

variables' distributions �

n

(A) = P[X

n

2 A℄ depends only on the distribu-

tions �

n

themselves on the Borel sets B(X ) of the state spae| sine the

random variables X

n

: 


n

! X don't even have to be de�ned on the same

probability spae, learly onvergene in distribution annot imply any of

the other onvergene notions listed above for random variables. For exam-

ple, we ould set X

n

(!) = !=n on




n

= f1; 2; : : : ; ng; F

n

= 2




n

; P

n

(A) = #(A)=n

to �nd

�

n

(dx) =

1

n

n

X

j=1

Æ

j=n

(dx)) �(dx) = 1

f(0;1℄g

(x)�(dx)

Although fX

n

g onverges in distribution (to the standard uniform), there

is no \set of ! on whih X

n

onverge" beause the fX

n

g are all de�ned on

di�erent probability spaes (


n

;F

n

;P

n

).

For X = R there is a partial onverse, however: if �

n

) � then there

exists a probabilty spae (
;F ;P) (the unit interval with Borel measure

will do) and random variables X

n

;X on (
;F ;P) with these distributions

for whih X

n

! X a.s. The onstrution is simple, by the inverse CDF

method.

Example 1 (Empirial DF). Let fX

n

g

iid

� �(dx) be independent with an

arbitrary ommon distribution �(A) = P[X

n

2 A℄; for n 2 N the empirial

distribution is

�

n

(dx) =

1

n

n

X

j=1

Æ

X

j

(dx); i.e.,

�

n

(A) = # fj 2 f1; :::; ng : X

j

2 Ag =n

=

1

n

X

1

A

(X

j

):

then

�

n

) �;

i.e., the empirial distribution onverges to the true distribution.
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2 Metris for Convergene

One way to quantify the disrepany between two distributions � and � on

X is

D

D

(�; �) := sup

h2D

�

�

�

Z

X

h(x)�(dx) �

Z

X

h(x) �(dx)

�

�

�

for various lasses D; let's onsider several examples and some alternatives.

2.1 Total Variation

The total variation distane between two distributions �, � on any Polish

(i.e., omplete separable metri) spae X is given by

TV(�; �) := sup fj�(A)� �(A)j A 2 B(X )g

= inf P[X 6= Y : X � �; Y � �℄; (2)

so TV is D

D

for D = f Indiators h = 1

A

g or for D =

�

h : jhj �

1

2

	

or

D = fh : 0 � h � 1g. This is an exeptionally strong notion of `loseness',

too strong for most appliations; for example, every disrete distribution

has (maximal) distane one from every ontinuous distribution. If � is any

sigma-�nite measure that dominates both � and � (so they will eah have a

density funtion, by the Radon-Nikodym theorem), then also

TV(�; �) =

1

2

Z

X

�

�

�

�

d�

d�

�

d�

d�

�

�

�

�

d�;

half the L

1

-distane between their density funtions.

2.2 Hellinger

H(�; �) :=

�

1

2

Z

X

�

p

d�=d��

p

d�=d�

�

2

d�

�

1=2

=

�

1�

Z

X

p

(d�=d�)(d�=d�) d�

�

1=2

for any measure � that dominates both � and � (for example, one an al-

ways take � = � + �; the usual hoie is Lebesgue measure when � and �

have densities, or ounting measure when they're both disrete. Just as with

TV(�; �), the value of H(�; �) doesn't depend on what � is used). Hellinger

and Total Variation determine the same topology, i.e., so a sequene on-

verges in one if and only if it does in the other.
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2.3 Kolmogorov-Smirnov

For X = R,

KS(�; �) := sup

x2R

�

�

�

�

�

(�1; x℄

�

� �

�

(�1; x℄

�

�

�

	

Obviously KS is D

D

for D =

�

1

(�1;x℄

: x 2 R

	

. Kolmogorov (1933) and

Smirnov (1939) famously (and independently) showed that 1=

p

n times the

KS distane from any ontinuous distribution to the empirial distribution

for n iid repliates has the same distribution, whih onverges asymptotially

to that of the maximum of the standard Brownian bridge stohasti proess,

leading to an omnibus non-parametri test of the hypothesis fX

i

g

iid

� �(dx).

If one of �, � has a point mass where the other doesn't, then their K-S

distane will be at least the size of that atom; this makes it a poor hoie

in some appliations.

