
STA 711: Probability & Measure Theory
Robert L. Wolpert

Housekeeping Details

• Introduction

• Lec: Mon/Wed 1:25–2:40pm, in 127 Sociology/Psychology Building

• My OH: Mon 3:30–5:00pm, in 211c Old Chem

• TA OH: Tue 6:00–8:00pm, in 203 Old Chem

• Class Website: stat.duke.edu/courses/Fall18/sta711/

Some lectures & midterms will probably change, due to confs & trips.

• HW: Approx 6–10 probs/week; expect to spend 5–10 hrs a week on homework.
Due each Wed starting 2018-09-05 (9 days from today); returned following Mon.
BE NEAT. Consider LATEX. Collaborating is encouraged but DON’T COPY.
Seriously, you won’t pass the exams if you don’t write up your own homework solutions.

• Text: Comments welcome. Available on-line. Other texts listed on class web page.

• Suggested work-flow: Read the chapter, do the problems, talk about them with each
other, ask questions in class or office-hours. Solve problems on scratch paper; write
up clear concise solutions to turn in. Homework and exam scores are based on your
success in communicating a correct answer. A correct but obscure or muddled
solution will lose points.

• My role is not to spoon-feed you the textbook, but rather to add perspective, illustrate
and illuminate ideas, offer examples, and help show how the ideas and tools are useful
in the theory and application of (especially Bayesian) statistics. In particular, to solve
some homework problems you may need to learn things covered in the book but not in
lecture and vice versa (but exams will not require material not covered in the lectures).

0 Prologue

This is mostly a course about random variables— how to find probabilities they take par-
ticular values, or values in certain ranges; how to find their “expectations” (whatever that
means), and especially how to find properties of the limits of sequences of random variables,
and just what it means for sequences to have limits. That turns out to be a very interesting
question, with several different answers leading to a rich circle of ideas. You’ll also learn a
whole new way of thinking about conditional probabilities and distributions.
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But, before we can do much with random variables, we need to build some background.
The first two weeks or so of the course will be more abstract and technical than most of
what follows. Some people find it hard and frustrating at first, but it gets easier as you
become more familiar with the arguments and approaches we need to take. It’s worth it—
lots of what you’ll do as a Statistician or Economist or Physicist or whatever you want to
become will involve thinking carefully about limits of random variables and about conditional
probabilities at a depth impossible without this material.

1 Sets and Events

1.1 Motivation

Most students enrolled in this course will have taken an undergraduate calculus-based course
in probability theory like Duke’s MTH230 = STA230 or MTH340. Such a course teaches
about discrete and continuous random variables and their distributions, joint distributions of
2 or 3 RVs, a little about conditional probability and conditional distributions. Most things
are done twice: first for discrete RVs (binomial, geometric, Poisson), using sums; and then
again a second time for continuous RVs (uniform, normal, exponential), using integrals.

This course instead builds a single coherent (beautiful) structure for one, two, or even
infinitely-many random variables that are discrete or continuous or neither. We will be
especially concerned with limits of sequences of random variables (we will see there are
many sorts of limits to consider) and with conditional distributions, given the values of one
or many or even infinitely-many other random variables or events.

A recurring theme is application within Bayesian statistics— which we view as simply
probability theory on a grand scale, building a joint probability model for all the things
we don’t know. These might include both the values of parameters (like the probability p
of success for a subject in a clinical trial of an experimental drug) and observable quan-
tities that we may not yet have observed (for example, the number X of successes in the
trial of N subjects). The object is usually to make deductions about the CONDITIONAL
DISTRIBUTION of the things we care about, given the things we have observed... like
P[ X ≥ 8 | p = 0.5, N = 10 ], for predicting outcomes of a future experiment for known
value 0.5 of the parameter p, or P[ p > 0.5 | X = 8, N = 10 ], for making inference about an
unknown parameter p after observing the outcome X = 8 successes among N = 10 subjects.

