
STA 711: Probability & Measure Theory
Robert L. Wolpert

5 Expectation Inequalities and Lp Spaces

Fix a probability space (Ω,F ,P) and, for any real number p > 0 (not necessarily an integer)
and let “Lp” or “Lp(Ω,F ,P)”, pronounced “ell pee”, denote the vector space of real-valued
(or sometimes complex-valued) random variables X for which E|X|p < ∞. Note that this is
a vector space, since

• For any X ∈ Lp and a ∈ R,

E
∣

∣aX
∣

∣

p
= |a|p E|X|p < ∞.

• For any X, Y ∈ Lp,

E|X + Y |p ≤ E {(|X| + |Y |)p}

≤ E
{(

2 max(|X|, |Y |)
)p}

= 2p
E {max(|X|p, |Y |p)}

≤ 2p
E {|X|p + |Y |p} = 2p {E|X|p + E|Y |p} < ∞.

and hence, for a ∈ R and X, Y ∈ Lp, aX ∈ Lp and X + Y ∈ Lp. By far the two most
important cases are p = 1 and p = 2. A random variable X is called “integrable” if E|X| < ∞
or, equivalently, if X ∈ L1; it is called “square integrable” if E|X|2 < ∞ or, equivalently,
if X ∈ L2. Integrable random variables have well-defined finite means; square-integrable
random variables have, in addition, finite variance.

By Minkowski’s Inequality (see item (7) below), the function

‖X‖p := {E|X|p}1/p

is a norm on the space Lp for p ≥ 1, inducing a metric d(X, Y ) := ‖X − Y ‖p that obeys the
following three rules for every X, Y, Z:

1. d(X, Y ) = d(Y,X) Symmetric;
2. d(X, Y ) = 0 if and only if X = Y Antireflexive1;
3. d(X,Z) ≤ d(X, Y ) + d(Y, Z) Triangle inequality.

We can show that Lp is a complete separable metric space in this metric (what does “com-
plete” mean? Why “separable”? What do we need to show to prove each of these?) for every
p ≥ 1. For 0 < p < 1 the space Lp is still a complete separable metric space but, because

1Strictly speaking, d is only a metric if we identify any two random variables X,Y with d(X,Y ) = 0, i.e.,
if we regard Lp as a space of equivalence classes [X ] = {Y : Ω → R : P[X 6= Y ] = 0} of p-integrable random
variables; see paragraph below.
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ϕ(x) := |x|p isn’t convex for p < 1, “‖X − Y ‖p” doesn’t satisfy the triangle inequality and
so isn’t a metric— but ‖X − Y ‖pp = E|X − Y |p is a metric for 0 < p < 1, under which Lp

is a complete separable metric space. By Jensen’s Inequality (see item (5) or Theorem 1
below) for the convex function ϕ(x) = |x|q/p,

0 < p < q < ∞ ⇒ ‖X‖p = {E|X|p}1/p ≤ {E|X|q}1/q = ‖X‖q

and hence Lp ⊃ Lq for all 0 < p < q < ∞.

It is common to treat any two random variables X, Y for which P[X = Y ] as “equivalent,”
and regard Lp not as a space of functions, but rather as a space of equivalence classes of
functions where X and Y are regarded as “equivalent” (written X ≡ Y ) if and only if
P[X = Y ] = 1, in which case we treat them as the same element of Lp. Distances and
norms in Lp depend only on the equivalence class. The distinction is only important when
we assert the uniqueness of random variables with some specific property; what we mean
then is uniqueness up to equivalence.

For example, by Hölder’s Inequality (item (6) below), for each Y ∈ Lq the linear func-
tional ℓY defined on Lp by

X 7→ ℓY [X] := E[XY ]

is continuous if 1 < p < ∞ and 1
p

+ 1
q

= 1. It happens that these are the only continuous
linear functionals on Lp, so Lp and Lq are mutually dual Banach spaces and, in particular,
L2 is a (self-dual) real Hilbert space with inner product 〈X, Y 〉 = E[XY ].

Call a random variable X “essentially bounded” if there exists a finite number 0 ≤ B < ∞
such that P

[

|X| ≤ B
]

= 1, and in that case let

‖X‖∞ := inf
{

B ≥ 0 : P
[

|X| ≤ B
]

= 1
}

denote the infimum of the constants B with this property (or +∞ if no such B exists).
Since ‖X‖p is non-decreasing in p ∈ (0,∞) for each random variable X, the limit of ‖X‖p as
p → ∞ always exists, and is identical to the supremum supp<∞ ‖X‖p = limp→∞ ‖X‖p. One
can show that this limit is identical to ‖X‖∞ (it’s a good exercise, you should do it. Start
with “Let 0 ≤ λ < ‖X‖∞ and set Λ := {ω : |X| > λ}. Then what?), i.e., that

sup
p<∞

‖X‖p = lim
p→∞

‖X‖p = ‖X‖∞.