2.4 (L�evy-)Prokhorov

On a omplete separable metri spae (X ;d),

�(�; �) := inf

n

� > 0 : �(A) � �(A

�

) + �

and �(A) � �(A

�

) + � for all A 2 B(X )

o

where A

�

= fy 2 X : (9x 2 A) d(x; y) < �g = [

x2A

B

�

(x), the union

of open �-balls around eah point in A. This exatly metrizes onvergene

in distribution (i.e., a sequene �

n

) � if and only if �(�

n

; �) ! 0); every

other metri in this setion is stritly stronger, in the sense that onvergene

of �

n

to � in that metri implies (but is not implied by) onvergene in

distribution.

2.5 Wasserstein

On a omplete separable metri spae (X ;d), for p � 1 the Wasserstein

distane between two distributions is

Wass

p

(�; �) :=

�

inf

2�(�;�)

ZZ

X�X

d(x; y)

p

(dx dy)

�

1=p

= inf fkX � Y k

p

: X � �; Y � �g
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where �(�; �) is the spae of probability measures on X

2

with marginals �

and �. The ase p = 1 is most important:

Wass

1

(�; �) = sup

f :X!R

�

�

�

�

�

Z

X

f(x)�(dx)�

Z

X

f(x) �(dx)

�

�

�

�

: Lip(f) � 1

�

;

displaying Wass

1

on R as D

D

for D = fUnit Lipshitz ontinuous h(�)g.

Sometimes alled the \transportation metri," this an be interpreted as

the minimum ost of moving the support of � to that of � if moving ost is

proportional to the produt of mass times distane.

2.6 Kullbak-Leibler Divergene

The \Kullbak-Leibler divergene" (Kullbak and Leibler, 1951), also alled

Relative Entropy, from distribution � to � on a Polish spae X is:

KL(�k�) :=

Z

X

� log

�

�(dx)

�(dx)

�

�(dx);

when � � � and the integral is �nite (otherwise KL(�k�) =1). It is non-

negative, beause log y � y� 1 for all y > 0 (or by Jensen's inequality), but

it is not symmetri in � and � and doesn't satisfy the triangle inequality

so it an't be a metri. It does determine a topology, though, and hene a

notion of onvergene. Some authors (inluding Kullbak and Leibler them-

selves, also Bernardo) onstrut symmetri analogues, like the \symmetri,"

\Jensen-Shannon," and \Intrinsi" divergenes

KL

sym

(�; �) := KL(�k�) + KL(�k�);

KL

JS

(�; �) :=

1

2

�

KL

�

�+ �

2







�

�

+KL

�

�+ �

2







�

��

;

KL

Int

(�; �) := minfKL(�k�); KL(�k�)g :

Note KL

JS

is always �nite, and KL

Int

is �nite if either KL(�k�) or KL(�k�)

is, but KL(�k�) (and hene KL

sym

(�; �)) will be in�nite unless � � �.

2.7 (Fisher) Information Distane

For parametri families of measures f�

�

: � 2 �g on some spae X � R

d

(partiularly within the exponential family), with density funtions �

�

(dx) =

f(x j �) �(dx) with respet to some dominating referene measure �, let

I(�) :=E

�

�r

2

log f(X j �)

	

=E

�

(r log f(X j �)) (r log f(X j �))

0
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be the Fisher information matrix and onstrut a Riemannian metri on �

by

d(�

0

; �

1

) := inf



�

Z

1

0

p

_

0

s

I(

s

) _

s

ds

�

where the in�mum is over all di�erentiable paths  : [0; 1℄ ! � onneting



0

= �

0

to 

1

= �

1

and where _ = d

s

=ds. In one dimension when � � R is

a (possibly in�nite) interval, this is just

=�

J

�

[�

0

; �

1

℄

�

for the Je�reys'-rule prior distribution �

J

. In any number of dimensions,

the Fisher Information distane on � indues a notion of distane for dis-

tributions, by

FI

�

�

�

0

; �

�

1

�

:= d(�

0

; �

1

):

See Amari (2001) or Amari and Nagoaka (2000, x2.2) for more details.

