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1 Extreme Values

Most probability books do a �ne job of overing the approximate probability distribution of sums

(or averages) of independent random variables. If fX

j

g are independent and identially distributed

(iid) with any distribution having a �nite mean � and variane �

2

, the sum and average

S

n

:=

n

X

j=1

�

X

n

:=

1

n

S

n

are eah asymptotially normally distributed in the sense that their standardized version

Z

n

:=

S

n

� n�

�

p

n

=

�

X

n

� �

�=

p

n

satis�es

lim

n!1

P[a < Z

n

� b℄ = �(b)� �(a)

uniformly in �1 < a < b <1, where

�(x) :=

1

p

2�

Z

x

�1

e

�z

2

=2

dz

denotes the standard Normal CDF funtion. Some texts go further and disuss limits for sums

of random variables X

j

that do not have �nite means or varianes| in that ase the �-Stable

distribution emerges as another (in fat, the only other) possible limiting distribution for normalized

sums of the form

S

n

� b

n

a

n

for suitable non-random sequenes fa

n

g, fb

n

g.

In light of reent onerns about eonomi rises and limate hanges leading to atastrophes in

storm and drought severity, temperature, hurriane intensity, and suh, there is a new interest in

looking not at the probability distributions of averages (like

�

X

n

) but at those of extremes, like:

X

�

n

:= max

1�j�n

X

j

:
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The best tool for studying sums of iid random variables is the harateristi funtion �(!) = Ee

i!X

j

,

beause the hf �

n

for the sum S

n

has a simple expression: �

n

(!) = �(!)

n

. The best tool for

studying maxima or minima of iid random variables is the CDF, for the same reason:

F

n

(x) = P[X

�

n

� x℄ = P f\

n

i=1

[X

i

� x℄g = F (x)

n

= [1�

�

F (x)℄

n

;

where

�

F (x) := P[X > x℄ = [1�F (x)℄ is the survival funtion. For (X

�

n

� b

n

)=a

n

to have a limiting

distribution G(z), we would need

P

�

X

�

n

� b

n

a

n

� z

�

= F

n

(b

n

+ za

n

)

= F (b

n

+ za

n

)

n

= [1�

�

F (b

n

+ za

n

)℄

n

! G(z):

We'll need

�

F (b

n

+ za

n

) �

1

n

, or (b

n

+ za

n

) � F

�1

�

1 �

1

n

�

, so good starting plaes would be a

n

or

b

n

to be about F

�1

(1�

1

n

). In a homework exerise you showed that X

�

n

=

p

n! 0 (pr) for any iid

fX

i

g � L

2

, so typially a

n

will grow more slowly than

p

n for L

2

random variables. Let's look at

examples.

1.1 Example 1: Exponential Distribution

Let fX

j

g have independent Exponential distributions X

j

iid

� Ex(�), and let X

�

n

be the largest of the

�rst n. Can we �nd non-random sequenes fa

n

g, fb

n

g and a limiting CDF G(z) for whih

lim

n!1

P

�

X

�

n

� b

n

a

n

� z

�

= G(z)?

For any sequenes fa

n

g, fb

n

g the exat probabilities are

P

�

X

�

n

� b

n

a

n

� z

�

= P[X

�

n

� a

n

z + b

n

℄

= P

�

\

n

j=1

[X

j

� a

n

z + b

n

℄

	

= fP[X

1

� a

n

z + b

n

℄g

n

=

n

1� e

��(a

n

z+b

n

)

o

n

The goal is to �nd fa

n

; b

n

g for whih this onverges as n!1 to a DF. For this we need the term

in braes be 1�O(1=n), so we need log n� �(a

n

z + b

n

) to onverge to a non-onstant funtion of

z. If we now hoose a

n

:= 1=� and b

n

:= (log n)=�,

P

�

X

�

n

� b

n

a

n

� z

�

=

�

1�

1

n

e

�z

�

n

! G(z) := exp

�

� e

�z

�

; (1)

the standard Gumbel Distribution. Its median ism

�

= � log log 2 � 0:366513 (sineG(� log log 2) =

exp(� log 2) = 1=2) and its mean is �

�

= 

e

� 0:577216, the Euler-Masheroni onstant, so the

median m

�

n

and mean �

�

n

for X

�

n

are

m

�

n

=

log n� log log 2

�

�

�

n

=

log n+ 

e

�

:
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Eah grows with n at a logarithmi rate.

For example, if we imagine that sprinters' speed in m/s are given by the Ex(1) distribution, then the

fastest speed of n independently-drawn sprinters would have approximately the re-saled Gumbel

Distribution with median m

�

n

= log n� log log 2; this has even odds of exeeding Usain Bolt's 2009

world-reord 100m pae of 9.69s if

log n� log log 2 �

100m

9:69s

= 10:32m/s

log n � log log 2 + 10:32

n � exp(�0:37 + 10:32 = 9:95)

= 21 023:73;

i.e., there's about an even hane that one of 21,024 independent Ex(1) random variables would

exeed Bolt's pae.

For this example we an ompute exatly the median for X

�

n

or, if we prefer, the probability that

X

�

n

exeeds 9:95 for n = 21024; the latter, for example, is

P[X

�

21024

> 10:32℄ =

�

1� exp(�10:32)

�

21024

= 0:5000176;

so the Gumbel approximation is quite good.

