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1 Convergen
e in Distribution

What should it mean for us to say that two distributions are 
lose, or that

a sequen
e �

n

of distributions of some random variables X

n

taking values

in some state spa
e X 
onverges to another distribution � of some random

variable X? Certainly we'll need to know if X

n

and X are 
lose, so we'll

restri
t ourselves to state spa
es X that are sigma-
ompa
t metri
 spa
es

(and to avoid needless te
hni
al diÆ
ulties we'll take those metri
 spa
es

to be 
omplete and separable, or \Polish"| so-
alled be
ause they were

�rst studied by Sierpi�nski, Kuratowski, Tarski, and other Polish mathemati-


ians). One approa
h would be to require that the sequen
e �

n

(B) should


onverge to �(B) for some 
lass of Borel sets B � X , or that integrals

Eh(X

n

) =

R

X

h(x)�

n

(dx) should 
onverge to Eh(X) =

R

X

h(x)�(dx) for

some 
lass of Borel measurable fun
tions h(x) : X ! R. It is seldom useful

to ask that �

n

(B) 
onverge for all Borel B (or that

R

X

h(x)�

n

(dx) should


onverge for too wide a 
lass of fun
tions h). In this se
tion we dis
uss

the most su

essful and most 
ommon notion of 
onvergen
e, simply 
alled

\
onvergen
e in distribution", the one that arises in most presentations of

the Central Limit Theorem; below in Se
tion (2) we will 
onsider some al-

ternatives, and in Se
tion (3) will look at a re
ent approa
h to proving new

CLT-like results.

A sequen
e �

n

of distributions on the Borel sets of any Polish spa
e X

(usually R or R

n

) is said to \
onverge in distribution" to a distribution �

(written: �

n

) �) if

Z

X

h(x)�

n

(dx)!

Z

X

h(x)�(dx) (1)

1
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as n ! 1 for every bounded 
ontinuous fun
tion h(�) on X . This turns

out to be equivalent to requiring only the 
onvergen
e of

R

h(x)�

n

(dx) to

R

h(x)�(dx) for smaller 
lasses D of fun
tions h(�) on X , su
h as the spa
e

D = C

1

0

of in�nitely-di�erentiable fun
tions that 
onverge to zero at in�nity

or, in X = R

d

, just the 
omplex exponentials D =

�

h

!

(x) = e

i!�x

: ! 2 R

d

	

,

so Eqn (1) redu
es to the requirement that Fourier transforms 
onverge

pointwise. One way to quantify the dis
repan
y between two distributions

� and � on X is

D

D

(�; �) = sup

h2D

�

�

�

Z

X

h(x)�(dx) �

Z

X

h(x) �(dx)

�

�

�

for various 
lasses D; we'll see several examples (and alternatives) in a few

weeks.

In the spe
ial 
ase of distributions of real-valued random variables, so

X = R, 
onvergen
e in distribution (1) is equivalent to requiring that the

distribution fun
tions

�

n

(�1; x℄ = F

n

(x)! F (x) = �(�1; x℄


onverge at ea
h point x 2 R where F (x) is 
ontinuous (or, equivalently, for

any 
ountable dense set of points fx

j

g � X = R). They might fail to 
on-

verge where F (x) has jumps (
an you give an example?) and, even if ea
h

F

n

(�) is absolutely 
ontinuous, the density fun
tions 
annot be expe
ted to


onverge pointwise. In fa
t, dis
rete distributions 
an 
onverge to a 
on-

tinuous one (examples?) and 
ontinuous ones 
an 
onverge to dis
rete ones

(examples?).

