
STA 711: Probability & Measure Theory
Robert L. Wolpert

9 Sums of Independent Random Variables

We continue our study of sums of independent random variables, Sn = X1 + · · · + Xn. If
each Xi is square-integrable, with mean µi = EXi and variance σ2

i = E[(Xi −µi)
2], then Sn is

square integrable too with mean ESn = µ≤n :=
∑

i≤n µi and variance VSn = σ2
≤n :=

∑

i≤n σ
2
i .

But what about the actual probability distribution? If the Xi have density functions fi(xi)
then Sn has a density function too; for example, with n = 2, S2 = X1 + X2 has CDF F (s)
and pdf f(s) = F ′(s) given by

P[S2 ≤ s] = F (s) =

∫∫

x1+x2≤s

f1(x1)f2(x2) dx1dx2

=

∫ ∞

−∞

∫ s−x2

−∞
f1(x1)f2(x2) dx1dx2

=

∫ ∞

−∞
F1(s− x2)f2(x2) dx2 =

∫ ∞

−∞
F2(s− x1)f1(x1) dx1

f(s) = F ′(s) =

∫ ∞

−∞
f1(s− x2)f2(x2) dx2 =

∫ ∞

−∞
f1(x1)f2(s− x1) dx1,

the convolution f = f1 ⋆ f2 of f1(x1) and f2(x2). Even if the distributions aren’t abso-
lutely continuous, so no pdfs exist, S2 has a distribution measure µ given by µ(ds) =
∫

R
µ1(dx1)µ2(ds−x1). There is an analogous formula for n = 3, but it is quite messy; things

get worse and worse as n increases, so this is not a promising approach for studying the
distribution of sums Sn for large n.

If CDFs and pdfs of sums of independent RVs are not simple, is there some other feature
of the distributions that is? The answer is Yes. What is simple about independent random
variables is calculating expectations of products of the Xi, or products of any functions of the
Xi; the exponential function will let us turn the partial sums Sn into products eSn =

∏

eXi

or, more generally, ezSn =
∏

ezXi for any real or complex number z. Thus for independent
RVs Xi and any number z we can use independence to compute the expectation

EezSn =

n
∏

i=1

EezXi,

often called the “moment generating function” and denoted MX(z) = EezX for any random
variable X.

For real z the function ezX becomes huge if X becomes very large (for positive z) or very
negative (if z < 0), so that even for integrable or square-integrable random variables X the
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expectation M(z) = EezX may be infinite. Here are a few examples of EezX for some familiar
distributions (try to verify some of them):

Binomial: Bi(n, p) [1 + p(ez − 1)]n z ∈ C

Neg Bin: NB(α, p) [1 − (p/q)(ez − 1)]−α z ∈ C

Poisson Po(λ) eλ(ez−1) z ∈ C

Normal: No(µ, σ2) ezµ+z2σ2/2 z ∈ C

Gamma: Ga(α, λ) (1 − z/λ)−α ℜ(z) < λ
Cauchy: a

π(a2+(x−b)2)
ezb−a|z| ℜ(z) = 0

Uniform: Un(a, b) 1
z(b−a)

[

ezb − eza
]

z ∈ C

Aside from the problem that M(z) = EezX may be infinite or fail to exist for some z ∈ C,
the approach is promising: we can identify the probability distribution from M(z), and
we can even find important features about the distribution directly from M . For example,
if we can justify interchanging the limits implicit in differentiation and integration, then
M ′(z) = E[XezX ] and M ′′(z) = E[X2ezX ], so (upon taking z = 0) M ′(0) = EX = µ and
M ′′(0) = EX2 = σ2 + µ2. This lets us calculate the mean and variance (and other moments
EXk = M (k)(0)) from derivatives of M(z) at zero. We have two problems to overcome:
discovering how to infer the distribution of X from MX(z) = EezX , and what to do about
distributions for which M(z) is infinite or doesn’t exist.