1.2 Example 2: Normal Distribution

Now let fX

j

g have independent standard Normal distributionsX

j

iid

� No(0; 1), setX

�

n

:= max

1�j�n

X

j

,

and seek non-random fa

n

g, fb

n

g and a limiting CDF G(z) for a

�1

n

(X

�

n

� b

n

). First we need to note

that, for x > 0,

�(�x) =

Z

1

x

�(z) dz

�

Z

1

x

z

x

�(z) dz =

1

x

p

2�

Z

1

x

ze

�z

2

=2

dz =

1

x

�(x):

Gordon's Inequality improves this to the two-sided bound

1 �

�(x)

x�(�x)

� 1 +

1

x

2

for every x > 0. Now let b

n

:= ��

�1

(1=n) be the (1� 1=n)'th quantile (so �(�b

n

) = 1=n) and set

a

n

:= 1=b

n

; note that b

n

�

q

2 log n grows as n!1, while a

n

! 0. By Taylor's theorem and the

evenness of �(z), for �xed z 2 R,

log �(�a

n

z � b

n

) = log �(�b

n

)� a

n

z

�(�b

n

)

�(�b

n

)

+ o(a

n

z)

= log

1

n

� z

�(b

n

)

b

n

�(�b

n

)

+ o(a

n

z)

= log

1

n

� z + o(a

n

z)
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so

P[X

1

� a

n

z + b

n

℄ = �(a

n

z + b

n

)

= 1�

1

n

e

�z+o(1=

p

log n)

; and

P[X

�

n

� a

n

z + b

n

℄ �

�

1� n

�1

e

�z

�

n

� exp(�e

�z

) =: G(z);

again the Gumbel distribution. Similarly, if fX

i

g

iid

� No(�; �

2

) (now with arbitrary mean and

variane) then we simply hange the loation and sale to �nd that with b

n

:= �� ��

�1

(1=n) and

a

n

:= ��=�

�1

(1=n) we have

P

�

X

�

n

� b

n

a

n

� z

�

! G(z) = e

�e

�z

;

with median

m

�

n

= �� ��

�1

(1=n) + (log log 2)�=�

�1

(1=n)

growing like �

p

2 log n as n!1.

Typially unbounded distributions like the Exponential and Normal (as well as the Gamma,

Weibull, et.) whose tails fall o� exponentially or faster will have this same Gumbel limiting

distribution for the maxima, and will have medians (and other quantiles) that grow as n !1 at

the rate of (some power of) log n.

1.3 Example 3: Pareto Distribution

Distributions with \fatter tails" (i.e., those for whih P[X > x℄ falls o� no faster than a power

of x) will have a di�erent limit. For example, let fU

j

g be iid Uniform random variables and set

X

j

= 1=U

j

; then X

j

has the \unit Pareto distribution" determined by

P[X

j

> x℄ = 1=x; x � 1

and the maximum X

�

n

of n iid unit Paretos will satisfy

P[X

�

n

� a

n

z + b

n

℄ =

�

1� [a

n

z + b

n

℄

�1

�

n

a

n

z + b

n

� 1:

With a

n

:= n and b

n

:= 0,

=

�

1�

1

nz

�

n

! e

�1=z

=: G(z); z > 0; (2)

the \unit Fr�ehet Distribution". Similarly for X

j

= �U

�1=�

j

with the Pa(�; �) distribution satisfying

P[X

j

> x℄ = �

�

=x

�

; x � �;

set a

n

:= n

1=�

� and b

n

:= 0 to �nd

P[X

�

n

� a

n

z + b

n

℄ =

�

1�

1

n

z

��

�

n

! e

�z

��

=: G(z j �); z > 0;
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the Fr�ehet distribution with shape parameter � > 0. The Fr�ehet median is (log 2)

�1=�

, so X

�

n

has median

m

�

n

= n

1=�

�(log 2)

�1=�

that grows like a power of n, while the mean is in�nite if � < 1. The distribution is only L

2

for

� > 2, in whih ase a

n

grows more slowly than

p

n. This limiting Fr�ehet behavior is typial for

heavy-tailed distributions suh as the t, �-stable, and Pareto.

1.4 Example 4a: Minima for the Weibull and Beta Distributions

For �; � > 0, the 1=�'th power of an exponential Ex(�) random variable has the Weibull We(�; �)

distribution, with Survival Funtion (SF)

�

G(x) = P[X > x℄ = exp(��x

�

) for x � 0. It follows that

the minimum X

�n

of n iid We(�; �) random variables satis�es

P[X

�n

> x℄ =

n

e

��x

�

o

n

= e

�n�x

�

;

again Weibull but now with the X

�

�We(�; n�) distribution. For (X

�n

� b

n

)=a

n

to have a limiting

distribution we need

P

�

X

�n

� b

n

a

n

> z

�

= e

�n�(b

n

+a

n

z)

�

to onverge to a funtion of z as n!1. Evidently it will onverge to e

�z

�

(z > 0) for b

n

:= 0 and

a

n

:= (n�)

�1=�

, the Weibull We(�; 1) distribution.