Convergen
e in distribution 
an be metrized by the L�evy-Prokhorov met-

ri
. On a 
omplete separable metri
 spa
e (X ; d), let

�(�; �) := inf

n

� > 0 : �(A) � �(A

�

) + �

and �(A) � �(A

�

) + � for all A 2 B(X )

o

where A

�

= fy 2 X : (9x 2 A) d(x; y) < �g = [

x2A

B

�

(x), the union of

open �-balls around ea
h point in A. In d = 1 dimension this redu
es to the

L�evy metri
 for the DFs F and G of � and �,

�(F;G) := inf f� > 0 j F (x� �) � G(x) � F (x+ �) for all x 2 Rg

We now show that 
onvergen
e in distribution is weaker than any of the

other forms of 
onvergen
e we've seen for random variables.
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Proposition 1. If X

n

! X pr. for some X -valued RVs X

n

, X on a

probability spa
e (
;F ;P), then the distributions �

n

= P Æ X

n

�1

of X

n


onverge to that � = P ÆX

�1

of X.

In this 
ase we often write \X

n

) X" rather than the more pedanti


�

n

) �.

Proof. Let h : X ! R be a bounded (say, by jh(x)j � B < 1) and


ontinuous real-valued fun
tion on the �-
ompa
t 
omplete separable metri


spa
e (X ;d). Fix � > 0 and (by �-
ompa
tness) let K � X be 
ompa
t with

�(K) > 1 � �=2B. Sin
e h is uniformly 
ontinuous on K, �nd Æ > 0 su
h

that x 2 K and y 2 X with d(x; y) < Æ implies jh(x) � h(y)j < �, and �nd

N

�

2 N su
h that

(8n � N

�

) P[d(X

n

;X) � Æ℄ < �=2B:

Then for n � N

�

,

�

�

�

�

Z

X

h(x)�

n

(dx)�

Z

X

h(x)�(dx)

�

�

�

�

= jEh(X

n

)� Eh(X)j

� Ejh(X

n

)� h(X)j

= Ejh(X

n

)� h(X)j1

fX2K; d(X

n

;X)<Æg

+ Ejh(X

n

)� h(X)j1

fX =2K; d(X

n

;X)<Æg

+ Ejh(X

n

)� h(X)j1

fd(X

n

;X)�Æg

� (�)P[
℄ + (2B)P[X =2 K℄ + (2B)P[d(X

n

;X) � Æ℄

� 3�

For another (perhaps simpler) proof, in order show:

� X

n

! X(pr) if and only if every in
reasing sequen
e N 3 n

k

%1 has

a subsequen
e n

k

j

%1 for whi
h X

n

k

j

! X(a.s) (by 
ontradi
tion);

� If X

n

! X(pr) and Y

n

= �(X

n

), Y = �(X) for any 
ontinuous � :

R ! R, then Y

n

! Y (pr);

� If X

n

! X(pr) and Y

n

= �(X

n

), Y = �(X) for a bounded 
ontinuous

� : R ! R, then Y

n

! Y (L

p

) for any p < 1 (by DCT) and, in

parti
ular, �

n

= P ÆX

n

�1

) � = P ÆX

�1

.

For yet another, show h(X

n

)! h(X) pr: and apply the DCT.
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Sin
e every notion of 
onvergen
e of random variables we have seen so

far (pr., a.s, L

1

, L

p

, L

1

) impies 
onvergen
e in probability, all of them also

imply 
onvergen
e in distribution. Note that the 
onvergen
e of random

variables' distributions �

n

(A) = P[X

n

2 A℄ depends only on the distribu-

tions �

n

themselves on the Borel sets B(X ) of the state spa
e| sin
e the

random variables X

n

: 


n

! X don't even have to be de�ned on the same

probability spa
e, 
learly 
onvergen
e in distribution 
annot imply any of

the other 
onvergen
e notions listed above for random variables. For exam-

ple, we 
ould set X

n

(!) = !=n on




n

= f1; 2; : : : ; ng; F

n

= 2




n

; P

n

(A) = #(A)=n

to �nd

�

n

(dx) =

1

n

n

X

j=1

Æ

j=n

(dx)) �(dx) = 1

f(0;1℄g

(x)�(dx)

Although fX

n

g 
onverges in distribution (to the standard uniform), there

is no \set of ! on whi
h X

n


onverge" be
ause the fX

n

g are all de�ned on

di�erent probability spa
es (


n

;F

n

;P

n

).