2.8 Relations among the Metris

� TV(�; �) � H(�; �) �

p

2TV(�; �)

� H

2

(�; �) �

1

2

KL

Int

(�k�) �

1

2

KL(�k�) �

1

2

KL

sym

(�k�)

� KS(�; �) � TV(�; �)

� KS(�; �) � 2

p

Wass

1

(�; �) if � or � has a pdf bounded by 

� KL(�; �) �

1

2

FI(�; �)

2

for � � � (so their topologies oinide)

Thus �

n

! � (TV) if and only if �

n

! � (H). Either of these implies that

�

n

! � (KS), and both are implied by �

n

! � (KL) or (equivalently, when

FI exists) �

n

! � (FI).
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3 Stein's Method

Let h(�) be a ontinuously di�erentiable funtion on R that doesn't grow too

fast as z ! �1 and let �(dz) be the standard Normal distribution measure,

with Lebesgue density funtion �(z) = exp(�z

2

=2)=

p

2�. Let Z � No(0; 1)

be a random variable with the standard normal distribution �(dz). Then

integrating by parts shows

Z

x

�1

h

0

(z)�(dz) = h(z)�(z)

�

�

�

x

�1

�

Z

x

�1

h(z)�

0

(dz)

= h(x)�(x) +

Z

x

�1

z h(z)�(dz)

and in the limit as x!1 we have

E[h

0

(Z)� Z h(Z)℄ = 0 (3)

for every smooth tame funtion h. The same argument in reverse shows that

if (3) holds for every h 2 C

1

o

then Z must have the No(0; 1) distribution.

Perhaps any random variable Z for whih Eqn (3) holds approximately will

have an approximately Normal distribution. In 1972 Charles Stein showed

that Eqn (3) haraterizes the standard normal distribution ompletely, and

found a way to use this to bound

�

�

R

R

h(z)�(dz) �

R

R

h(z)�(dz)

�

�

for various

distributions �(dz), inluding that for the sample mean of n iid random

variables, leading to a new way of viewing and proving the Central Limit

Theorem and to new error bounds for it.

Over the next few deades a wide range of new appliations and exten-

sions of the method have emerged (Stein, 1986; Reinert, 2003, 2005; Chat-

terjee, 2007). For example, an integer-valued random variable Y has the

Po(�) Poisson distribution with mean � if and only if

E[�h(Y + 1)� Y h(Y )℄ = 0 (4)

for all real-valued funtions h(�) that don't grow too fast for the expetations

to be well-de�ned. More generally (we'll see that Eqns (3, 4) are speial

ases) if X

t

is a ontinuous-time stationary Markov proess with stationary

distribution � and generator A, then X � � if and only if

E[Ah(X)℄ = 0 (5)

for eah h in the domain of A.
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3.1 Stein in Brief

Stein's method for bounding some notion of the distane between the distri-

bution � of some random variable W � � and a target distribution � (and

let Z � � have the target distribution) was summarized by Reinert (2003)

as omprising three steps:

1. Find an operator A suh that X � � if and only if E[Ah(X)℄ = 0 for

all suitable h;

2. For eah suitable h �nd a solution f = f

h

of Stein's Equation

h(x)� Eh(Z) = Af
h

(x) (6)

3. Note that this implies

Eh(W )� Eh(Z) = EAf
h

(W )

and hene

�

�

�

Z

X

h(x)�(dx) �

Z

X

h(x)�(dx)

�

�

�

=

�

�

EAf
h

(W )

�

�

; (7)

so if we an �nd a way to bound jAf
h

(x)j uniformly for some suitable lass

D = fhg of funtions, then we an verify distane bounds.

3.2 Continuous-time Markov Chains

Let X

t

be a stationary Markov proess indexed by t 2 R

+

with stationary

distribution � and de�ne a family of operators for t � 0 and suitable h by:

T

t

h(x) = E[h(X

t

) j X

0

= x℄:

Then T

0

h(x) = h(x) and by the Markov property E[T

s

(X

t

) j X

0

= x℄ =

T

t+s

h(x), so fT

t

g is a ontinuous semigroup of operators. If we de�ne

Ah(x) = lim

t&0

1

t

�

T

t

h(x)� h(x)

�

;

the derivative of T

t

at t = 0 in the diretion h, then formally T

t

satis�es

T

t

h(x) = h(x) +

Z

t

0

AT
s

h(x) ds (8)
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and so in some sense we an think of T

t

as the exponential T

t

= e

tA
. Sine

X

t

has stationary distribution �, then (if LDC or UI apply) we should have

lim

t!1

T

t

h(x) = lim

t!1

Eh(X

t

) =

Z

X

h(z)�(dz)

for every x. If the integral exists the limit of Eqn (8) should give (after

rearranging):

h(x)� Eh(Z) = A

Z

1

0

T

s

h(x) ds;

exatly Stein's Eqn (6) with the formal solution

f

h

(x) =

Z

1

0

T

s

h(x) ds

= lim

�&0

Z

1

0

e

��s

T

s

h(x) ds;

formally the resolvent limit (reall T

s

� e

sA
)

= lim

�&0

(�A+ �I)

�1

h(x);

or something like \f

h

= �A
�1

h." Let's see some examples.