The space L∞ := {X : ‖X‖∞ < ∞} of essentially bounded random variables is also a
complete metric space but, except in some trivial cases, it isn’t separable—that is, there is
no countable set {ξj} ⊂ L∞ that is “dense” in the sense that, for every ǫ > 0 and every
X ∈ L∞, there is some j such that ‖X − ξj‖∞ < ǫ. Can you prove L∞(Ω,F ,P) isn’t
separable for Ω = (0, 1], F = B, and P = λ? What if instead P has finite or countable
support {ωj}, with P[{ωj}] = pj > 0,

∑

pj = 1? For X ∼ No(0, 1), what is ‖X‖∞? How
about X ∼ Bi(n, p)? Or X ∼ Un(a, b)?
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Theorem 1 (Jensen’s Inequality) Let ϕ be a convex function on R and let X ∈ L1 be
integrable. Then

ϕ
(

E[X]
)

≤ E
[

ϕ(X)
]

.

One proof with a nice geometric feel relies on finding a tangent line to the graph of ϕ at the
point µ = E[X]. To start, note by convexity that for any a < b < c, ϕ(b) lies below the value
at x = b of the linear function taking the same values as ϕ(x) at x = a and x = c:

ϕ(b) ≤
c− b

c− a
ϕ(a) +

b− a

c− a
ϕ(c)

Subtracting ϕ(b) and then rearranging terms,

0 ≤
c− b

c− a
[ϕ(a) − ϕ(b)] +

b− a

c− a
[ϕ(c) − ϕ(b)]

ϕ(b) − ϕ(a)

b− a
≤

ϕ(c) − ϕ(b)

c− b

so any line through
(

b, ϕ(b)
)

with slope λ in the range

φ′(b−) := sup
a<b

ϕ(b) − ϕ(a)

b− a
≤ λ ≤ inf

c>b

ϕ(c) − ϕ(b)

c− b
=: φ′(b+)

lies below the graph of ϕ(x) (draw a picture). Now let b = µ and let λ be any number in
that interval (this will be the derivative λ = ϕ′(µ) if ϕ is differentiable at µ, but ϕ might
have a “corner” at µ like |x| does at zero). The line x ϕ(µ) + λ(x− µ) through (µ, ϕ(µ))
with slope λ lies below the graph of ϕ(x) and touches the graph at x = µ (draw it!), so

ϕ(µ) = E
[

ϕ(µ) + λ(X − µ)
]

≤ E
[

ϕ(X)
]

as claimed. Notice we didn’t have to bound ϕ above or below, or insist that ϕ(X) ∈ L1.

A shorter proof that works for R
n-valued random variables X begins by noting that

φ : Rn → R is convex if and only if its domain is a convex set in R
n and the “epigraph”

E := {(x, y) : y ≥ φ(x)} is a convex set in R
n+1. But that means any average of points

(

x, φ(x)
)

∈ E must also lie in E (see Lemma 1). If we take such an average using the
distribution measure µX of X, we have (all integrals are over R

n):

∫

(

x, φ(x)
)

µX(dx) =

(
∫

xµX(dx),

∫

φ(x)µX(dx)

)

∈ E := {(x, y) : y ≥ φ(x)} ⇒

φ
(

∫

xµX(dx)
)

≤

∫

φ(x) µX(dx) or

φ
(

EX
)

≤ Eφ(X).

Here’s a short technical lemma justifying a claim made above:
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Lemma 1 Let E be a closed non-empty convex Borel set in R
n, and let P be a Borel prob-

ability measure on R
n with P(E) = 1. Then

µ :=

∫

E

xP(dx) ∈ E.

Proof. Suppose not— i.e., suppose µ /∈ E. Let x∗ ∈ E be arbitrary, set r := ‖x∗ − µ‖,
and consider the compact set E ∩ Br(µ). The continuous function d(x) := ‖x − µ‖ attains
a strictly positive minimum d(ν) = ‖η − µ‖ = ǫ > 0 at some point ν of that compact set,
which will also be the minimum distance from µ to the entire convex set E. The hyperplane
H := {x ∈ R

n : (x− ν) · (µ− ν) = 0} through ν and orthogonal to (µ− ν) separates µ from
E, and every point x ∈ E satisfies

0 ≥ (x− ν) · (µ− ν)

(else some point on [x, ν] ⊂ E is closer to µ than ν is). Integrating wrt P over E,

0 ≥

∫

E

(x− ν) · (µ− ν) P(dx)

= (µ− ν) · (µ− ν)

= ǫ2 > 0,

a contradiction. Thus µ ∈ E.