1.2 Notation and Basic Mathematical Set-Up

• Ω: Set of possible outcomes of some “experiment”

• ω: One of the outcomes in Ω
[Idea: nature or fate chooses an ω from Ω; alas she doesn’t tell us which one. We just
get hints from observing random variables X(ω), Y (ω), ... or events A, B, ...]

Page 2Page 2Page 2



STA 711 Week 1 R L WolpertSTA 711 Week 1 R L WolpertSTA 711 Week 1 R L Wolpert

• A, B, C: Subsets of Ω; A is “true” if nature’s ω ∈ A; otherwise ω ∈ Ac and “not-A” is
true. Usually UC letters in first half of alphabet, A–M or so.

• Y X : All functions from a set X to a set Y . Special cases:

– 2Ω: All subsets {A : A ⊆ Ω} of Ω (“Power set”, often denoted by a spiky P(Ω))
=

{

f : Ω → {0, 1}
}

. The function f is called the indicator of the set A =
{ω : f(ω) = 1} = f−1(1), and in this class will be denoted f = 1A.

– Ω2: All ordered pairs (ω1, ω2) =
{

f : {1, 2} → Ω
}

• P[ ]: Probability assignment of numbers P[A] ≥ 0 to some (maybe not all) subsets A
of Ω. The need to limit P[ ] to just some “events” and not the entire power set 2Ω is
an important distinction of graduate level or “measure theoretic” probability.

• A, B, C: Certain collections (“classes”) of sets (typ. 1st half of A–Z, in SCRIPT
font).

• X, Y, Z: Random variables, functions X : Ω → E, usually to a vector space E (often
R or Rn). Mostly 2nd half of A–Z, sometimes LC Greek letters too.

• E[X]: Expectation of SOME (not all!!!) random variables X (why not all?)

• { } “Slash Oh” (∅) is empty set, not the Greek letter φ (or ϕ) or the Scandinavian ø.

• ω ∈ A: Inclusion (“element of”). ∈ is not the Greek letter ǫ (or ε).

• A ⊂ B: Subset: means (∀ω ∈ A) ω ∈ B. Same as A ⇒ B and A ⊆ B.

• R := (−∞, ∞), R+ := (0, ∞), R− := (−∞, 0), R̄ := [−∞, ∞]; C := {a+b i} with a, b ∈
R and i :=

√
−1; N := {1, 2, · · · }; N0 := {0, 1, 2, · · · }; Z := {..., −3, −2, −1, 0, 1, 2, · · · };

Q := { i
n

: i ∈ Z, n ∈ N}, the rationals; Q2 := {i/2n : i, n ∈ Z}, the dyadic rationals.
The notation “:=” means is defined to be.

• ⌊x⌋ := max{n ∈ Z : n ≤ x}; ⌈x⌉ := min{n ∈ Z : n ≥ x}; ⌊π⌋ = 3 = ⌊3⌋ = ⌈3⌉.

1.3 Four Big Ideas in Probability

1. LLN (Law of Large Numbers):
If {Xi} are Independent Identically-Distributed (IID) RVs with same mean µ = E[Xi],
and partial sums Sn :=

∑

i≤n Xi and sample mean X̄n := Sn/n, then X̄n → µ or,
equivalently,

Sn − nµ

n
→ 0

[ what does it mean for a sequence random variables like X̄n := 1
n
Sn to “converge”

to a constant µ or to a random variable Y ??? Or to be independent or identically
distributed? ]
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2. CLT (Central Limit Theorem):
If {Xi} are IID with same mean µ = E[Xi] ∈ R and variance σ2 := E[(Xi − µ)2] < ∞,
and partial sums Sn :=

∑

i≤n Xi, then
√

n(X̄n − µ) ⇒ No(0, σ2) or, equivalently,

Zn :=
Sn − nµ√

nσ2
⇒ No(0, 1)

[ what does it mean for a sequence of distributions to converge?? ]

[ what happens if {Xi} don’t have finite variances or means? ]

