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6 Independence (cont)

6.5 B/C + Independence Illustration

Let X ∈ L1(Ω,F ,P) and let {An} ⊂ F be events that satisfy P[An] → 0. Does it follow that
Xn := X1An

converges almost-surely to 0?

If
∑

n P[An] < ∞, then yes— by the Borel-Cantelli lemma,

P[Xn 6→ 0] ≤ P[lim supAn] = 0,

so Xn → 0 a.s.

BUT, if {P[An]} is not summable, then a.s. convergence can fail. For example, if {An} are
independent and X ≡ 1, then

P[Xn 6→ 0] ≥ P[lim supAn] = 1,

so P[Xn → 0] = 0. In Week 7 we will find a new sense of convergence called “convergence in
probability” that is weaker than almost-sure convergence, and we’ll show that Xn → 0 pr.

6.6 Another Zero-One Law: Kolmogorov’s

For any collection {Xn} of random variables on a probability space (Ω,F ,P), define two
sequences of σ-algebras (“past” and “future”) by:

Fn := σ{Xi : i ≤ n} Tn := σ{Xi : i ≥ n + 1}

and, from them, construct the π-system P and “tail” σ-algebra T by

P :=
∞
⋃

n=1

Fn T :=
∞
⋂

n=1

Tn.

In general P will not be a σ-algebra, because it will not be closed under countable unions
or intersections, but it is a field and hence a π-system, and generates the σ-algebra ∨Fn :=
σ(P) ⊆ F .

The class T , called the tail σ-field, includes those events that depend only on what hap-
pens eventually, regardless of what happens for the first few (or few million) {Xn}. These
include such events as “{Xn converges}” or “{lim supXn ≤ 1}” or, with Sn :=

∑n
1 Xj ,

“{ 1
n
Sn converges}” or “{ 1

n
Sn → 0},” but not events like “{minXn ≤ c}.”
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Theorem 1 (Kolmogorov’s Zero-One Law) For independent random variables Xn, the

tail σ-field T is “almost trivial” in the sense that every event Λ ∈ T has probability P[Λ] = 0
or P[Λ] = 1.

Proof. Let A ∈ P = ∪Fn, and Λ ∈ T . Then for some n ∈ N, A ∈ Fn and Λ ∈ Tn, so
A ⊥⊥ Λ; thus P and T are independent. Since P is a π-system, it follows from the Basic
Criterion that σ(P) and T are also independent. But Fn ⊂ P so each Xn is σ(P)-measurable,
hence T ⊂ σ(P) and each Λ ∈ T must also be in σ(P) ⊥⊥ T . It follows that:

P[Λ] = P[Λ ∩ Λ] = P[Λ]P[Λ] = P[Λ]2,

so 0 = P[Λ]
(

1 − P[Λ]
)

proving that P[Λ] must be zero or one.

6.7 Product Spaces

Do independent random variables exist, with arbitrary (marginal) specified distributions?
How can they be constructed? One way is to build product probability spaces; let’s see how
to do that.

Let (Ωj ,Fj,Pj) be a probability space for j = 1, 2 and set:

Ω = Ω1 × Ω2 := {(ω1, ω2) : ωj ∈ Ωj}

F = F1 ×F2 := σ{A1 × A2 : Aj ∈ Fj}

P := P1 ⊗ P2, the unique extension to F satisfying:

P(A1 × A2) = P1(A1) · P2(A2) for A1 ∈ F1, A2 ∈ F2.

Any random variables X1 on (Ω1,F1,P1) and X2 on (Ω2,F2,P2) can be extended to the com-
mon space (Ω,F ,P) by defining X∗

1 (ω1, ω2) := X1(ω1) and X∗
2 (ω1, ω2) := X2(ω2); it’s easy to

show that {X∗
j } are independent and have the same marginal distributions as {Xj}. Thus,

independent random variables do exist with arbitrary distributions. The same construction
extends to countable families.

6.8 Fubini’s Theorem

We now consider how to evaluate probabilities and integrals on product spaces.