.

A Note on Notation

The distribution µX (or “µX(dx)”) of a real-valued random variable X on (Ω,F ,P) can
be specified by giving {µX(B) = P[X ∈ B]} for all Borel sets B ⊂ R or, by Dynkin’s
Theorem, just all sets B in a π-system generating the Borel sets. Since {(−∞, x] : x ∈ R} is
such a π-system, a distribution µX can be specified just by giving its Distribution Function
F (x) := P[X ≤ x] = µX(−∞, x] for all x.

The expectation E[g(X)] for Borel functions g : R → R has been written in many different
ways over the centuries. Some of these include:

E[g(X)] =

∫

Ω

g
(

X(ω)
)

P(dω) =

∫

Ω

g
(

X
)

dP

=

∫

R

g(x)µX(dx) =

∫

R

g dµX

=

∫

R

g(x)FX(dx) =

∫

R

g dFX =

∫

R

g(x) dFX(x)

This last one is “Stieltjes” notation, from an early definition of the Riemann integral of a
continuous func. g as

∫ b

a
g(x) dFX(x) = limn→∞

∑

0≤i<n g(xi)[FX(xi+1) − FX(xi)], with xi =

a+ i(b−a)/n. All reduce to
∫

g(x)fX(x) dx for AC FX , with fX(x) := dFX(x)/dx = F ′
X(x).
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Miscellaneous Integral Identities and Inequalities

1. If µX is the distribution of X, and if g is a measurable real-valued function on R,
then Eg(X) :=

∫

Ω
g(X(ω)) P(dω) =

∫

R
g(x)µX(dx) if either side exists. In particular,

µ := EX =
∫

xµX(dx) and σ2 := E(X−µ)2 =
∫

(x−µ)2 µX(dx) can be calculated using
sums and PMFs if X is discrete, or integrals and pdfs if it’s absolutely continuous.

2. For any p > 0, E|X|p =
∫∞

0
p xp−1

P[|X| > x] dx and E|X|p < ∞ ⇔
∑∞

n=1 np−1
P[|X| >

n] < ∞. The case p = 1 is easiest and most important: if S :=
∑∞

n=0 P[|X| > n] < ∞,
then E|X| ≤ S < E|X|+1. If X takes on only nonnegative integer values then EX = S.

3. Markov’s Inequality: If ϕ is positive and nondecreasing, then
P[X ≥ u] ≤ P[ϕ(X) ≥ ϕ(u)] ≤ E[ϕ(X)]/ϕ(u). In particular, for any u > 0,

P[|X| > u] ≤ ‖X‖pp/u
p, P[|X| > u] ≤ σ2+µ2

u2 , and (∀t > 0), P[X > u] ≤ M(t) e−tu for
the MGF M(t) := E exp(tX).

4. Chebychev’s Inequality: Applying Markov’s inequality to |x−µ|2 gives Chebychev’s
Inequality, P[|X − µ| > kσ] ≤ 1

k2 . A one-sided version is also available: P[X > u] ≤
σ2

σ2+(u−µ)2 (Pf: P[(X − µ + t) > (u− µ + t)] ≤ ?; optimize over t ≥ µ− u).

5. Jensen’s Inequality: Let ϕ(x) be a convex function on R, and X ∈ L1(Ω,F ,P).
Then ϕ(E[X]) ≤ E[ϕ(X)]. Examples: ϕ(x) = |x|p, p ≥ 1; ϕ(x) = ex; ϕ(x) = [0 ∨ x].
(Introduce Lp ⊃ Lq). The equality is strict if ϕ(·) is strictly convex and X has a
non-degenerate distribution. See Theorem 1 on p. 3 for a proof.

6. Hölder’s Inequality2: Let r ≥ 1 and p, q > 1 with 1
p

+ 1
q

= 1
r
. Then ‖XY ‖r ≤

‖X‖p ‖Y ‖q. (Pf: If ‖X̃‖p = ‖Ỹ ‖q = 1, then |X̃Ỹ |r = exp{ r
p

log |X̃|p + r
q

log |Ỹ |q} ≤

{ r
p
|X̃|p + r

q
|Ỹ |q}). The special case of p = q = 2, r = 1 is the famous:

Cauchy-Schwartz Inequality: EXY ≤ E |XY | ≤
√

E[X2] E[Y 2].