3. LIL (Law of the Iterated Logarithm):
If {Xi} are IID with same mean µ := E[Xi] ∈ R and variance σ2 := E[(Xi − µ)2] < ∞,
and partial sums Sn :=

∑

i≤n Xi, then

lim sup
n

Sn − nµ
√

2nσ2 log log n
= 1

[ what is the “lim sup” of a sequence of random variables? ]
Note all three of LLN, CLT, LIL describe the convergence of expressions of the form
[Sn −nµ]/g(n) as n → ∞, for functions g(n) that increase at different rates. The num-
ber of protons in the observable universe, called the “Eddington number,” is estimated
to be about 1080. Its iterated logarithm is about log log 1080 ≈ 5.216.

4. MCT (Martingale Convergence Theorem):
If Xn is “conditionally constant” in the sense that for every k ≥ 0 and n ,

Xn = E[Xn+k | X1, . . . , Xn],

then under some conditions (what conditions? why are they needed?), there exists
some limiting random variable X∞ such that

Xn → X∞

(what does “→” mean here?) and, for some random times σ ≤ τ
(which ones? why just them?), also

E[Xτ | Info up to time σ] = Xσ

[ what does it mean to find expectation “given” some “info” ? What is “info”? ]

1.4 Set Operations & Logical Operations

• Complement: Ac = “not A” = {ω ∈ Ω : ω /∈ A}
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• Union over arbitrary index set:
⋃

α

Aα = {ω : ω ∈ Aα for at least one α}

A ∪ B = “A or B (or perhaps both)”

[ Later we’ll see it sometimes matters if the index set has finitely-many, countably-
many, or uncountably-many elements; this definition works for all those cases ]

• Intersection over arbitrary index set:
⋂

α

Aα = {ω : ω ∈ Aα for all α}

A ∩ B = AB = “both A and B”

• Set difference: Those ω ∈ Ω in A but not in B:

A\B = A ∩ Bc

• Symmetric difference:

A∆B = (A\B) ∪ (B\A)

= (A ∪ B)\(A ∩ B)

= “in exactly one of A, B”

• Relations:

– containment: A ⊂ B : “A implies B” (A ∩ B = A)

– disjoint: A ∩ B = ∅: “A, B mutually exclusive”

– equality: A = B: “A if-and-only-if B”

• De Morgan’s Laws:
(

⋃

α

Aα

)c

=
⋂

α

(

Ac
α

)

(

⋂

α

Aα

)c

=
⋃

α

(

Ac
α

)

• Countable 6= Infinite ( Cantor arg if time allows; note c = 2ℵ0 > ℵ0 )

• Define injection, cardinality: #A ≤ #B if exists 1:1 φ : A →֒ B (not necessarily a
surjection— i.e., into but maybe not onto.)

• State (#A ≤ #B) ∩ (#B ≤ #A) ⇒ (#A = #B), i.e., #A ≤ #B and #B ≤ #A
implies there exists 1:1 invertible mapping φ : A ↔ B

• Convention:
“i, j, n” (Latin) subscripts → countable union/intersection/sum/...
“α, β, γ” (Greek) subscripts → arbitrary (could be uncountable)
“Countable” means finite or countably infinite.
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2 Sets, convergence of sequences of sets, fields

2.1 Convergence

Let {An} ⊂ F be a countable collection of events. In addition to their countable union ∪nAn

and intersection ∩nAn, two other combinations of {An} arise frequently enough to have their
own names and notations:

lim inf An = All but finitely-many = union of intersections =
⋃

n

⋂

m≥n

Am

lim sup An = Infinitely-many = intersection of unions =
⋂

n

⋃

m≥n

Am

Always (lim inf) ⊂ (lim sup) (why?); sometimes, but not always, they coincide.
Some examples, with Ω = N:

An = n, n + 1, ... lim sup An = ∅, lim inf An = ∅
An = 1, 2, ..., n lim sup An = N, lim inf An = N