3.2.1 A Stationary Markov Chain with the Poisson Distribution

For � > 0 onsider a ontinuous-time integer-valued proess Markov X

t

that

evolves by

P[X

t+�

= j j X

t

= i℄ = o(�) +

8

>

<

>

:

�� i = j + 1

1� (�+ i)� i = j

i� i = j � 1

for non-negative i; j 2 Z

+

. This \linear death with immigration" proess

has generator

Ah(x) = �[h(x+ 1)� h(x)℄ � x[h(x)� h(x� 1)℄

= �h(x+ 1)� (�+ x)h(x) + xh(x� 1)

A random variable X satis�es E[Ah(X)℄ = 0 for eah h if and only if it

satis�es E[Ag(X)℄ = 0 with Ag(x) := [�g(x+1)�xg(x)℄ for eah g (inluding

the �rst-di�erene g(x) = h(x) � h(x � 1)), whih happens in turn if and
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only if P[X = k℄ = (�=k)P[X = k � 1℄ for eah k � 1, i.e., if X � Po(�).

Stein's Equation is solved reursively by f

h

(0) = 0 and, for integers x � 0,

f

h

(x+ 1) =

1

�

"

h(x) + xf

h

(x)� e

��

1

X

k=0

h(k)�

k

=k!

#

3.2.2 A Stationary Markov Proess with the Normal Dist'n

The standard Ornstein-Uhlenbek Gaussian proess with mean zero and

ovariane E[X

s

X

t

℄ = e

�js�tj

is a di�usion with Itô SDE representation

dX

t

= a(X

t

) dt+ b(X

t

) dW

t

= �X

t

dt+

p

2 dW

t

and hene with generator

A = a(x)

�

�x

+

1

2

b

2

(x)

�

2

�x

2

= �x

�

�x

+

�

2

�x

2

: (9)

A random variable X satis�es \EAh(X) = 0" for eah smooth funtion h

whenever it satis�es \EAg(X) = 0" for eah smooth funtion g (inluding

g = h

0

), for the �rst-order operator A = �x+

�

�x

. Stein's Equation is solved

in proving:

Lemma 1. (Stein) Let g : R ! R be bounded and measurable and denote

by Ng =

R

g(z)�(dz) the expetation Eg(Z) where Z � No(0; 1) = �(dz).

Then there exists an absolutely-ontinuous funtion f : R ! R satisfying

Stein's Eqn (6)

f

0

(x)� x f(x) = g(x) �Ng

and moreover the bounds

jf j

1

�

p

�=2 jg �Ngj

1

jf

0

j

1

� 2 jg �Ngj

1

:

Proof. Note [f(x)�(x)℄

0

= [f

0

(x)�xf(x)℄�, so integrating from minus in�n-

ity shows the solution must satisfy

f(x)�(x) =

Z

x

�1

[g(z) �Ng℄�(dz); so it is

f(x) =

R

x

�1

g(z)�(dz) � �(x)Ng

�(x)

:

The indiated bounds follow from

sup

x�0

�(�x)

�(x)

=

p

�=2 sup

x�0

x�(�x)

�(x)

= 1

(the maxima our at zero and 1, respetively).
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3.2.3 CLT as a Stationary Markov Chain

Let f�

j

g be independent L

3

random variables that have been entered and

saled (if neessary) so that E�

j

= 0 and E�

2

j

= 1 for eah j; they need not

be identially-distributed. First onstrut a disrete-time Markov hain as

follows: For n 2 N, set

Z

n

(0) = (�

1

; : : : ; �

n

) :

Pik an index i 2 I

n

= f1; : : : ; ng uniformly, a random variable �

�

i

with the

same distribution as �

i

but independent of everything, and set

Z

n

(1) = (�

1

; : : : ; �

i�1

; �

�

i

; �

i+1

; : : : ; �

n

) ;

i.e., Z

n

(0) with �

i

replaed by �

�

i

. Continue in this fashion to onstrut a

stationary R

n

-valued Markov hain. Meanwhile let N

t

be a Poisson proess

with rate n and onstrut a ontinuous-time R

1

-valued proess W

t

as:

W

t

=

1

p

n

X

j2I

n

Z

n

�

N

t

�

:

ClearlyW

t

is a stationary Markov proess, whose distribution oinides with

that of

W

0

=

�

�

1

+ � � �+ �

n

�

=

p

n:

How far is that distribution from the standard Normal? By Taylor's theo-

rem, the generator for this proess on a smooth funtion h is:

