
STA 711: Probability & Measure Theory
Robert L. Wolpert

4 Expectation & the Lebesgue Theorems

If we could repeatedly draw independent replicates {X1, X2, . . . }, all with the same distri-
bution µX , how would the sample average

X̄n :=
1

n

[

X1 + · · · + Xn

]

behave, as a function of n? Would it converge? What about sample averages of a Borel
function g(Xj)?

If Xj can take only finitely-many values a1, . . . , ak with probabilities p1, . . . , pk, the answer
is simple. By the frequency interpretation of probability, a large number n of replicates will
include about n p1 outcomes a1, n p2 outcomes a2, and so forth, so the sum Sn :=

∑n
j=1 Xj

will be about
Sn ≈ n p1 a1 + n p2 a2 + · · · + n pk ak

and so, dividing by n, the sample average will be about

X̄n =
1

n
Sn ≈

k
∑

j=1

pj aj =

∫

R

x µX(dx).

Below we will take this to be the definition of the “expectation” of X, and will denote it by
E[X]. Similarly, sample averages of g(X) will converge to

E
[

g(X)
]

=
k

∑

j=1

pj g(aj) =

∫

R

g(x) µX(dx). (1)

Things can go sideways if X can take on infinitely-many values, however. For example, if

P[X = x] = (1/2)x+1 for x ∈ N0 = {0, 1, 2, . . . }

(so X ∼ Ge(1
2
)) then (1) suggests that Y := 2X has expectation

E
[

2X
]

=

∞
∑

x=0

2−x−1 2x

=

∞
∑

x=0

(1/2) = ∞,

while that of Z := (−2)x

E
[

(−2)X
]

=

∞
∑

x=0

(−2)−x−1 2x = −
∞

∑

x=0

(1/2)(−1)x = 1
2

− 1
2

+ 1
2

− 1
2

+ 1
2

− 1
2

+ 1
2

. . .

isn’t even well-defined. Clearly we have some work to do.
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Motivation: Limits

Let X and {Xn : n ∈ N} be random variables on the same probability space (Ω, F , P). If
Xn(ω) → X(ω) for each ω ∈ Ω, does it follow that E[Xn] → E[X]? That is, may we exchange
expectation and limits in the equation

lim
n→∞

E [Xn]
?
= E

[

lim
n→∞

Xn

]

? (2)

In general, the answer is no. For a simple example take Ω = (0, 1], the unit interval, with
Borel sets F = B(Ω) and Lebesgue measure P = λ, and for n ∈ N set

Xn(ω) := 2n 1(0,2−n](ω). (3)

For each ω ∈ Ω, Xn(ω) = 0 for all n > log2(1/ω), so Xn(ω) → 0 as n → ∞ for every ω, but
E[Xn] = 1 for all n.

We will want to find conditions that allow us to compute expectations by taking lim-
its, i.e., to force equality in Eqn (2). The two most famous of these conditions are both
attributed to Henri Lebesgue (1875–1941): the Monotone Convergence Theorem (MCT)
and the Dominated Convergence Theorem (DCT). We will see stronger results later in the
course— but let’s look at these two now. First, we have to define “expectation.”

4.1 Definition of Expectation

Let E be the linear space of real-valued F -measurable random variables taking only finitely-
many values (these are called simple), and let E+ be the positive members of E . Each X ∈ E
may be represented in the form

X(ω) =

k
∑

j=1

aj1Aj
(ω) (4)

for some k ∈ N, {aj} ⊂ R and {Aj} ⊂ F . The representation is unique if we insist that
the {aj} be distinct and that the {Aj} form a partition— i.e., be disjoint with Ω = ∪jAj

(why?)— in which case X ∈ E+ if and only if each aj ≥ 0. In general we will not need
uniqueness of the representation, so don’t demand that the {aj} be distinct nor that the
{Aj} be disjoint.

If we could draw millions of replicates of the random variable X of (4), what would their
average be? In a large number n of replicates we would expect to see each outcome X = aj

about nP[Aj ] of the n times, so the average of the n outcomes should be about

1

n

n
∑

i=1

Xi ≈

∑k
j=1 aj n P[Aj ]

n
=

k
∑

j=1

aj P[Aj ].