For any F -measurable random variable X : Ω1 × Ω2 → S (S would be R, for real-valued
RVs, but could also be R

n or any complete separable metric space), and for any ω2 ∈ Ω2,
the (second) section of X is the (Ω1,F1,P1) random variables Xω2

: Ω1 → S defined by

Xω2
(ω1) := X(ω1, ω2).

It is not quite obvious, but true, that Xω2
is F1-measurable— show this first for indicator

random variables X = 1A1×A2
of product sets, then extend by a π-λ argument to indicators
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X = 1A of sets A ∈ F , then to simple RVs by linearity, then to the nonnegative RVs X+

and X− for an arbitrary F -measurable X by monotone limits. Similarly, the first section
Xω1

(·) := X(ω1, ·) is F2-measurable for each ω1 ∈ Ω1.

Finally: Fubini’s theorem gives conditions (namely, that either X ≥ 0 or E|X| < ∞) to
guarantee that these three integrals are meaningful and equal:

∫

Ω2

{
∫

Ω1

Xω2
dP1

}

dP2
?
=

∫∫

Ω

X dP
?
=

∫

Ω1

{
∫

Ω2

Xω1
dP2

}

dP1 (1)

To prove this, first note that it’s true for indicators X = 1A1×A2
of the π-system of measurable

rectangles (A1 × A2) with each Aj ∈ Fj; then verify that the class C of events A ∈ F for
which it holds for X = 1A is a λ-system. By Dynkin’s π-λ theorem it follows that F ⊂ C
so (1) holds for all indicators X = 1A of events A ∈ F , hence for all nonnegative simple
functions in E+, and finally for all F -measurable X ≥ 0 by the MCT. For X ∈ L1, apply
this result separately to X+ and X−.

Fubini’s theorem applies more generally. Each probability measure Pj may be replaced by
an arbitrary σ-finite1 measure:

Theorem 2 (Fubini) Let (X ,F , µ) and (Y ,G, ν) be two σ-finite measure spaces, and let

f(x, y) be a real-valued measurable function on the product space
(

X × Y ,F × G, µ ⊗ ν
)

.

Then
∫

Y

{
∫

X

f(x, y)µ(dx)

}

ν(dy) =

∫∫

X×Y

f(x, y)(µ⊗ ν)(dx dy) =

∫

X

{
∫

Y

f(x, y)ν(dy)

}

µ(dx)

if either

• f(x, y) ≥ 0 for (x, y) ∈ N c for some N ∈ F × G with (µ⊗ ν)(N ) = 0, or

• f ∈ L1

(

X × Y ,F × G, µ⊗ ν
)

.

Also,one of the measures (say, P2) may be replaced by a measurable kernel2 K(ω1, dω2)
that is a σ-finite measure K(ω1, ·) on F2 in its second variable for each fixed ω1, and an
F1-measurable function K(·, B2) in its first variable for each fixed B2 ∈ F2. Now Fubini’s
Theorem asserts (under positivity or L1 conditions) the equality of integrals of X wrt the
measure P(dω1 dω2) = P1(dω1)K(ω1, dω2) to the iterated integrals

∫

Ω2

νX(dω2) =

∫∫

Ω

XdP =

∫

Ω1

{
∫

Ω2

Xω1
(ω2)K(ω1, dω2)

}

P1(dω1)

for the measure on F2 given by νX(dω2) :=
∫

Ω1
Xω2

(ω1)K(ω1, dω2)P1(dω1).

1Recall that a measure µ on a measurable space (X ,F) is “σ-finite” if there are countably-many sets
{Λj} ⊂ F with µ(Λj) < ∞ for each j, and X = ∪jΛj . Evidently any finite measure (including probability
measures) is also σ-finite, but the converse is false. Lebesgue measure is σ-finite on R

n, for example.
2Measurable kernels come up all the time when studying conditional distributions (as you’ll see in week

9 of this course) and, in particular, Markov chains and processes.
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As an easy consequence of Theorem 2 (take (X ,F , µ) = (Ω,F ,P), let (Y ,G) = (N, 2N), and
let ν(A) := #{A} be counting measure for A ⊂ N), for any sequence of random variables
we may exchange summation and expectation and conclude that equality holds in

E

{

∞
∑

n=1

Xn

}

?
=

∞
∑

n=1

{EXn}

whenever each Xn ≥ 0 or when
∑∞

n=1 E|Xn| < ∞, but otherwise equality may fail.