A
n

h(w) = lim

t&0

n

t

E

�

h(W

t

)� h(W

0

) jW

0

= w

	

=

X

j2I

n

E

n

h

�

w +

�

�

j

� �

j

p

n

�

� h(w)

o

=

X

j2I

n

E

(

�

�

j

� �

j

p

n

h

0

(w) +

�

�

�

j

� �

j

p

n

�

2

h

00

(w)

2

+

�

�

�

j

� �

j

p

n

�

3

h

000

(w

�

)

6

)

for some w

�

near w; sine E�

�

j

= 0 and E�

�

j

2

= 1,

=

X

j2I

n

n

��

j

p

n

h

0

(w) +

1 + �

2

j

2n

h

00

(w) + o(1=n)

o

� �wh

0

(w) + h

00

(w)

by the de�nition of W

0

= w and the LLN. This is the same seond-order

generator A found in Eqn (9); again, we may use the �rst-order A =

�

�x

� x

instead.
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3.3 The Central Limit Theorem

Theorem 1. Suppose f�

j

g are independent with mean zero, variane one,

and �nite third moments. Set

W

n

=

�

�

1

+ � � � + �

n

�

=

p

n:

Then the Wasserstein distane from the distribution �

n

of W

n

to the stan-

dard normal distribution is bounded by

Wass

1

(�

n

; �) �

3

n

3=2

n

X

j=1

Ej�

j

j

3

As an obvious orollary, �

n

) No(0; 1), and for iid f�

j

g the onvergene rate

is n

�1=2

. This is similar to (but slightly weaker than) the usual Berry-Ess�een

bound on KS(�

n

; �); with a little more work (involving areful estimates of

f

h

for h = 1

(�1;x℄

) the traditional Berry-Ess�een bounds are available from

Stein's Method.

Referenes

Amari, S.-I. (2001), \Information Geometry on Hierarhy of Probability Dis-

tributions," IEEE Transations on Information Theory, 47, 1701{1711.

Amari, S.-I. and Nagoaka, H. (2000), Methods of Information Geome-

try, Translations of mathematial monographs, volume 191, Amerian

Mathematial Soiety and Oxford University Press, translated from 1993

Japanese version by Daishi Harada.

Barbour, A. D. and Chen, L. H. Y., eds. (2005), An Introdution to Stein's

Method, Leture Note Series, Institute for Mathematial Sienes, vol-

ume 4, Singapore: National University of Singapore.

Chatterjee, S. (2007), Stein's method and appliations, Berkeley, CA, on-line

at http://www.stat.berkeley.edu/~sourav/stat206Afall07.html.

Kolmogorov, A. N. (1933), Grundbegri�e der Wahrsheinlihkeitsrehnung,

Berlin, DE: Springer-Verlag, english translation (1950): Foundations of

the theory of probability. Chelsea, New York.

Kullbak, S. and Leibler, R. A. (1951), \On Information and suÆieny,"

Annals of Mathematial Statistis, 22, 79{86.

Page 14Page 14Page 14



STA 711 Convergene in Distribution R L WolpertSTA 711 Convergene in Distribution R L WolpertSTA 711 Convergene in Distribution R L Wolpert

Reinert, G. (2003), \Stein's Method for Chisquare Approximations, Weak

Law of Large Numbers, and Disrete Distributions from a Gibbs View

Point," Tehnial report, Dept. of Statistis, University of Oxford, leture

notes for 2003 Program on Stein's Method and Appliations: A Program

in Honor of Charles Stein held Jul 28{Aug 31, 2003 at the National

University of Singapore (NUS).

Reinert, G. (2005), \Three general approahes to Stein's method," in Bar-

bour and Chen (2005), pp. 183{222.

Smirnov, V. I. (1939), \On the estimation of the disrepany between em-

pirial urves of distribution for two independent samples (in Russian),"

Byull. Moskov. Gos. Univ. Ser. A, 2, 3{16.

Stein, C. (1972), \A bound for the error in the normal approximation to

the distribution of a sum of dependent random variables," in Pro. Sixth

Berkeley Symp. Math. Statist. Prob., eds. L. M. Le Cam, J. Neyman, and

E. L. Sott, Berkeley, CA: University of California Press, volume 2, pp.

583{602.

Stein, C. (1986), Approximate omputation of expetations, IMS Leture

Notes-Monograph Series, volume 7, Hayward, CA: Institute of Mathe-

matial Statistis.

Last edited: August 30, 2017

Page 15Page 15Page 15