We now define the expectation for simple random variables in the obvious way:
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EX :=
k

∑

j=1

ajP[Aj ].

For this to be a “definition” we must verify that the right-hand side doesn’t depend on the
(non-unique) representation. That’s easy— you should do it.

Now we extend the definition of expectation to all non-negative F -measurable random
variables as follows:

Definition 1 The expectation of any nonnegative random variable Y ≥ 0 on (Ω, F , P) is

EY := sup {EX : X ∈ E+, X ≤ Y } .

Note 0 ≤ EY ≤ ∞ for Y ≥ 0. The expectation can be evaluated using:

Proposition 1
EY = lim

n→∞
EXn

for any simple sequence Xn ∈ E+ such that Xn(ω) ր Y (ω) for each ω ∈ Ω.

Proof. First let’s check that such a sequence of simple random variables exists and that
the limit makes sense. In a homework exercise you’re asked to prove that

Xn := min
(

2n, 2−n⌊2nY ⌋
)

is simple and nonnegative, and increases monotonically to Y . Thus at least one such sequence
exists.

By monotonicity the expectations E[Xn] are increasing, so lim E[Xn] = sup E[Xn] ≤ ∞ is
just their least upper bound and always exists in the extended positive reals R̄+ = [0, ∞].
Now let’s show that EXn for any such sequence converges to EY (note EY may be infinite).

Fix any λ < EY and any ǫ > 0. By the definition of EY , find X∗ ∈ E+ with X∗ ≤ Y
and EX∗ ≥ λ. Since X∗ ∈ E takes only finitely many values, it must be bounded for all ω
by 0 ≤ X∗ ≤ B for some 0 < B < ∞. Because Xn ≤ Xn+1 and Xn(ω) → Y (ω) ≥ X∗(ω) as
n → ∞ for each ω ∈ Ω, the events

An := {ω : Xn(ω) < X∗(ω) − ǫ}

are decreasing (i.e., An ⊃ An+1) with empty intersection ∩An = ∅, so P[An] → 0. Fix Nǫ

large enough that P[An] ≤ ǫ/B for all n ≥ Nǫ. Then for n ≥ Nǫ,

EXn = EX∗ − ǫ + E(Xn − X∗ + ǫ)

= EX∗ − ǫ + E(Xn − X∗ + ǫ)1An
+ E(Xn − X∗ + ǫ)1Ac

n

≥ EX∗ − ǫ + E(Xn − X∗ + ǫ)1An

Page 3Page 3Page 3



STA 711 Week 4 R L WolpertSTA 711 Week 4 R L WolpertSTA 711 Week 4 R L Wolpert

since (Xn − X∗ + ǫ) ≥ 0 on Ac
n. Since (Xn + ǫ)1An

≥ 0,

≥ EX∗ − ǫ − EX∗1An
.

Since X∗ ≤ B, EX∗1An
≤ BP[An] ≤ ǫ and so, for all n ≥ Nǫ,

EXn ≥ EX∗ − ǫ − B P[An] ≥ EX∗ − 2ǫ ≥ λ − 2ǫ.

Thus supn EXn ≥ λ − 2ǫ for every ǫ > 0 and λ < EY , so supn EXn ≥ EY .

Since each Xn ≤ Y , also supn EXn ≤ EY , proving that limn EXn = supn EXn = EY .

Now that we have EX well-defined for random variables X ≥ 0 we may extend the
definition of expectation to all (not necessarily non-negative) RVs X by

EX := EX+ − EX−

as long as either of the nonnegative random variables X+ := (X ∨ 0), X− := (−X ∨ 0) has
finite expectation. If both EX+ and EX− are infinite, we must leave EX undefined. If both
are finite, call X integrable and note that

∣

∣EX
∣

∣ ≤ EX+ + EX− = E|X|.

4.1.1 Examples

Let Ω = N0 := {0, 1, . . . } with F = 2Ω and probability measure determined by

P[{ω}] = 2−ω−1, ω ∈ Ω.