7. Minkowski’s Inequality:2 Let 1 < p < ∞ and let X, Y ∈ Lp(Ω,F ,P). Then the

norm ‖X‖p := (E|X|p)
1
p obeys the triangle inequality on Lp(Ω,F ,P):

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p

Pf:

E|X + Y |p ≤ E

[

(

|X| + |Y |
)

|X + Y |p−1=p/q
]

(Triangle)

≤ (‖X‖p + ‖Y ‖p) ‖ |X + Y |p/q ‖q (Hölder)

= (‖X‖p + ‖Y ‖p)
(

E |X + Y |p
)1/q=1−1/p

(

E |X + Y |p
)1/p

≤ (‖X‖p + ‖Y ‖p).

2In HW07 you will show that Hölder’s and Minkowski’s Inequalities also hold for p = 1 and p = ∞.
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6 Independence

Typical undergraduate probability courses present “independence” for finitely many events,
discrete RVs, and absolutely continuous RVs. Here we present those as special cases of the
concept of independence for any number (even uncountably many) σ-algebras .

6.1 Independent Events

A collection (finite, countable, or uncountable) of events {Ai} ⊂ F in a probability space
(Ω,F ,P) is called independent if

P [∩i∈IAi] =
∏

i∈I

P[Ai]

for each finite set I of indices. This is a stronger requirement than “pairwise independence,”
the requirement merely that

P[Ai ∩ Aj ] = P[Ai]P[Aj ]

for each i 6= j. For a simple counter-example, toss two fair coins and let Hn be the event
“Heads on the nth toss” for n = 1, 2. Then the three events A1 := H1, A2 := H2, and
A3 := H1∆H2 (the event that the coins disagree) each have P[Ai] = 1/2 and each pair has
P[Ai ∩Aj ] = (1/2)2 = 1/4 for i 6= j, but ∩Ai = ∅ has probability zero and not (1/2)3 = 1/8.

6.2 The Borel-Cantelli Lemmas

Our proof below of the Strong Law of Large Numbers for iid bounded random variables relies
on the almost-trivial but very useful:

Lemma 1 (Borel-Cantelli) Let {An} be events on some probability space (Ω,F ,P) that
satisfy

∞
∑

n=1

P[An] < ∞.

Then the event that infinitely-many of the {An} occur (lim supn→∞An) has probability zero.

Proof.

P

[

∞
⋂

n=1

∞
⋃

m=n

Am

]

≤ P

[

∞
⋃

m=n

Am

]

≤
∞
∑

m=n

P[Am] → 0 as n → ∞.

This result does not require independence of the {An}, but its partial converse does:
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Lemma 2 (Second Borel-Cantelli) Let {An} be independent events on a probability
space (Ω,F ,P) that satisfy

∞
∑

n=1

P[An] = ∞.

Then the event that infinitely-many of the {An} occur (the lim sup) has probability one.

Proof. First recall that 1 + x ≤ ex for all real x ∈ R, positive or not (draw a graph). For
each pair of integers 1 ≤ n ≤ N < ∞, by independence,

P

[

N
⋂

m=n

Ac
m

]

=
N
∏

m=n

(

1 − P[Am]
)

≤
N
∏

m=n

e−P[Am] = exp

(

−
N
∑

m=n

P[Am]

)

→ exp

(

−
∞
∑

m=n

P[Am]

)

= e−∞ = 0

as N → ∞. Thus each ∩∞
m=nA

c
m is a null set, hence so is their union, so

P

[

∞
⋂

n=1

∞
⋃

m=n

Am

]

= 1 − P

[

∞
⋃

n=1

∞
⋂

m=n

Ac
m

]

≥ 1 −
∞
∑

n=1

P

[

∞
⋂

m=n

Ac
m

]

= 1 − 0 = 1.

Together these two results comprise the

Proposition 1 (Borel’s Zero-One Law) For independent events {An}, the event A :=
lim supAn has probability P(A) = 0 or P(A) = 1, depending on whether the sum

∑

P(An) is
finite or not.

6.2.1 B/C Illustration

Here’s a little toy example to illustrate the Borel-Cantelli lemmas. Begin with a leather bag
containing one gold coin, and n = 1.

(a) At nth turn, first add one additional silver coin to the bag, then draw one coin at
random. Let An be the event

An = {Draw gold coin on nth draw}.