A2n = Evens, A2n+1 = Odds : lim sup An = N, lim inf An = ∅
The terms “lim sup” and “lim inf” are also the names of operations on sequences of

numbers or real-valued functions {an}:

lim inf
n→∞

an := sup
n→∞

[

inf
m≥n

am

]

= lim
n→∞

[

inf
m≥n

am

]

lim sup
n→∞

an := inf
n→∞

[

sup
m≥n

am

]

= lim
n→∞

[

sup
m≥n

am

]

Always lim inf an ≤ lim sup an (why?). The lim inf and lim sup coincide if and only if the
sequence {an} converges, and in that case their common value is limn→∞ an.

The set-based and numerical meanings of lim inf and lim sup are related, of course. Let
{An} ⊂ F be a collection of events and let an := 1{An} be their indicator functions, equal to
one for ω ∈ An and zero elsewhere. Then

lim inf
n→∞

1{An} = sup
n<∞

inf
m≥n

1{Am} = sup
n<∞

1{∩m≥nAm} = 1{∪n<∞∩m≥nAm} = 1{lim infn→∞ Am}

lim sup
n→∞

1{An} = inf
n<∞

sup
m≥n

1{Am} = inf
n<∞

1{∪m≥nAm} = 1{∩n<∞∪m≥nAm} = 1{lim sup
n→∞ Am}

Thus, the lim sup and lim inf of indicator functions of events are the indicators of the lim sups
and lim infs of those events, respectively. The event that a sequence Xn of functions on Ω
converges (pointwise) to a limiting function X is:

{ω : Xn(ω) → X(ω)} = {ω : lim sup
n→∞

|Xn(ω) − X(ω)| = 0}

=
⋂

k<∞

⋃

n<∞

⋂

m≥n

{ω : |Xm(ω) − X(ω)| < 1/k}
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or, with the limit unspecified, the Cauchy criterion give

{ω : Xn(ω) converges} = {ω : lim sup
n→∞

Xn(ω) − lim inf
n→∞

Xn(ω) = 0}

=
⋂

k<∞

⋃

n<∞

⋂

m≥n

{ω : |Xn(ω) − Xm(ω)| < 1/k}.

In general it does not make sense to talk about limits of sets or events {An}, unless they are
nested.

2.2 Fields and σ-Fields

Not every subset A of Ω will be an “event” whose probability is well-defined, if Ω is uncount-
able, but we will need to show that some specific sets are events, and that some combinations
of events (like unions A ∪ B) will generate events. Here are some tools to help us do that.
Think of A in this section as “the collection of subsets A ⊂ Ω to which we can assign a
probability P[A]”.

A collection A of subsets of Ω is a field if:

F1: Ω ∈ A

F2: A is closed under complementation, i.e., A ∈ A ⇒ Ac ∈ A

F3: A is closed under finite unions, i.e., A, B ∈ A ⇒ A ∪ B ∈ A.

By mathematical induction, F3 implies A is closed under all finite unions. Together F2 and
F3 imply that A is also closed under finite intersections (why?). Finite intersections won’t
be enough to guarantee that sets like “Xn converges” will be events, and F3 does not imply
that countable unions are included in A. For that we need stronger hypotheses:

A collection of subsets A of Ω is a σ-field (or σ-algebra or Borel field) if it satisfies the
stronger conditions

σ1: Ω ∈ A

σ2: A is closed under complementation, i.e., A ∈ A ⇒ Ac ∈ A

σ3: A is closed under countable unions, i.e., {Ai} ⊂ A ⇒ ∪∞
i=1Ai ∈ A.