The probability that a random variable X � Be(�; �) lies below a small number t > 0 is

P[X � t℄ = 

Z

t

0

x

��1

(1� x)

��1

dx � 

Z

t

0

x

��1

dx = (=�)t

�

for  := �(�+ �)=�(�)�(�), with a relative error no more than (1 � t)

��1

, so the probability that

the minimum X

�n

of n variables fX

j

g

iid

� Be(�; �) exeeds t = b

n

+ za

n

for z > 0 is

P fX

�n

> b

n

+ za

n

g �

�

1� (=�)(b

n

+ za

n

)

�

�

n

or, for b

n

= 0 and a

n

= (�=n)

1=�

,

= (1� z

�

=n)

n

! exp

�

� z

�

);

again the Weibull We(�; 1) limiting distribution for the minimum.

1.4.1 Example 4b: Beta Distribution Maximum

Let fX

i

g

iid

� Be(�; �) and set Y

i

:= [1�X

i

℄. Then fY

i

g

iid

� Be(�; �) and X

�

n

= 1� Y

�n

, so

P

�

X

�

n

� b

n

a

n

< z

�

= P

�

Y

�n

� (1� b

n

)

a

n

> �z

�

� e

�(�z)

�

; z < 0
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for b

n

:= 1 and a

n

:= (�=n)

1=�

, with  as before, now for z < 0. This is alled the reversed Weibull

distribution, with CDF and pdf

G(z j �) = e

�(�z)

�

z < 0 (3)

g(z j �) = �(�z)

��1

e

�(�z)

�

1

fz<0g

;

with median m

�

n

= �(n= log 2)

�1=�

inreasing to zero as n!1.

Similarly the maximum X

�

n

of n iid uniform random variables X

j

� Un(L;R) on an arbitrary

interval has limiting distribution:

P[a

�1

n

[X

�

n

� b

n

℄ � z℄ = P[X

�

n

� a

n

z + b

n

℄

=

�

1�

R� a

n

z � b

n

R� L

�

n

if L � a

n

z + b

n

� R

= (1 + z=n)

n

! e

z

if � n � z � 0

for a

n

:= (R� L)=n and b

n

:= R, the unit Reversed We(1; 1) Weibull. Now the median for X

�

n

is

m

�

n

= R� (R� L)(log 2)=n;

inreasing at rate 1=n to a �nite upper bound of R. The suitably standardized minimum and max-

imum of n independent Be(�; �) random variables have asymptoti We(�; 1) and reverse We(�; 1)

distributions, respetively. These are typial of the maximal behavior for bounded random variables

with ontinuous distributions.

1.5 The Three Types Theorem

Fisher and Tippett (1928) �rst proved that loation-sale families of these three distributions|

Gumbel (1), Fr�ehet (2), and reversed Weibull (3)| are the only possible limits for maxima of

independent random variables. That is, if there exist nonrandom sequenes a

n

> 0 and b

n

2 R and

a nondegenerate distribution G suh that the maximum X

�

n

:= max

j�n

X

j

of iid random variables

fX

j

g satis�es

P

�

X

�

n

� b

n

a

n

� z

�

! G(z) (4)

then G must be one of these three distributions: Gumbel, Fr�ehet, or reversed Weibull. Half a

entury later Daniel MFadden (1978) disovered that all three of these limiting distributions ould

be expressed in the same funtional form as speial ases of a single three-parameter \Generalized

Extreme Value" (GEV) distribution, with CDF

G(x;�; �; �) = exp

(

�

�

1 + �

�

x� �

�

��

�1=�

)

(5)

whih redues to the Fr�ehet with � = 1=� if � > 0, reversed Weibull with � = �1=� if � < 0,

and Gumbel as � ! 0 (see Appendix A.5 on p. 17 for more details). In some ways I feel this was

unfortunate, beause now it is ommon for people to model and �t the GEV without thinking very
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learly about the spei� form of their data and distributions. Also, point estimates will (almost

surely) never be exatly

^

� = 0, so the Gumbel (whih, you will reall, was the limit distribution for

Exponential, Gamma, Normal, and other distributions whose tails fall o� exponentially) will never

be identi�ed as the limit.

The key idea for the three-types theorem is to notie that any distribution G satisfying (4) must

also have the property that for all n, the maximum of n independent random variables with CDF

G must also (after suitable shift and sale hanges) have CDF G| i.e., that for any n there exist

onstants a

n

and b

n

suh that for all z 2 R,

G(z)

n

= G(a

n

z + b

n

):

It turns out that the only CDF that satis�es this equation is (5), with a

n

= n

�

and b

n

= (n

�

�1)�=�,

or a

n

= 1 and b

n

= � log n for the Gumbel ase � = 0.

2 Threshold Exeedanes

In this setion we'll explore a di�erent way of looking at the same limiting distributions of maxima,

the \peaks over thresholds" or \PoT" approah.

As before let fX

j

g be iid for 1 � j � n and set

1

T

j

:=

j�1=2

n

2 (0; 1). Let a

n

and b

n

be real

numbers and set Y

j

:= a

n

X

j

+ b

n

. The vetor N(R

i

) of the numbers of points (T

j

; Y

j

) in disjoint

retangles R

i

:= (s

i

; t

i

℄� (u

i

; v

i

℄ with 0 � s

i

< t

i

� 1 and u � u

i

< v

i

� 1 will have a multinomial

distribution with parameters n and ~p, where

2

p

i

� (t

i

� s

i

)

�

F (a

n

v

i

+ b

n

)� F (a

n

u

i

+ b

n

)

�

:

For suÆiently large u and n, the fN(R

i

)g will be approximately independent Poisson random

variables, with means

�

i

= np

i

:

Here we look for hoies of a

n

and b

n

for whih �

i

has a simple form, and then exploit it.