Whichever coin you draw, replace it; increment n; and repeat.
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(b) As above— but at nth turn, add n silver coins.

Let γ be the probability that you ever draw the gold coin. In each case, is γ = 0? γ = 1?
or 0 < γ < 1? In latter case, give exact asymptotic expression for γ and numerical estimate
to four decimals. Why doesn’t 0 < γ < 1 violate Borel’s zero-one law (Prop. 1 below)? Can
you find γ exactly, perhaps with the help of Mathematica or Maple?

6.3 Independent Classes of Events

6.3.1 Arbitrary Independent Classes

Classes {Ci} of events (e.g., π-systems or σ-algebras) in a probability space (Ω,F ,P) are
called independent if

P

[

⋂

i∈I

Ai

]

=
∏

i∈I

P[Ai]

for each finite I whenever each Ai ∈ Ci. Note the requirement is only for finite intersections,
and the definition still applies even for uncountable collections {Ci}.

6.3.2 Independent σ-Algebras

An important tool for simplifying proofs of independence is

Theorem 2 (Basic Criterion) If classes {Ci} of events are independent and if each Ci is
a π-system, then {σ(Ci)} are independent too.

Proof. Let I be a finite index set with at least |I| ≥ 2 elements and {Ci}i∈I an independent
collection of π-systems. Fix i ∈ I, set J := I\ {i}, and fix Aj ∈ Cj for each j ∈ J . Set:

L :=
{

B ∈ F : P

[

B ∩
⋂

j∈J

Aj

]

= P[B] ·
∏

j∈J

P[Aj ]
}

.
Then

• Ci ⊂ L, by the hypothesis that {Ci} are independent;

• Ω ∈ L, by the independence of {Cj}j∈J ;

• B ∈ L ⇒ Bc ∈ L, by a quick computation; and

• Bn ∈ L and {Bn} disjoint ⇒ ∪Bn ∈ L, another quick computation.

Thus L is a λ-system containing Ci, and so by Dynkin’s π-λ theorem it contains σ(Ci). Thus
σ(Ci) and {Aj}j∈J are independent for each {Aj ∈ Cj}, so {σ(Ci), {Cj}j∈J} are independent
π-systems. Repeating the same argument |I| − 1 times (or, more elegantly, mathematical
induction on the cardinality |I|) completes the proof.
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6.4 Independent Random Variables

A collection of random variables {Xi} on some probability space (Ω,F ,P) are called in-
dependent if the σ-algebras Fi := σ(Xi) = Xi

−1(B) they generate are independent, i.e.,
if

P

(

⋂

i∈I

[Xi ∈ Bi]
)

=
∏

i∈I

P[Xi ∈ Bi]

for each finite set I of indices and each collection of Borel sets {Bi ∈ B(R)}. By the Basic
Criterion it is enough to check that the joint CDFs factor, i.e., that

P

(

⋂

i∈I

[Xi ≤ xi]
)

=
∏

i∈I

Fi(xi) (1)

for each finite index set I and each x ∈ R
I , or just for a dense set of such x (Why?).

For finitely-many jointly absolutely continuous random variables this is equivalent to
requiring that the joint density function factor as the product of marginal density functions
(proof: differentiate (1) w.r.t. each xi), while for finitely-many discrete random variables it’s
equivalent to the usual factorization criterion for the joint pmf. The present definition goes
beyond those two cases, however— for example, it includes the case of a discrete random
variable X ∼ Bi(7, 0.3), absolutely continuous Y ∼ Ex(2.0), mixed Z = (ζ ∧ 0) for ζ ∼
No(0, 1), and discrete continuous C with the Cantor distribution. It also applies to infinite
(even uncountable) collections of random variables, where no joint pdf or pmf can exist.

Indepenence is a property of the probability measure and the σ-algebras {σ(Xi)}, not of
the random variables {Xj} themselves. Since σ

(

g(X)
)

⊆ σ(X) for any random variable X
and Borel function g(·), if {Xi} are independent and if gi(·) are arbitrary Borel functions,
it follows that {gi(Xi)} are independent too— and, in particular, that if X ⊥⊥ Y then
X ⊥⊥ g(Y ) for all Borel functions g(·). If X and Y are independent, then so are X2 and
(Y ∨ 0), for example, with no need to compute joint pdfs or pmfs or the like.

6.4.1 Independent Events Revisited

Arbitrarily many events {Ei}, random variables {Xj}, and classes of events {Ck} are inde-
pendent if and only if the σ-algebras they generate {σ(Ei), σ(Xj), σ(Ck)} are independent—
we can treat all of these in the same unified way.
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