For X = R there is a partial 
onverse, however: if �

n

) � then there

exists a probabilty spa
e (
;F ;P) (the unit interval with Borel measure

will do) and random variables X

n

;X on (
;F ;P) with these distributions

for whi
h X

n

! X a.s. The 
onstru
tion is simple, by the inverse CDF

method.

Example 1 (Empiri
al DF). Let fX

n

g

iid

� �(dx) be independent with an

arbitrary 
ommon distribution �(A) = P[X

n

2 A℄; for n 2 N the empiri
al

distribution is

�

n

(dx) =

1

n

n

X

j=1

Æ

X

j

(dx); i.e.,

�

n

(A) = # fj 2 f1; :::; ng : X

j

2 Ag =n

=

1

n

X

1

A

(X

j

):

then

�

n

) �;

i.e., the empiri
al distribution 
onverges to the true distribution.
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2 Metri
s for Convergen
e

One way to quantify the dis
repan
y between two distributions � and � on

X is

D

D

(�; �) := sup

h2D

�

�

�

Z

X

h(x)�(dx) �

Z

X

h(x) �(dx)

�

�

�

for various 
lasses D; let's 
onsider several examples and some alternatives.

2.1 Total Variation

The total variation distan
e between two distributions �, � on any Polish

(i.e., 
omplete separable metri
) spa
e X is given by

TV(�; �) := sup fj�(A)� �(A)j A 2 B(X )g

= inf P[X 6= Y : X � �; Y � �℄; (2)

so TV is D

D

for D = f Indi
ators h = 1

A

g or for D =

�

h : jhj �

1

2

	

or

D = fh : 0 � h � 1g. This is an ex
eptionally strong notion of `
loseness',

too strong for most appli
ations; for example, every dis
rete distribution

has (maximal) distan
e one from every 
ontinuous distribution. If � is any

sigma-�nite measure that dominates both � and � (so they will ea
h have a

density fun
tion, by the Radon-Nikodym theorem), then also

TV(�; �) =

1

2

Z

X

�

�

�

�

d�

d�

�

d�

d�

�

�

�

�

d�;

half the L

1

-distan
e between their density fun
tions.

2.2 Hellinger

H(�; �) :=

�

1

2

Z

X

�

p

d�=d��

p

d�=d�

�

2

d�

�

1=2

=

�

1�

Z

X

p

(d�=d�)(d�=d�) d�

�

1=2

for any measure � that dominates both � and � (for example, one 
an al-

ways take � = � + �; the usual 
hoi
e is Lebesgue measure when � and �

have densities, or 
ounting measure when they're both dis
rete. Just as with

TV(�; �), the value of H(�; �) doesn't depend on what � is used). Hellinger

and Total Variation determine the same topology, i.e., so a sequen
e 
on-

verges in one if and only if it does in the other.
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2.3 Kolmogorov-Smirnov

For X = R,

KS(�; �) := sup

x2R

�

�

�

�

�

(�1; x℄

�

� �

�

(�1; x℄

�

�

�

	

Obviously KS is D

D

for D =

�

1

(�1;x℄

: x 2 R

	

. Kolmogorov (1933) and

Smirnov (1939) famously (and independently) showed that 1=

p

n times the

KS distan
e from any 
ontinuous distribution to the empiri
al distribution

for n iid repli
ates has the same distribution, whi
h 
onverges asymptoti
ally

to that of the maximum of the standard Brownian bridge sto
hasti
 pro
ess,

leading to an omnibus non-parametri
 test of the hypothesis fX

i

g

iid

� �(dx).

If one of �, � has a point mass where the other doesn't, then their K-S

distan
e will be at least the size of that atom; this makes it a poor 
hoi
e

in some appli
ations.