2.1 Example 1: Weibull Distribution

If P[X

j

> x℄ = e

��x

�

for x > 0, then for the hoie b

n

:= [�

�1

log n℄

1=�

and a

n

:= b

n

=(� log n) we

have for all large enough z,

n[1� F (a

n

z + b

n

)℄ = n exp

�

� �(a

n

z + b

n

)

�

�

= n exp

�

� log n(1 + z=� log n)

�

�

= n exp

�

� log n(1 + z= log n+ o(1= log n))

�

� e

�z

;

so fT

j

; Y

j

= (X

j

� b

n

)=a

n

g have approximately the Poisson distribution on (0; 1℄�R with intensity

measure �(dt dy) = dt e

�y

dy (illustrated in Figure (1)). A similar approah with suitable a

n

, b

n

works for any other distribution in the Gumbel domain.

1

The following results would be idential if instead we took fT

j

g

iid

� Un(0; 1).

2

The approximation would be exat for fT

j

g

iid

� Un(0; 1).
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0
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x

y

Peaks over Threshhold: We(1, 1)

Figure 1: Simulation of 1000 saled Weibull draws. Horizontal line is at 95% quantile. Cumulative

maximum M

t

is shown as dotted line.

The maximum M

t

:= maxfY

j

: T

j

� tg is a non-dereasing stohasti proess on the unit interval

0 < t � 1, with CDF

F

t

(z) = P[M

t

� z℄

= P[No Poisson points in (0; t℄ � (z;1)℄

= e

�te

�z

;

the Gumbel distribution. The events fM

t

� zg and

n

X

�

bnt

� a

n

z + b

n

o

are idential.

2.1.1 Related Max-Stable Proess

Let f(T

j

; Y

j

)g be the points of a Po(dt e

�y

dy) random �eld on all of R

d

� R

+

, and let f(t) be any

positive funtion with �nite Laplae transform. De�ne a random proess by

Z(t) := sup

j

fY

j

=f(T

j

� t)g:

8



If f(t) =

P

a

i

1

A

i

(t) is a simple funtion, then

P[Z(t) � z℄ =

Y

i

P

�

sup

j

fY

j

=a

i

� z : T

j

� t 2 A

i

�

=

Y

i

P

�

No Poisson pts in (A

i

+ t)� (a

i

z;1)

�

=

Y

i

exp

�

� jA

i

je

�a

i

z

�

= exp

�

�

Z

e

�zf(s)

ds

�

;

so Z(t) is a stationary proess. For any (not neessarily simple) positive funtion f(t) on R

d

, the

same identity follows from LDCT.

2.2 Example 2: Pareto Distribution

If P[X

j

> x℄ = �

�

x

��

for x > �, then for the hoie a

n

:= �n

1=�

and b

n

:= 0 we have for all large

enough z,

n[1� F (a

n

z + b

n

)℄ = n

�

�

�

(�n

1=�

z)

��

�

= z

��

;

so fT

j

; Y

j

= (X

j

�b

n

)=a

n

g have approximately the Poisson distribution on (0; 1℄�R

+

with intensity

measure �(dt dy) = dt �y

���1

dy. A similar approah with suitable a

n

, b

n

works for any other

distribution in the Fr�ehet domain.

The maximum M

t

:= maxfY

j

: T

j

� tg is a non-dereasing stohasti proess on the unit interval

0 < t � 1, with CDF

F

t

(z) = P[M

t

� z℄

= P[No Poisson points in (0; t℄ � (z;1)℄

= e

�tz

��

;

the Fr�ehet distribution. The events fM

t

� zg and

�

X

�

bnt

� a

n

z + b

n

	

are idential.

Note that the sum of the fY

j

: T

j

� tg will be �nite almost-surely if

R

1

0

(z ^ 1)�z

���1

dz < 1,

i.e., if 0 < � < 1; in that ase the non-dereasing proess

S

t

:=

X

fY

j

: T

j

� tg

is a fully-skewed �-Stable SII proess with distribution

� St

A

�

�; � = 1;  = t�(1��) os

��

2

; Æ = 0

�

and the fY

j

g are the \jumps" of S

t

. A similar representation holds for 1 � � < 2, but \ompen-

sation" is required (sort of like subtrating an in�nite drift from S

t

). There is no �-Stable proess

for � > 2, although the onnetion between Fr�ehet distribution and the Poisson point proess

remains.

9
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Figure 2: Simulation of 1000 saled Pareto draws. Horizontal line is at 95% quantile. Cumulative

maximum M

t

is shown as dotted line.

2.2.1 Related Max-Stable Proess

Let f(T

j

; Y

j

)g be the points of a Po(dt �y

���1

dy) random �eld on all of R

d

� R

+

, and let 0 �

f(t) 2 L

�

(R

d

; dt). De�ne a random proess by

Z(t) = sup

j

fY

j

f(t� T

j

)g:

If f(t) =

P

a

i

1

A

i

(t) is a simple funtion, then

P[Z(t) � z℄ =

Y

i

P

�

sup

j

fY

j

a

i

� z : t� T

j

2 A

i

�

=

Y

i

P

�

No Poisson pts in (t�A

i

)� (z=a

i

;1)

�

=

Y

i

exp

�

� jA

i

j(z=a

i

)

��

�

= exp

�

�z

��

Z

f(s)

�

ds

�

;

so Z(t) is a stationary proess with a Fr�ehet Fr

�

�; kfk

�

�

�

distribution. For non-simple 0 � f 2 L

�

,

the same identity follows from LDCT.