The random variable ζ(ω) = ω has the geometric distribution ζ ∼ Ge(1/2) with P[ζ = n] =
2−n−1, but we’ll be interested in the random variables

Y (ω) := 2ω and Xn := Y 1{ω<n}.

Then Y ≥ 0 and Xn ∈ E+ with Xn ր Y as n → ∞, so

EXn =
n−1
∑

ω=0

2ω
P[{ω}] = n/2,

and, by Prop. 1,

EY = lim
n→∞

EXn = ∞.

The distribution of Y has a colorful history. Known as the St. Petersburg Paradox, it led to
the invention of idea of “utility” in decision theory. The random variable Z(ω) := (−2)ω is
well-defined and finite, but does not have an expectation because EZ+ = EZ− = ∞.
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4.1.2 Properties of Expectation

Expectation is a linear operation in the sense that, if a1, a2 ∈ R are two constants and X1, X2

are two random variables on (Ω, F , P), then

E[a1X1 + a2X2] = a1E[X1] + a2E[X2]

provided the right-hand side is well-defined (not of the form ∞ − ∞). It follows that expec-
tation respects monotonicity, in the sense that X1 ≤ X2 ⇒ E[X1] ≤ E[X2] and, as special
cases, that

∣

∣E[X]
∣

∣ ≤ E
[

|X|
]

and X ≥ 0 ⇒ E[X] ≥ 0. We will encounter many more identities
and inequalities for expectations in Section (5).

Expectation is unaffected by changes on null-sets— if P[X 6= Y ] = 0, then EX = EY .
How would you prove this?

4.1.3 A Small Extension

The definition of expectation extends without change to random variables X that take values
in the extended real numbers R̄ := [−∞, ∞]. Obviously EX = +∞ if P[X = +∞] > 0 and
P[X = −∞] = 0, EX = −∞ if P[X = +∞] = 0 and P[X = −∞] > 0, and EX is undefined
if both P[X = +∞] > 0 and P[X = −∞] > 0. Otherwise, if P[|X| = ∞] = 0, then X (and
any function of X) have the same expectation as if X were replaced by the real-valued RV
X∗ defined to be X(ω) when |X(ω)| < ∞ and otherwise zero, since then P[X 6= X∗] = 0.

With this extension, we can always consider the expectations of quantities like lim sup Xn

and lim inf Xn, which might take on the values ±∞ for some RV sequences {Xn}.

4.1.4 Lebesgue Summability Counterexample

Does the alternating sum

1 −
1

2
+

1

3
−

1

4
+ · · · =

∑

k∈N

(−1)k+1

k
(5)

converge? Let’s look closely— the answer depends on what you mean by “converge.” First,
define

S(n) =

n
∑

k=1

k−1 log(n) =

∫ n

1

x−1 dx.

By summing

k < x < k + 1 ⇒
1

k + 1
<

1

x
<

1

k
⇒

1

k + 1
<

∫ k+1

k

x−1dx <
1

k
,

from k = 1 to n − 1, and from k = 2 to n, note that for all n ∈ N

log(n + 1) < S(n) ≤ log(n) + 1.
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Thus the harmonic series S(n) =
∑n

k=1 k−1 ≍ log n. In fact [S(n) − log n] converges as
n → ∞ to a finite limit, the Euler-Mascheroni constant γe ≈ 0.577215665.

Thus in the Lebesgue sense, the alternating series of Eqn (5) does not converge, since its
negative and positive parts1

S−(n) :=

n/2
∑

j=1

1

2j
S+(n) :=

n/2
∑

j=1

1

2j − 1

=
1

2
S(n/2) = S(n) −

1

2
S(n/2)

=
1

2
[log(n/2) + γe] + o(1) =

1

2
[log(2 n) + γe] + o(1)

each approach ∞ as n → ∞. Notice however that the even partial sums are

2n
∑

k=1

(−1)k+1

k
=

(

1

1
−

1

2

)

+

(

1

3
−

1

4

)

+

(

1

5
−

1

6

)

+ · · · =
n

∑

j=1

1

(2j − 1)(2j)
,

bounded above by π2/8 for all n (why?), making the example interesting. More precisely,
the difference

n
∑

k=1

(−1)k+1

k
= S+(n) − S−(n) =

1

2

[

log(2 n) − log(n/2)
]

+ o(1)

converges to log 2 as n → ∞. What do you think happens with
∑n

k=1 ξk/n, for independent
random variables ξk = ±1 with probability 1/2 each?