2.4 (L�evy-)Prokhorov

On a 
omplete separable metri
 spa
e (X ;d),

�(�; �) := inf

n

� > 0 : �(A) � �(A

�

) + �

and �(A) � �(A

�

) + � for all A 2 B(X )

o

where A

�

= fy 2 X : (9x 2 A) d(x; y) < �g = [

x2A

B

�

(x), the union

of open �-balls around ea
h point in A. This exa
tly metrizes 
onvergen
e

in distribution (i.e., a sequen
e �

n

) � if and only if �(�

n

; �) ! 0); every

other metri
 in this se
tion is stri
tly stronger, in the sense that 
onvergen
e

of �

n

to � in that metri
 implies (but is not implied by) 
onvergen
e in

distribution.

2.5 Wasserstein

On a 
omplete separable metri
 spa
e (X ;d), for p � 1 the Wasserstein

distan
e between two distributions is

Wass

p

(�; �) :=

�

inf


2�(�;�)

ZZ

X�X

d(x; y)

p


(dx dy)

�

1=p

= inf fkX � Y k

p

: X � �; Y � �g
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where �(�; �) is the spa
e of probability measures on X

2

with marginals �

and �. The 
ase p = 1 is most important:

Wass

1

(�; �) = sup

f :X!R

�

�

�

�

�

Z

X

f(x)�(dx)�

Z

X

f(x) �(dx)

�

�

�

�

: Lip(f) � 1

�

;

displaying Wass

1

on R as D

D

for D = fUnit Lips
hitz 
ontinuous h(�)g.

Sometimes 
alled the \transportation metri
," this 
an be interpreted as

the minimum 
ost of moving the support of � to that of � if moving 
ost is

proportional to the produ
t of mass times distan
e.

2.6 Kullba
k-Leibler Divergen
e

The \Kullba
k-Leibler divergen
e" (Kullba
k and Leibler, 1951), also 
alled

Relative Entropy, from distribution � to � on a Polish spa
e X is:

KL(�k�) :=

Z

X

� log

�

�(dx)

�(dx)

�

�(dx);

when � � � and the integral is �nite (otherwise KL(�k�) =1). It is non-

negative, be
ause log y � y� 1 for all y > 0 (or by Jensen's inequality), but

it is not symmetri
 in � and � and doesn't satisfy the triangle inequality

so it 
an't be a metri
. It does determine a topology, though, and hen
e a

notion of 
onvergen
e. Some authors (in
luding Kullba
k and Leibler them-

selves, also Bernardo) 
onstru
t symmetri
 analogues, like the \symmetri
,"

\Jensen-Shannon," and \Intrinsi
" divergen
es

KL

sym

(�; �) := KL(�k�) + KL(�k�);

KL

JS

(�; �) :=

1

2

�

KL

�

�+ �

2










�

�

+KL

�

�+ �

2










�

��

;

KL

Int

(�; �) := minfKL(�k�); KL(�k�)g :

Note KL

JS

is always �nite, and KL

Int

is �nite if either KL(�k�) or KL(�k�)

is, but KL(�k�) (and hen
e KL

sym

(�; �)) will be in�nite unless � � �.

2.7 (Fisher) Information Distan
e

For parametri
 families of measures f�

�

: � 2 �g on some spa
e X � R

d

(parti
ularly within the exponential family), with density fun
tions �

�

(dx) =

f(x j �) �(dx) with respe
t to some dominating referen
e measure �, let

I(�) :=E

�

�r

2

log f(X j �)

	

=E

�

(r log f(X j �)) (r log f(X j �))

0
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be the Fisher information matrix and 
onstru
t a Riemannian metri
 on �

by

d(�

0

; �

1

) := inf




�

Z

1

0

p

_


0

s

I(


s

) _


s

ds

�

where the in�mum is over all di�erentiable paths 
 : [0; 1℄ ! � 
onne
ting




0

= �

0

to 


1

= �

1

and where _
 = d


s

=ds. In one dimension when � � R is

a (possibly in�nite) interval, this is just

=�

J

�

[�

0

; �

1

℄

�

for the Je�reys'-rule prior distribution �

J

. In any number of dimensions,

the Fisher Information distan
e on � indu
es a notion of distan
e for dis-

tributions, by

FI

�

�

�

0

; �

�

1

�

:= d(�

0

; �

1

):

See Amari (2001) or Amari and Nagoaka (2000, x2.2) for more details.