10



2.3 Example 3: Beta Distribution

If X

j

iid

� Be(�; �) then for small �, x

��1

� 1 for x > 1� � and so

P[X

j

> 1� �℄ �

�(�+ �)

�(�)�(�)

Z

1

1��

(1� x)

��1

dx

=

�

�

�B(�; �)

; B(�; �) :=

�(�)�(�)

�(�+ �)

:

For a

n

:= (�B(�; �)=n)

1=�

and b

n

:= 1, we have

nP[X

j

> a

n

z + b

n

℄ �

n

�B(�; �)

(1� a

n

z � b

n

)

�

= (�z)

�

; z < 0

so fT

j

; Y

j

= (X

j

�b

n

)=a

n

g have approximately the Poisson distribution on (0; 1℄�R

�

with intensity

measure �(dt dy) = dt �(�y)

��1

dy. A similar approah with suitable a

n

, b

n

works for any other

distribution in the Reverse Weibull domain.

The maximum M

t

:= maxfY

j

: T

j

� tg is a non-dereasing stohasti proess on the unit interval

0 < t � 1, with CDF

F

t

(z) = P[M

t

� z℄

= P[No Poisson points in (0; t℄ � (z;1)℄

= e

�t(�z)

�

; z < 0;

the reversed Weibull distribution. The events fM

t

� zg and

n

X

�

bnt

� a

n

z + b

n

o

are idential.

The minimum of n iid Be(�; �) random variables an be studied in the same way; for a

n

:=

(�B(�; �)=n)

1=�

and b

n

:= 0, the points fT

j

; Y

j

= (X

j

� b

n

)=a

n

g have approximately the Poisson

distribution on (0; 1℄ � R

+

with intensity measure �(dt dy) = dt �y

��1

dy, and the umulative

minimumm

t

= minfY

j

: T

j

� tg is a non-inreasing stohasti proess satisfying P[m

t

> z℄ = e

�tz

�

for z � 0, the usual (un-reversed) Weibull.

2.3.1 Related Max-Stable Proess

Let f(T

j

; Y

j

)g be the points of a Po(dt �y

��1

dy) random �eld on all of R

d

�R

+

, and let 0 < f(t) 2

L

�

(R

d

; dt). De�ne a random proess by

Z(t) = inf

j

fY

j

=f(t� T

j

)g:

11



If f(t) =

P

a

i

1

A

i

(t) is a simple funtion, then

P[Z(t) > z℄ =

Y

i

P

�

sup

j

fY

j

=a

i

> z : t� T

j

2 A

i

�

=

Y

i

P

�

No Poisson pts in (t�A

i

)� (0; z a

i

℄

�

=

Y

i

exp

�

� jA

i

j(z a

i

)

�

�

= exp

�

�z

�

Z

f(s)

�

ds

�

;

so Z(t) is a stationary proess with a WeibullWe

�

�; kfk

�

�

�

distribution. For non-simple 0 � f 2 L

�

,

the same identity follows from LDCT.

3 PoT Inferene

Distribute points fy

j

g aording to Po

�

�(dy)

�

and �x u in the support of �. Let J be the number

of points Y

j

> u (or Y

j

< u for the Weibull ase), for �(dy) = �y

���1

dy (Fr�ehet) or �(dy) =

�y

��1

dy (Weibull) on R

+

, or �(dy) = e

�y

dy (Gumbel) on R. Denoting the density of �(dy) by

�(y), we an express the joint pdf for J and the J threshold exeedanes fx

j

g as

L(�; ; a; b) = a

�k

Y

j�J

�

�

�

�

x

j

� b

a

�

�

exp

�

��

�

�

u� b

a

;1

�

�

and regard it as a likelihood funtion for �, , and the sale and loation parameters a, b. It an

probably be used to get MLEs and Fisher Information and maybe onjugate and Je�reys' priors.

The rate �

u

of exeedanes of level u may also be interesting.

4 Multivariate EVT

In many appliation areas the problem arises of studying the extremes for random vetors. Ex-

amples inlude the daily pries or returns of multiple stoks, funds, indies, or other �nanial

instruments; preipitation levels at multiple loations; the size and transmission speed of internet

streams; or wind speeds and wave heights at vulnerable loations. Extreme value theory is muh

less well-developed for multivariate random vetors than it is for univariate quantities.

The ustomary approah to studying the distribution of extremes for random vetors begins by

transforming eah omponent of the vetor to a standard EV distribution (often the \unit Fr�ehet"

with CDF G(x) = exp(�1=x)), then exploring dependene among the omponents. The initial

transformation is most often performed parametrially by estimating the three parameters of the

GEV separately for eah dimension; then transforming to uniformity by the CDF for that GEV

(usually ignoring unertainty in the parameter estimation), then to unit Fr�ehet by the inverse

CDF G

�1

(u) = �1= log u.

12



4.1 Asymptoti Dependene & Independene

Let (X;Y ) be a two-dimensional random vetor with unit Fr�ehet marginal distributions. The

extremal index, denoted � by some authors (suh as Smith and Weissman, 1994), and � by others

(inluding Coles et al., 1999, whom we follow here), is

� = lim

z!1

P[Y > z j X > z℄ (6)

= lim

z!1

P[X > z; Y > z℄

1� exp(�1=z)

= lim

z!1

P[X > z j Y > z℄:

This expression is both symmetri in X and Y , and invariant under (idential) omponent-wise

monotone transformations.