To tie this into our presentation of expectation, let (Ω, F , P) be the natural numbers
Ω = N with the power set F = 2Ω and probability measure P[{ω}] = 2−ω, and set X(ω) :=
−(−2)ω/ω. Then

“EX” =
∑

ω∈Ω

X(ω)P({ω}) = 1 − 1/2 + 1/3 − 1/4 + · · ·

does not exist, since

EX− = +
∑

odd ω

X(ω)P({ω}) = 1 + 1/3 + 1/5 + 1/7 + · · · = ∞ and

EX+ = −
∑

even ω

X(ω)P({ω}) = 1/2 + 1/4 + 1/6 + 1/8 + · · · = ∞.

1The “little oh” notation “o(1)” means that any remaining terms converge to zero as n → ∞. More
generally, “f = o(g) at ∞” means that (∀ǫ > 0)(∃Nǫ < ∞)(∀x > Nǫ) |f(x)| ≤ ǫ · g(x)— roughly, that
f(x)/g(x) → 0 as x → ∞. Similarly, “f = o(g) at x∗” means f(x)/g(x) → 0 as x → x∗, commonly with
x∗ = 0.
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4.2 Lebesgue’s Convergence Theorems

Theorem 1 (MCT) Let X and Xn ≥ 0 be random variables (not necessarily simple) for
which Xn(ω) ր X(ω) for each2 ω ∈ Ω. Then

lim
n→∞

E [Xn] = EX = E

[

lim
n→∞

Xn

]

,

i.e., Eqn (2) is satisfied. If E|X| < ∞, then also E|Xn − X| → 0.

For the proof we must find for each n an approximating sequence Y
(m)

n ⊂ E+ such that

Y
(m)

n ր Xn as m → ∞ and, from it, construct a single sequence

Zm := max
1≤n≤m

Y (m)
n ∈ E+

that satisfies Zm ≤ Xm for each m (this is true because, for each n ≤ m, Y
(m)

n ≤ Xn ≤ Xm)
and Zm ր X as m → ∞ (to see this, take ω ∈ Ω and ǫ > 0; first find n such that

Xn(ω) ≥ X(ω) − ǫ, then find m ≥ n such that Y
(m)

n (ω) ≥ Xn(ω) − ǫ, and verify that
Zm(ω) ≥ X(ω) − 2ǫ), and verify that

lim
n→∞

E[Xn] ≥ lim
m→∞

E[Zm] = EX ≥ lim
n→∞

E[Xn].

The condition “Xn ≥ 0” can be weakened to “Xn ≥ Z for some RV Z with E|Z| < ∞”
(why?). Similarly, if Xn ≤ Z with E|Z| < ∞ and Xn ց X, then again E[Xn] → E[X].

Theorem 2 (Fatou’s Lemma) Let Xn ≥ 0 be random variables. Then

E

[

lim inf
n→∞

Xn

]

≤ lim inf
n→∞

E [Xn] .

To prove this, just set Yn := infm≥n Xm. Then Yn → Y := lim inf Xn by definition, and {Yn}
is increasing, so the MCT and the inequality Yn ≤ Xn give

E

[

lim inf
n→∞

Xn

]

:= E

[

lim
n→∞

Yn

]

= E [Y ] = lim inf
n→∞

E [Yn] ≤ lim inf
n→∞

E [Xn]

Notice that equality may fail, as in the example of Eqn (3). The condition Xn ≥ 0 isn’t
entirely superfluous, but it can be weakened to Xn ≥ Z for any integrable random variable
Z (i.e., one with E|Z| < ∞).