Evidently every σ-field is also a field, but the converse is false. For example, for any infinite
set Ω the collection A = { Finite and co-finite sets } is a field but not a σ-field. Note also
that the condition is only on countable unions, and that closure may fail for arbitrary unions.
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2.3 Probability Assignments

Probabilities are numbers between zero and one intended to quantify “how likely” events are
to occur. Three classical interpretations of probability are:

Symmetry: If exactly one of k ∈ N different events Ai will occur, and if each is as likely as
another, then P[Ai] = 1/k for each. For example, the probability of rolling 11 with a
pair of fair dice is 2/36 = 1/18 ≈ 0.0556; the probability of drawing two queens in a
row from a well-shuffled deck of 52 cards is

(

4

2

)

/
(

52

2

)

= 1/221 ≈ 0.04525.

Frequency: If an event A may be replicated independently over and over, then P[A] =
limn→∞

1
n
#{Times A occurs in n tries}.

Degree of Belief: If you are indifferent between a “game” in which you win $1 if A occurs
and zero if not, and a game in which you win $1 if a blue ball is drawn from a well-
mixed urn containing 100p% blue balls and the rest white ones, then your (subjective)
probability of A is p.

These are listed in increasing order of applicability— the first applies only to events governed
by symmetry (so “heads or tails” might count but “rain or shine” wouldn’t), while the second
applies only to events that could (in principle) be replicated indefinitely (so “green smooth
peas from a cross of yellow smooth and green smooth” would count, but “Duke beats Carolina
in football this year” wouldn’t). They agree in situations where they all apply. In each case
they satisfy some “rules”, like P(Ω) = 1 and 0 ≤ P[A] ≤ 1 and P[A ∪ B] = P[A] + P[B] if
A ∩ B = ∅. Let’s codify the rules and start looking at their consequences.

Probability Spaces

A Probability Space is a triplet (Ω, F , P) of a nonempty set Ω, a σ-field F ⊂ 2Ω, and a
probability measure P : F → R with the three properties:

P1:
(

∀A ∈ F
)

P(A) ≥ 0

P2: P(Ω) = 1

P3: σ-additive1, i.e., if {Ai} ⊂ F are disjoint then

P

(

⋃

i

Ai

)

=
∑

i

P(Ai).

Other important kinds of (non-Probability) measures P include:

1It’s obvious we’ll want finite additivity, so P[A∪B] = P[A]+P[B] for disjoint A, B, but less obvious we’ll
want countable additivity. We’ll need that to make any strong statements about limits of random variables.
If we’re ready to assume finite additivity, then the further assumption of countable additivity is equivalent
to “continuity”, to the assertion that if Bn+1 ⊂ Bn and ∩nBn = ∅ then P[Bn] → 0.
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• Finite positive measure: replace P2 with: P(Ω) < ∞;

• σ-finite positive measure: replace P2 with: Ω =
⋃

i Ai for some countable collection
{Ai} ⊂ F with each P(Ai) < ∞.

• Signed measure: replace P1 with: P(A) ∈ R, replace P2 with2: Ω =
⋃

i Ai, for some
countable collection of sets Ai ∈ F with |P(Ai)| < ∞

• Complex measure: replace P1 with: P(A) ∈ C, replace P2 with: Ω =
⋃

i Ai, for some
countable collection of sets Ai ∈ F with |P(Ai)| < ∞

Properties of Measures

• Inclusion/Exclusion rule: P[A ∪ B] = P[A] + P[B] − P[A ∩ B]. More generally, for
finitely many (say, n) sets {Ai},

P
(

∪Ai

)

=
∑

i

P(Ai)−
∑

i<j

P(Ai ∩Aj)+
∑

i<j<k

P(Ai ∩Aj ∩Ak)+ · · ·±P(A1 ∩A2 ∩ . . . An).