Evidently �, when it exists, takes values between 0 and 1. The omponents X and Y are alled

asymptotially independent if � = 0. Surprisingly (for most of us, anyway), every nondegenerate

bivariate normal distribution (even one with orrelation � = 0:9999) is asymptotially independent.

If we take the monotone transformation to unit No(0; 1) marginals with ovariane � < 1, then

Y j X � No

�

�X; 1� �

2

�

so

P[Y > z j X = x℄ = P

h

Y � �x

p

1� �

2

>

z � �x

p

1� �

2

i

= �

�

�z + �x

p

1� �

2

�

P[Y > z j X > z℄ =

1

�(�z)

Z

1

z

�

�

�x� z

p

1� �

2

�

'(x) dx

�

1

z

�

�

(�� 1)z

p

1� �

2

�

! 0 as z !1

for any � < 1.

Any value of � 2 [0; 1℄ is possible. To see this, take 0 � � � 1 and onsider the \bivariate logisti

model" with CDF

G(x; y) = exp

�

�

h

x

�1=�

+ y

�1=�

i

�

�

for � > 0, and G(x; y) = exp

�

� 1=min(x; y)

�

(the limit) for � = 0. Evidently X and Y eah have

unit Fr�ehet marginals (take the limits x!1 and y !1), and

� = lim

z!1

P[X > z; Y > z℄

P[X > z℄

= lim

z!1

1� P[X � z℄� P[Y � z℄ + P[X � z; Y � z℄

1� P[X � z℄

= lim

z!1

1� 2G(z) +G(z; z)

1�G(z)

= 2� lim

z!1

1�G(z; z)

1�G(z)

= 2� lim

z!1

1� exp(�2

�

=z)

1� exp(�1=z)

= 2� 2

�

by L'Hôpital's rule. This ranges from 0 to 1 as � ranges from 1 to 0.
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4.2 Multivariate EV Distributions

Let f(X

i

; Y

i

)g be iid random vetors in R

2

with Fr�ehet marginals and, for n 2 N, denote the

omponent-wise maxima by:

M

n

:= (X

�

n

; Y

�

n

); X

�

n

:= max

1�i�n

X

i

; Y

�

n

:= max

1�i�n

Y

i

:

Then

P[X

�

n

=n � z℄ = P[X

1

� nz℄

n

=

�

e

�1=nz

�

n

= e

�1=z

and similarly P[Y

�

n

=n � z℄ = e

�1=z

, so both marginals of M

n

=n are unit Fr�ehet.

Theorem 1 If there exists a non-degenerate bivariate distribution G(x; y) suh that M

n

=n )

G(x; y) as n!1, i.e., that

P [X

�

n

� nx; Y

�

n

� ny℄! G(x; y);

then

G(x; y) = e

�V (x;y)

(7)

for a nonnegative funtion V : R

2

+

! R

+

of the form

V (x; y) = 2

Z

�

1

max

�

�

1

x

;

�

2

y

�

H(d�) (8)

for some probability measure H(d�) on the unit simplex �

1

� R

2

+

with mean

Z

�

1

�H(d�) =

�

1

2

;

1

2

�

: (9)

Every suh \spetral measure" H gives rise to a bivariate extreme value distribution; below we'll

motivate this by showing how H arises and where (8) omes from. From Eqns (7, 8), the marginal

distribution funtion for X must be G(x;1) = exp

�

� V (x;1)

�

= exp

�

� 2

R

�

1

�

1

H(d�)=x,

so (9) is simply a standardization ondition ensuring that X and Y have unit Fr�ehet marginal

distributions. Meanwhile, let's set G(x) := exp(�1=x) and note that the extremal index of (6) an

also be alulated as � = lim

u!1

�(u) for

�(u) : =

P[G(X) > u; G(Y ) > u℄

P[G(X) > u℄

=

1� P[G(X) � u℄� P[G(Y ) � u℄ + P[G(X) � u; G(Y ) � u℄

P[G(X) > u℄

=

1� 2u+ P[G(X) � u; G(Y ) � u℄

1� u

= 2�

1� P[G(X) � u; G(Y ) � u℄

1� u

= 2�

log P[G(X) � u; G(Y ) � u℄

log u

+O(1� u)
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sine log(1 � �) = �� + O(�

2

) for � � 0. With u = G(z), or z = �1= log u, we have P[G(X) �

u; G(Y ) � u℄ = P[X � z; Y � z℄ = G(z; z) = exp

�

� V (z; z)

�

so

�(u) � 2�

�V (z; z)

�1=z

= 2� zV (z; z)

and by (8) in the limit we have

� = 2� 2

Z

�

1

max(�

1

; �

2

)H(d�):

This will be zero if and only if max(�

1

; �

2

) is one on the support of H, i.e., if and only if H is

supported entirely on the boundary ��

1

= f(0; 1); (1; 0)g.