6.8.1 A Counter-example

For an example where interchanging integration order fails, integrate by parts to verify:

∫ 1

0

{
∫ 1

0

y2 − x2

(x2 + y2)2
dx

}

dy =

∫ 1

0

{

−1

1 + y2

}

dy =
−π

4
∫ 1

0

{
∫ 1

0

y2 − x2

(x2 + y2)2
dy

}

dx =

∫ 1

0

{

+1

1 + x2

}

dx =
+π

4
.

As expected in light of Fubini’s Theorem, the integrand isn’t nonnegative nor is it in L1:

∫∫ 1,1

0,0

∣

∣

∣

∣

y2 − x2

(x2 + y2)2

∣

∣

∣

∣

dx dy ≥

∫ π/2

0

∫ 1

0

r2| sin2 θ − cos2 θ|

r4
r dr dθ

=

(

∫ π/2

0

| cos(2θ)| dθ

)

(
∫ 1

0

r−1 dr

)

= (1) (∞) .

6.8.2 A Simple but Useful Consequence of Fubini

For any p > 0 and any random variable X,

E|X|p = E

[

∫ |X|

0

p xp−1 dx

]

= E

[
∫ ∞

0

1{|X|>x}p x
p−1 dx

]

=

∫ ∞

0

[

E1{|X|>x}

]

p xp−1 dx =

∫ ∞

0

p xp−1
P
[

|X| > x
]

dx.

It follows that

X ∈ Lp ⇔ E|X|p < ∞ ⇔
∞
∑

n=1

np−1
P[|X| > n] < ∞.
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To see this, set Y := |X| and fix p ≥ 1. Then, since
[

n+1
n

] ≤ 2 for n ∈ N, for p ≥ 1:

EY p ≤ E
(

⌈Y ⌉p
)

=

∫ ∞

0

p yp−1
P
[

⌈Y ⌉ > y
]

dy

=
∞
∑

n=0

∫ n+1

n

p yp−1
P
[

⌈Y ⌉ > y
]

dy

=
∞
∑

n=0

∫ n+1

n

p yp−1
P
[

Y > n
]

dy

≤
∞
∑

n=0

p (n + 1)p−1
P
[

Y > n
]

≤ p +

∞
∑

n=1

p 2p−1np−1
P
[

Y > n
]

and hence Y ∈ Lp if
∑

np−1
P[Y > n] converges. Conversely, if 0 ≤ Y ∈ Lp for p ≥ 1, then:

EY p ≥ E
(

⌊Y ⌋p
)

=

∫ ∞

0

p yp−1
P
[

⌊Y ⌋ > y
]

dy

=
∞
∑

n=0

∫ n+1

n

p yp−1
P
[

Y > n
]

dy

≥
∞
∑

n=0

∫ n+1

n

p np−1
P
[

Y > n
]

dy

=

∞
∑

n=1

p np−1
P
[

Y > n
]

,

so the sum converges if Y ∈ Lp. The argument for 0 < p < 1 is very similar, but differs
slightly because now yp−1 is decreasing on each interval (n, n + 1] instead of increasing.

The case p = 1 is easiest and most important: if S :=
∑∞

n=0 P[|X| > n] < ∞, then X ∈ L1

with E|X| ≤ S ≤ E|X|+ 1. If X takes on only nonnegative integer values then EX = S. For
any ǫ > 0, apply this to Y := X/ǫ to see

ǫ
∞
∑

n=1

P[|X| > nǫ] < E|X| ≤ ǫ
∞
∑

n=0

P[|X| > nǫ]
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6.9 Hoeffding’s Inequality

If {Xj} are independent and (individually) bounded, so (∀ j ∈ N) (∃ {aj , bj}) for which
P[aj ≤ Xj ≤ bj ] = 1, then (∀c > 0), Sn :=

∑n
j=1 Xj satisfies

P
[

(Sn − ESn) ≥ c
]

≤ exp
(

− 2c2
/

n
∑

1

|bj − aj|
2
)

.