• Subadditivity:

P
(

∪ Ai

)

≤
∑

i

P(Ai) (even if not disjoint)

• Continuity:

An ⊂ An+1 ⇒ P
(

∪ An) = lim P(An) = sup P(An)

Bn ⊃ Bn+1 ⇒ P
(

∩ Bn) = lim P(Bn) = inf P(Bn)

• Fatou’s Lemma: E[lim inf Xn] ≤ lim inf E[Xn], so (with Xn = 1An
),

P(lim inf An) ≤ lim inf P(An) ≤ lim sup P(An) ≤ P(lim sup An)

• Distribution Functions (DFs): For Ω ⊂ R, the function F (x) := P{(−∞, x]} satisfies

– x < y ⇒ F (x) ≤ F (y);

– F (x) = F (x+) := lim{F (y) : y ց x};

– F (−∞) := lim{F (x) : x ց −∞} = 0, F (∞) := lim{F (x) : x ր ∞} = 1.

and, for −∞ < a < b < ∞, P(a, b] = F (b) − F (a).

2This is a bit of a simplification. What is actually needed is |P|(Ai) < ∞, where |P|(A) is the σ-finite
measure defined by |P|(A) := sup

B∈F {|P(A ∩ B)| + |P(A ∩ Bc|} < ∞. Something similar is needed for
complex measures below.
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Three special cases admit simple Probability Measure constructions:

i: Discrete: Countable Ω = {ωi}, sequence pi ≥ 0 with
∑

i pi = 1, and F = 2Ω ;

ii: Continuous: Ω ⊆ Rn: P[A] =
∫

A
f(x) dx for some f(x) ≥ 0 with

∫

R
f(x) dx = 1;

iii: General 1-d: Set P(−∞, b] := F (b) on P :=
{

(−∞, b], b ∈ R
}

, for some DF F (x),
extend somehow to B = σ(P). We’ll see how next week!

Sketch some counter-examples to illustrate what can go wrong when the rules are violated—
e.g., try to make uniform distribution on integers or Lebesgue on rationals.

Subjectivists and Dutch Books

Some theorists (Bruno de Finetti was an early champion) feel strongly that the “probability”
of an event A is merely a quantification of a particular individual’s degree of belief in A, at
a particular time, under a particular set of assumptions and beliefs— and deny that there is
any objective way to specify a probability that would apply to all individuals. They regard
the “probability” P[A] of an event as the amount of money p such that the individual would
be indifferent between receiving $p, or receiving a lottery ticket worth $1 if A occurs and $0
if it does not. Although in principal such an individual might report subjective probability
assignments that violate rules P1, P2, P3, or that fail to respect the asymptotic frequency of
repeated similar (“exchangeable”) events, to do so would make him or her vulnerable to a
“Dutch book” attack, in which s/he is offered a set of bets which together force a sure loss,
regardless of which events do or do not occur.

Suppose, for example, that the individual reports probability p = P[Ω] 6= 1, violating
rule P2. If p < 1, we buy from him for $p a $1 lottery ticket that Ω occurs; when it does
(and it always will) occur, he must pay us $1 for net loss of $(1 − p). Similarly if p > 1 we
sell him a similar ticket and he loses $(p − 1) each turn. Repeated indefinitely, this “money
pump” will bankrupt him.

Similarly, if his probabities p = P[A] and q = P[Ac] fail to sum to one, then buying both
a ticket for A (for $p) and a ticket for Ac (for $q) will net us $(1 − p − q) each turn, if
p + q < 1. Thus necessarily P[A] + P[Ac] = 1 for a non-bankrupt individual and every A.
Similarly, for disjoint events A and B, necessarily P[A ∪ B] = P[A] + P[B]— just buy tickets
for A, B, and (A ∪ B)c for $p = P[A], $q = P[B], and $(1 − r) = P[(A ∪ B)c] = 1 − P[A ∪ B],
respectively, if p + q < r, for a sure profit of $(r − p − q).

Each of the “laws” P1, P2, P3 of probability is seen in this view as a common feature of
individuals who have not been driven bankrupt by a Dutch Book seller (Dutch bookie?).
One fine point— only finite additivity can be forced in this way, so many subjectivists try to
avoid using countable additivity. We, however, will find countable additivity critical when
examining limits, so in this class we won’t look further at what happens under the weaker
axioms of finite additivity. Ask me for references if you’re interested in that.

Last edited: August 30, 2018
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