4.3 Poisson Connetion

Let H be a probability measure on �

1

satisfying (9), and onsider a Poisson random measure

N(dx dy) on the �rst quadrant whose intensity an be written 2H(d�)r

�2

dr in polar oordinates

r = x+ y, � = (x; y)=r. Let X

�

and Y

�

denote the maxima of the x and y oordinates of the mass

points of N(dx dy), respetively. For x; y > 0 the event that [X

�

� x; Y

�

� y℄ is just the event

that N assigns zero points to

�

[0; x℄� [0; y℄

�



. We an ompute this in polar oordinates as

P[X

�

� x; Y

�

� y℄ = exp

(

�

Z

�

[0;x℄�[0;y℄

�



2H(d�) r

�2

dr

)

= exp

(

�

Z

(r�

1

>x) k (r�

2

>y)

2H(d�) r

�2

dr

)

= exp

(

�

Z

r>min(x=�

1

;y=�

2

)

2H(d�) r

�2

dr

)

= exp

�

�

Z

�

1

2

min(x=�

1

; y=�

2

)

H(d�)

�

= exp

�

�2

Z

�

1

max

�

�

1

x

;

�

2

y

�

H(d�)

�

;

exatly the same as G(x; y) from (7). Thus for large n the extremes of the vetors f(X

j

=n; Y

j

=n)g,

1 � j � n behave like the extremes of a Poisson point loud with intensity measure 2H(d�)r

�2

dr.

In d � 2 dimensions the same things work, of ourse, with Poisson intensity measure dH(d�)r

�2

on R

d

+

= �

d�1

� R

+

.

Coles et al. (1999) also de�ne a seond index

�� := lim

z!1

2 log P[X > z℄

logP[X > z; Y > z℄

� 1;

taking values in the interval [�1; 1℄, whih depends on the minimum of X;Y in the tails; they argue

that it measures a degree of dependene for asymptotially independent variables (those for whih

� = 0). It vanishes for independent X;Y , and takes the value +1 for fully-dependent X � Y .
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A Appendix: A Few Less Familiar Distributions

Several distributions pop up when exploring extremes that are less studied than the usual suspets;

here we ollet a bit about them.

A.1 Pareto

If U � Un(0; 1) and � > 0, then X = U

�1=�

has the Pareto distribution taking all values in (1;1).

The survival funtion (SF) and density funtion (pdf) are

P[X > x℄ = P[U

�1=�

> x℄

= P[U < x

��

℄

= x

��

; x > 1

f(x) = �x

���1

1

fx>1g

:

This is the prototype \heavy-tailed" distribution, whose SF and pdf fall o� like powers of x (instead

of the exponential fall-o� typial of most ommonly-studied distributions). The mean is in�nite for

� � 1, and 1=(� � 1) <1 for � > 1; the variane in�nite for � � 2.

It is frequently taken to be part of a two-parameter sale family (Y := �X � Pa(�; �), taking all

values in (�;1)) and less ommonly part of a three-parameter loation/sale family.

A.2 Gumbel

If Y � Ex(1) is a standard exponential random variable, then X = � log Y has the standard Gumbel

distribution taking all values in R. The CDF and pdf are

P[X � x℄ = P[Y � e

�x

℄

= e

�e

�x

f(x) = e

�x�e

�x

and the mean is EX = 

e

� 0:5772, the Euler-MLaren onstant. Sine the mode is zero, the

distribution is skewed to the right; the tail probabilities fall o� exponentially as x!1, but muh

faster as x! �1. It is ommonly taken to be part of a two-parameter loation/sale family.

A.3 Fr�ehet

If Y � Ex(1) is a standard exponential random variable and � > 0, then X = Y

�1=�

has the

standard Fr�ehet distribution taking all values in R

+

. The CDF and pdf are

P[X � x℄ = P[Y � x

��

℄; x > 0

= e

�x

��

f(x) = �x

���1

e

�x

��

1

fx>0g

and the mean is EX = �(1 � 1=�) for � > 1, or in�nity for � � 1. The variane is in�nite for

� � 2. The mode (1 + 1=�)

�1=�

and median (log 2)

�1=�

are well-de�ned for all � > 0.
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This too is a heavy-tailed distribution, with SF and CDF falling o� at the same rates as the Pa(�).

It is ommonly taken to be part of a three-parameter loation/sale family.

A.4 Weibull

If Y � Ex(1) is a standard exponential random variable and � > 0 then X = Y

1=�

has the Weibull

distribution taking all values in R

+

. The SF and pdf are

P[X > x℄ = P[Y > x

�

℄; x > 0

= e

�x

�

f(x) = �x

��1

e

�x

�

1

fx>0g

and the mean EX = �(1 + 1=�) and variane are �nite for all � > 0.

It is ommonly taken to be part of a two-parameter sale family, with SF S(x) = exp(��x

�

) and

hene hazard funtion

h(x) = f(x)=S(x) =

��x

��1

exp (��x

�

)

exp (��x

�

)

1

fx>0g

= ��x

��1

1

fx>0g

;

a monomial in x that an be either inreasing (for � > 1) or dereasing (for � < 1) to model failure

times for systems with either inreasing or dereasing instantaneous hazard.