2.8 Relations among the Metri
s

� TV(�; �) � H(�; �) �

p

2TV(�; �)

� H

2

(�; �) �

1

2

KL

Int

(�k�) �

1

2

KL(�k�) �

1

2

KL

sym

(�k�)

� KS(�; �) � TV(�; �)

� KS(�; �) � 2

p


Wass

1

(�; �) if � or � has a pdf bounded by 


� KL(�; �) �

1

2

FI(�; �)

2

for � � � (so their topologies 
oin
ide)

Thus �

n

! � (TV) if and only if �

n

! � (H). Either of these implies that

�

n

! � (KS), and both are implied by �

n

! � (KL) or (equivalently, when

FI exists) �

n

! � (FI).
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3 Stein's Method

Let h(�) be a 
ontinuously di�erentiable fun
tion on R that doesn't grow too

fast as z ! �1 and let �(dz) be the standard Normal distribution measure,

with Lebesgue density fun
tion �(z) = exp(�z

2

=2)=

p

2�. Let Z � No(0; 1)

be a random variable with the standard normal distribution �(dz). Then

integrating by parts shows

Z

x

�1

h

0

(z)�(dz) = h(z)�(z)

�

�

�

x

�1

�

Z

x

�1

h(z)�

0

(dz)

= h(x)�(x) +

Z

x

�1

z h(z)�(dz)

and in the limit as x!1 we have

E[h

0

(Z)� Z h(Z)℄ = 0 (3)

for every smooth tame fun
tion h. The same argument in reverse shows that

if (3) holds for every h 2 C

1

o

then Z must have the No(0; 1) distribution.

Perhaps any random variable Z for whi
h Eqn (3) holds approximately will

have an approximately Normal distribution. In 1972 Charles Stein showed

that Eqn (3) 
hara
terizes the standard normal distribution 
ompletely, and

found a way to use this to bound

�

�

R

R

h(z)�(dz) �

R

R

h(z)�(dz)

�

�

for various

distributions �(dz), in
luding that for the sample mean of n iid random

variables, leading to a new way of viewing and proving the Central Limit

Theorem and to new error bounds for it.

Over the next few de
ades a wide range of new appli
ations and exten-

sions of the method have emerged (Stein, 1986; Reinert, 2003, 2005; Chat-

terjee, 2007). For example, an integer-valued random variable Y has the

Po(�) Poisson distribution with mean � if and only if

E[�h(Y + 1)� Y h(Y )℄ = 0 (4)

for all real-valued fun
tions h(�) that don't grow too fast for the expe
tations

to be well-de�ned. More generally (we'll see that Eqns (3, 4) are spe
ial


ases) if X

t

is a 
ontinuous-time stationary Markov pro
ess with stationary

distribution � and generator A, then X � � if and only if

E[Ah(X)℄ = 0 (5)

for ea
h h in the domain of A.
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3.1 Stein in Brief

Stein's method for bounding some notion of the distan
e between the distri-

bution � of some random variable W � � and a target distribution � (and

let Z � � have the target distribution) was summarized by Reinert (2003)

as 
omprising three steps:

1. Find an operator A su
h that X � � if and only if E[Ah(X)℄ = 0 for

all suitable h;

2. For ea
h suitable h �nd a solution f = f

h

of Stein's Equation

h(x)� Eh(Z) = Af
h

(x) (6)

3. Note that this implies

Eh(W )� Eh(Z) = EAf
h

(W )

and hen
e

�

�

�

Z

X

h(x)�(dx) �

Z

X

h(x)�(dx)

�

�

�

=

�

�

EAf
h

(W )

�

�

; (7)

so if we 
an �nd a way to bound jAf
h

(x)j uniformly for some suitable 
lass

D = fhg of fun
tions, then we 
an verify distan
e bounds.