For indicator random variables Xn := 1An
of events {An}, since EXn = P[An], Fatou’s

lemma asserts that

P

(

lim inf
n→∞

An

)

≤ lim inf
n→∞

P[An] ≤ lim sup
n→∞

P[An] ≤ P

(

lim sup
n→∞

An

)

2In fact it is enough to assume that P[Xn ≥ 0] = 1 and P[Xn ր X ] = 1, i.e., that Xn are nonnegative
and increase to X outside of a null set N ∈ F , since Xn1Nc and X1Nc have the same expectations as Xn

and X .
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Corollary 1 Let {Xn}, Z be random variables on (Ω, F , P) with Xn ≥ Z and E|Z| < ∞.
Then

E

[

lim inf
n→∞

Xn

]

≤ lim inf
n→∞

E [Xn] .

That is, we may weaken the condition “Xn ≥ 0” to “Xn ≥ Z for an integrable Z” in the
statement of Fatou’s lemma. To prove this, apply Fatou to (Xn − Z) and add EZ to both
sides.

Corollary 2 Let {Xn}, Z be random variables on (Ω, F , P) with Xn ≤ Z and E|Z| < ∞.
Then

E

[

lim sup
n→∞

Xn

]

≥ lim sup
n→∞

E [Xn] .

To prove this, use the identity −(lim sup an) = lim inf(−an) (true for any real numbers {an})
and apply Fatou’s lemma to the nonnegative sequence (Z − Xn).

Finally we have the most important result of this section:

Theorem 3 (DCT) Let X and Xn be random variables (not necessarily simple or positive)
for which P[Xn → X] = 1, and suppose that P

[

|Xn| ≤ Y
]

= 1 for some integrable random
variable Y with EY < ∞. Then

lim
n→∞

E [Xn] = EX = E

[

lim
n→∞

Xn

]

,

i.e., Eqn (2) is satisfied if {Xn} is “ dominated” by an integrable Y . Moreover, E|Xn −X| →
0.

Proof. To show this just apply Fatou Corollaries 1 and 2 with Z = −Y and Z = Y ,
respectively:

EX = E [lim inf Xn] ≤ lim inf E [Xn]

≤ lim sup E [Xn] ≤ E [lim sup Xn] = EX

For the “moreover” part, apply DCT separately to the positive and negative parts of X,
(Xn − X)+ := 0 ∨ (Xn − X) and (Xn − X)− := 0 ∨ (X − Xn); each is dominated by 2Y and
converges to zero as n → ∞. Then use

E|Xn − X| = E(Xn − X)+ + E(Xn − X)− → 0.

We will see later that the condition “P[Xn → X] = 1”, known as “almost sure” conver-
gence, can be weakened to convergence in probability : “(∀ǫ > 0) P[|Xn − X| > ǫ] → 0.” The
domination condition in the DCT can be weakened too, and the MCT positivity condition
Xn ≥ 0 can be weakened to Xn ≥ Z for some integrable RV Z with E|Z| < ∞.
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Counter-examples

For both examples, let (Ω, F , P) be the unit interval Ω = (0, 1] with the Borel sets and
Lebesgue measure.

Undominated, No convergence

The sequence {Xn(ω) := 2n1(0,2−n](ω)} of Eqn (3) does not satisfy equation Eqn (2), so
there must not exist a dominating Y with |Xn| ≤ Y and E|Y | < ∞. The smallest dominating
function is

Y := sup
n≥0

Xn =
∑

n≥0

2n1(2−n−1,2−n]

whose expectation is

EY =
∑

n≥0

2n(2−n − 2−n−1) =
∑

n≥0

2−1 = ∞.

This can also be seen from the relation

1

2ω
≤ Y <

1

ω
,

so EY ≥
∫ 1

0
1

2ω
dω = ∞.

Undominated, Convergence

Now consider the sequence {Yn(ω) := n1( 1
n+1

, 1
n

] on the same (Ω, F , P). Again there is no

dominatation by an integrable RV, since the smallest dominating RV

Y := sup
n∈N

Yn =
∑

n∈N

Yn =
∑

n∈N

n1( 1
n+1

, 1
n

],

has expectation

EY :=
∑

n∈N

n

[

1

n
−

1

n + 1

]

=
∑

n∈N

1

n + 1
= ∞.

Still, Yn(ω) → 0 for every ω ∈ Ω and EYn = 1
n+1

→ 0. This shows that domination is
sufficient but not necessary to ensure that equality holds in Eqn (2).
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