If X �We(�; 1) has the Weibull distribution then Z := �X has the reversed Weibull distribution,

with pdf

g(z) = �(�z)

��1

e

�(�z)

�

1

fz<0g

:

A.5 GEV

MFadden (1978) disovered that loation/sale families built on the Gumbel, Fr�ehet, and reversed

Weibull distribution were all speial ases of the Generalized Extreme Value distribution, with

onventional CDF parameterization given by:

G(x;�; �; �) = exp

(

�

�

1 + �

�

x� �

�

��

�1=�

)

(5)

for those x satisfying 1 + �(x� �)=� > 0, and pdf:

g(x;�; �; �) =

1

�

�

1 + �

�

x� �

�

��

�1�1=�

exp

(

�

�

1 + �

�

x� �

�

��

�1=�

)

:

Note the range of GEV depends on the sign of �: X 2 (���=�;1) for � > 0, X 2 R for � = 0, and

X 2 (�1; � � �=�) for � < 0. Evidently (5) is a loation/sale family built on a standard GEV

distribution (� = 0, � = 1) with CDF and pdf:

G(x; �) = exp

n

� (1 + �x)

�1=�

o

g(x; �) = [1 + �x℄

�1�1=�

exp

n

� (1 + �x)

�1=�

o

:
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The standard Gumbel, Fr�ehet, and reversed Weibull an eah be expressed in terms of G(x;�; �; �)

from (5):

Fr�ehet: exp (�x

��

) = G(x; � = 1; � =

1

�

; � =

1

�

); � > 0

Gumbel: exp (�e

�x

) = G(x; � = 0; � = 1; � = 0); �=0

Rev Weibull: exp (�(�x)

�

) = G(x; � = �1; � =

1

�

; � = �

1

�

); � < 0:

Note that if fX

i

g

iid

� GEV(�; �; �) then X

�

n

:= max

1�i�n

fX

i

g � GEV(�

�

; �

�

; �) for �

�

:= �+�(n

�

� 1)=�

and �

�

:= �n

�

, i.e., the maximum of the �rst n also has the GEV distribution with the same shape

parameter �, larger loation parameter �

�

> �, and sale �

�

that is larger (resp, smaller) than that

of X

i

if � > 0 (resp, � < 0). This property (that G(x;�; �; �)

n

= G(x;�

�

n

; �

�

n

; �) for some �

�

n

and

�

�

n

, for eah n 2 N) haraterizes the GEV, and is the basis for the Three Types theorem.

A.6 GPD

If X � GEV(�; �; �) for � > 0 with CDF

G(x;�; �; �) = exp

(

�

�

1 + �

�

x� �

�

��

�1=�

)

(5)

then for y > 0 the exeedanes Y = [X � u℄ of a high level u� �� �=� satisfy

P[Y > y j Y > 0℄ = P[X > y + u j X > u℄

=

1� exp

n

�

�

1 + �

�

y+u��

�

��

�1=�

o

1� exp

n

�

�

1 + �

�

u��

�

��

�1=�

o

�

�

1 + �

�

y+u��

�

��

�1=�

�

1 + �

�

u��

�

��

�1=�

=

�

� + � (y + u� �)

� + � ( u� �)

�

�1=�

= [1 + �y=�̂℄

�1=�

; w/ �̂ := � + � (u� �) :

This is the generalized Pareto distribution GPD(�; �̂), with CDF H(y) = 1 � [1 + �y=�̂℄

�1=�

+

for

y > 0 and mean

E[Y ℄ =

Z

1

0

�

H(y) dy = �̂=(1 � �); � < 1

(or in�nity if � � 1), so for 0 < � < 1 (i.e., the Fr�ehet ase with � > 1),

E[X � u j X > u℄ �

� � ��

1� �

+

�

1� �

u =

�

1� �

+

�

1� �

(u� �)

is linear in u with a slope that determines �. The variane of the GPD is also available in losed

form, in�nite for � �

1

2

and, for 0 < � <

1

2

,

V[X j X > u℄ = V[Y ℄ =

�̂

2

(1� �)

2

(1� 2�)

=

E[Y ℄

2

1� 2�

:

18



For 0 < � < 1, when X has a Fr�ehet distribution, the GPD is a saled (by �=�̂) and o�set (to

zero) version of the ordinary Pareto distribution. It has the interesting property that, for any v > 0

and y > 0,

P[Y > y + v j Y > v℄ =

[1 + �(y + v)=�̂℄

�1=�

[1 + �(v)=�̂℄

�1=�

=

�

�̂ + �v + �y

�̂ + �v

�

�1=�

= [1 + �y=�̂

0

℄

�1=�

; �̂

0

:= �̂ + �v;

i.e., the onditional distribution of (Y � v) given [Y > v℄ is again GPD(�; �̂

0

).

This is the key to estimating the shape � and threshold u

0

above whih extremes are modeled

suÆiently well by the GPD, a blak art. A plot of the empirial \Mean Residual Life" (MRL) Y :=

(X�u), plotted against u, should be approximately linear above some threshold u

0

. Unfortunately

the variation around that line gets wider and wider with inreasing u (beause the MRL is estimated

on the basis of fewer and fewer extreme events as u inreases). The variane and mean alulations

above should make it possible to generate error bars.

A ommon estimator of � � 1=� in the Fr�ehet ase is \Hill's Index" (Hill, 1975). Let

�

X

(i)

	

be

the order statistis (with X

(1)

the largest) for an iid sample of n 2 N observations fX

j

g and, for

eah 1 � k � n, set

H

X

k;n

:=

1

k

k

X

i=1

log

X

(i)

X

(k+1)

:

This is just the MLE based on the observations that exeed an order statisti. Resnik and St�ari�a

(1998) showed it to be onsistent as k !1 and n=k !1, even for many dependent sequenes.
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