3.2 Continuous-time Markov Chains

Let X

t

be a stationary Markov pro
ess indexed by t 2 R

+

with stationary

distribution � and de�ne a family of operators for t � 0 and suitable h by:

T

t

h(x) = E[h(X

t

) j X

0

= x℄:

Then T

0

h(x) = h(x) and by the Markov property E[T

s

(X

t

) j X

0

= x℄ =

T

t+s

h(x), so fT

t

g is a 
ontinuous semigroup of operators. If we de�ne

Ah(x) = lim

t&0

1

t

�

T

t

h(x)� h(x)

�

;

the derivative of T

t

at t = 0 in the dire
tion h, then formally T

t

satis�es

T

t

h(x) = h(x) +

Z

t

0

AT
s

h(x) ds (8)
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and so in some sense we 
an think of T

t

as the exponential T

t

= e

tA
. Sin
e

X

t

has stationary distribution �, then (if LDC or UI apply) we should have

lim

t!1

T

t

h(x) = lim

t!1

Eh(X

t

) =

Z

X

h(z)�(dz)

for every x. If the integral exists the limit of Eqn (8) should give (after

rearranging):

h(x)� Eh(Z) = A

Z

1

0

T

s

h(x) ds;

exa
tly Stein's Eqn (6) with the formal solution

f

h

(x) =

Z

1

0

T

s

h(x) ds

= lim

�&0

Z

1

0

e

��s

T

s

h(x) ds;

formally the resolvent limit (re
all T

s

� e

sA
)

= lim

�&0

(�A+ �I)

�1

h(x);

or something like \f

h

= �A
�1

h." Let's see some examples.

3.2.1 A Stationary Markov Chain with the Poisson Distribution

For � > 0 
onsider a 
ontinuous-time integer-valued pro
ess Markov X

t

that

evolves by

P[X

t+�

= j j X

t

= i℄ = o(�) +

8

>

<

>

:

�� i = j + 1

1� (�+ i)� i = j

i� i = j � 1

for non-negative i; j 2 Z

+

. This \linear death with immigration" pro
ess

has generator

Ah(x) = �[h(x+ 1)� h(x)℄ � x[h(x)� h(x� 1)℄

= �h(x+ 1)� (�+ x)h(x) + xh(x� 1)

A random variable X satis�es E[Ah(X)℄ = 0 for ea
h h if and only if it

satis�es E[Ag(X)℄ = 0 with Ag(x) := [�g(x+1)�xg(x)℄ for ea
h g (in
luding

the �rst-di�eren
e g(x) = h(x) � h(x � 1)), whi
h happens in turn if and
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only if P[X = k℄ = (�=k)P[X = k � 1℄ for ea
h k � 1, i.e., if X � Po(�).

Stein's Equation is solved re
ursively by f

h

(0) = 0 and, for integers x � 0,

f

h

(x+ 1) =

1

�

"

h(x) + xf

h

(x)� e

��

1

X

k=0

h(k)�

k

=k!

#

3.2.2 A Stationary Markov Pro
ess with the Normal Dist'n

The standard Ornstein-Uhlenbe
k Gaussian pro
ess with mean zero and


ovarian
e E[X

s

X

t

℄ = e

�js�tj

is a di�usion with Itô SDE representation

dX

t

= a(X

t

) dt+ b(X

t

) dW

t

= �X

t

dt+

p

2 dW

t

and hen
e with generator

A = a(x)

�

�x

+

1

2

b

2

(x)

�

2

�x

2

= �x

�

�x

+

�

2

�x

2

: (9)

A random variable X satis�es \EAh(X) = 0" for ea
h smooth fun
tion h

whenever it satis�es \EAg(X) = 0" for ea
h smooth fun
tion g (in
luding

g = h

0

), for the �rst-order operator A = �x+

�

�x

. Stein's Equation is solved

in proving:

Lemma 1. (Stein) Let g : R ! R be bounded and measurable and denote

by Ng =

R

g(z)�(dz) the expe
tation Eg(Z) where Z � No(0; 1) = �(dz).