If Xj are iid and bounded by ‖Xj‖∞ ≤ 1, e.g., then take aj = −1, bj = 1, and c = nǫ to see

P
[

(X̄n − µ) ≥ ǫ
]

≤ e−nǫ2/2. (2)

Wassily Hoeffding proved this improvement on Chebychev’s inequality for L∞ random vari-
ables in 1963 at UNC. It follows from Hoeffding’s Lemma:

E[eλ(Xj−µj)] ≤ exp
(

λ2(bj − aj)
2/8
)

,

proved in turn from Jensen’s ineq and Taylor’s theorem (with remainder). The importance
of (2) is that the bound decreases exponentially in n as n → ∞, while the Chebychev bound
P
[

|X̄n−µ| ≥ ǫ
]

≤ σ2/nǫ2 decreases only like 1/n. The price for this better bound is that the
{Xj} must be bounded in L∞, not merely in L2. See also related and earlier Bernstein’s
inequality (1937), Chernoff bounds (1952), and Azuma’s inequality (1967).

Here’s a proof for the important special case of Xj = ±1 with probability 1/2 each (and
hence µ = 0):

P[X̄n ≥ ǫ] = P[Sn ≥ nǫ]

= P
[

eλSn ≥ enλǫ
]

for any λ > 0

≤ E eλSn e−nλǫ by Markov’s inequality

=
{

1
2
eλ + 1

2
e−λ
}n

e−nλǫ by independence

≤
{

eλ
2/2
}n

e−nλǫ see footnote3

= exp
(

nλ2/2 − nλǫ
)

The exponent is minimized at λ = ǫ, so the tightest bound is:

P[X̄n ≥ ǫ] ≤ exp
(

nǫ2/2 − nǫǫ
)

= e−nǫ2/2.

The general case isn’t much harder, but proving Eeλ(X−µ) ≤ eλ
2/2 is a bit more delicate.

By Borel/Cantelli it follows from Hoeffding’s inequality that (X̄n−µ) > ǫ only finitely-many
times for each ǫ > 0, if {Xn} ⊂ L∞ are iid, leading to our first Strong Law of Large
Numbers: P[X̄n → µ] = 1 (why does this follow?).

3cosh(λ) =
{

1
2e

λ + 1
2e

−λ
}

=
∑ λ2k

(2k)! ≤
∑ (λ2)k

2k(k!)
= eλ

2/2
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Note that Chebychev’s inequality only guarantees the algebraic bound P[X̄n ≥ ǫ] ≤ 1/nǫ2,
instead of Hoeffding’s exponential bound. Since 1/nǫ2 isn’t summable in n, Chebychev’s
bound isn’t strong enough to prove a strong LLN, but Hoeffding’s is.

Hoeffding’s inequality is now used commonly in computer science and machine learning,
applied to indicators of Bernoulli events (or, equivalently, to binomial random variables). It
gives the bound

P
[

|X̄n − p| ≤ ǫ
]

= P
[

(p− ǫ)n ≤ Sn ≤ (p + ǫ)n
]

≥ 1 − 2e−2ǫ2n

for Sn :=
∑

j≤nXj ∼ Bi(n, p) for iid Bernoulli Xj
iid
∼ Bi(1, p) variables, showing exponential

concentration of probability around the mean. This is far stronger than Chebychev’s bound
of P

[

|X̄n − p| ≤ ǫ
]

≥ 1 − p(1 − p)/ǫ2n, since Hoeffding’s bound for P
[

|X̄n − p| > ǫ
]

is
exponentially small as n → ∞ and hence is summable.
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