Then there exists an absolutely-
ontinuous fun
tion f : R ! R satisfying

Stein's Eqn (6)

f

0

(x)� x f(x) = g(x) �Ng

and moreover the bounds

jf j

1

�

p

�=2 jg �Ngj

1

jf

0

j

1

� 2 jg �Ngj

1

:

Proof. Note [f(x)�(x)℄

0

= [f

0

(x)�xf(x)℄�, so integrating from minus in�n-

ity shows the solution must satisfy

f(x)�(x) =

Z

x

�1

[g(z) �Ng℄�(dz); so it is

f(x) =

R

x

�1

g(z)�(dz) � �(x)Ng

�(x)

:

The indi
ated bounds follow from

sup

x�0

�(�x)

�(x)

=

p

�=2 sup

x�0

x�(�x)

�(x)

= 1

(the maxima o

ur at zero and 1, respe
tively).
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3.2.3 CLT as a Stationary Markov Chain

Let f�

j

g be independent L

3

random variables that have been 
entered and

s
aled (if ne
essary) so that E�

j

= 0 and E�

2

j

= 1 for ea
h j; they need not

be identi
ally-distributed. First 
onstru
t a dis
rete-time Markov 
hain as

follows: For n 2 N, set

Z

n

(0) = (�

1

; : : : ; �

n

) :

Pi
k an index i 2 I

n

= f1; : : : ; ng uniformly, a random variable �

�

i

with the

same distribution as �

i

but independent of everything, and set

Z

n

(1) = (�

1

; : : : ; �

i�1

; �

�

i

; �

i+1

; : : : ; �

n

) ;

i.e., Z

n

(0) with �

i

repla
ed by �

�

i

. Continue in this fashion to 
onstru
t a

stationary R

n

-valued Markov 
hain. Meanwhile let N

t

be a Poisson pro
ess

with rate n and 
onstru
t a 
ontinuous-time R

1

-valued pro
ess W

t

as:

W

t

=

1

p

n

X

j2I

n

Z

n

�

N

t

�

:

ClearlyW

t

is a stationary Markov pro
ess, whose distribution 
oin
ides with

that of

W

0

=

�

�

1

+ � � �+ �

n

�

=

p

n:

How far is that distribution from the standard Normal? By Taylor's theo-

rem, the generator for this pro
ess on a smooth fun
tion h is:

A
n

h(w) = lim

t&0

n

t

E

�

h(W

t

)� h(W

0

) jW

0

= w

	

=

X

j2I

n

E

n

h

�

w +

�

�

j

� �

j

p

n

�

� h(w)

o

=

X

j2I

n

E

(

�

�

j

� �

j

p

n

h

0

(w) +

�

�

�

j

� �

j

p

n

�

2

h

00

(w)

2

+

�

�

�

j

� �

j

p

n

�

3

h

000

(w

�

)

6

)

for some w

�

near w; sin
e E�

�

j

= 0 and E�

�

j

2

= 1,

=

X

j2I

n

n

��

j

p

n

h

0

(w) +

1 + �

2

j

2n

h

00

(w) + o(1=n)

o

� �wh

0

(w) + h

00

(w)

by the de�nition of W

0

= w and the LLN. This is the same se
ond-order

generator A found in Eqn (9); again, we may use the �rst-order A =

�

�x

� x

instead.
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3.3 The Central Limit Theorem

Theorem 1. Suppose f�

j

g are independent with mean zero, varian
e one,

and �nite third moments. Set

W

n

=

�

�

1

+ � � � + �

n

�

=

p

n:

Then the Wasserstein distan
e from the distribution �

n

of W

n

to the stan-

dard normal distribution is bounded by

Wass

1

(�

n

; �) �

3

n

3=2

n

X

j=1

Ej�

j

j

3

As an obvious 
orollary, �

n

) No(0; 1), and for iid f�

j

g the 
onvergen
e rate

is n

�1=2

. This is similar to (but slightly weaker than) the usual Berry-Ess�een

bound on KS(�

n

; �); with a little more work (involving 
areful estimates of

f

h

for h = 1

(�1;x℄

) the traditional Berry-Ess�een bounds are available from

Stein's Method.
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