9.1 Characteristic Functions

For complex numbers z = x+ iy, Leonard Euler showed that the exponential ez can be given
in terms of familiar real-valued transcendental functions as ex+iy = ex cos(y) + iex sin(y).
Since both sin(y) and cos(y) are bounded by one, for any real-valued random variable X
and real number ω the real and imaginary parts of the complex-valued random variable eiωX

are bounded and hence integrable; thus it always makes sense to define the characteristic
function

φX(ω) = EeiωX =

∫

R

eiωxµX(dx), ω ∈ R

with finite absolute value |φX(ω)| ≤ 1. Of course this is just φX(ω) = MX(iω) when MX

exists, but φX(ω) exists even when MX does not; on the chart above you’ll notice that only
the real part of z posed problems, and ℜ(z) = 0 was always OK, even for the Cauchy. For
real-valued ω ∈ R, some familiar distributions’ ch.f.s are:

Binomial: Bi(n, p) φ(ω) = [1 + p(eiω − 1)]n

Neg Bin: NB(α, p) φ(ω) = [1 − (p/q)(eiω − 1)]−α

Poisson Po(λ) φ(ω) = eλ(eiω−1)

Normal: No(µ, σ2) φ(ω) = eiωµ−ω2σ2/2

Gamma: Ga(α, λ) φ(ω) = (1 − iω/λ)−α

Cauchy: a/π
a2+(x−b)2 φ(ω) = eiωb−a|ω|

Uniform: Un(a, b) φ(ω) = 1
iω(b−a)

[

eiωb − eiωa
]

Page 2Page 2Page 2



STA 711 Week 9 R L WolpertSTA 711 Week 9 R L WolpertSTA 711 Week 9 R L Wolpert

9.1.1 Uniqueness

Suppose that two probability distributions µ1(A) = P[X1 ∈ A] and µ2(A) = P[X2 ∈ A] have
the same Fourier transform µ̂1 := µ̂2, where:

µ̂j(ω) = E[eiωXj ] =

∫

R

eiωx µj(dx);

does it follow that X1 and X2 have the same probability distributions, i.e., that µ1 = µ2?
The answer is yes ; in fact, one can recover the measure µ explicitly from the function µ̂(ω).
Thus we regard uniqueness as a corollary of the much stronger result, the Fourier Inversion
Theorem.

Resnick (1999) has lots of interesting results about characteristic functions in Chapter 9,
Grimmett and Stirzaker (2001) discuss related results in their Chapter 5, and Billingsley
(1995) proves several versions of this theorem in his Section 26. I’m going to take a different
approach, and stress the two special cases in which µ is discrete or has a density function,
trying to make some connections with other encounters you might have had with Fourier
transforms.

9.1.2 Positive Definiteness

Which functions φ(ω) can be characteristic functions? We know that |φ(ω)| ≤ 1 for every
ω ∈ R, and that φ(0) = 1. In a homework exercise you showed that φ(ω) must be uniformly
continuous, too— is that enough?

The answer is no. Each ch.f. has the interesting property that it is “positive definite,” in the
following sense:

Definition 1 A function φ : R → C is positive definite if for every n ∈ N, z ∈ Cn, and
ω ∈ R

n,
n

∑

j,k=1

zjφ(ωj − ωk)z̄k ≥ 0

or, equivalently, that each n× n matrix Ajk := φ(ωj − ωk) is positive-definite.

Here’s a proof that φ(ω) :=
∫

R
eiωxµ(dx) is positive definite, for every distribution µ on
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(R,B), with the interchange of summation & integration justified by Fubini’s Theorem:

n
∑

j,k=1

zjφ(ωj − ωk)z̄k =

n
∑

j,k=1

∫

R

zje
i x(ωj−ωk)µ(dx)z̄k

=

∫

R

{

n
∑

j=1

zje
i xωj

} {

n
∑

k=1

zkei xωk

}

µ(dx)

=

∫

R

∣

∣

∣

∣

∣

n
∑

j=1

zje
i xωj

∣

∣

∣

∣

∣

2

µ(dx)

≥ 0.

Interestingly, this condition is also sufficient:

Theorem 1 (Bochner) If φ : R → C is continuous at zero, satisfies φ(0) = 1, and is
positive definite, then there exists a Borel probability measure µ on (R,B) such that φ(ω) =
∫

R
eiωxµ(dx) for each ω ∈ R.

Here’s a proof sketch for the special (but common) case where φ ∈ L1(R, dω). By positive
definiteness, for any {ωj} ⊂ R and {zj} ⊂ C,

0 ≤
∑

zjφ(ωj − ωk)z̄k

and in particular, for x ∈ R, ǫ > 0, and zj := exp(−ixωj − ǫω2
j/2),

0 ≤
∑

e−ix(ωj−ωk)−ǫ(ω2
j +ω2

k
)/2φ(ωj − ωk).

Taking ωj := j/n for −n2 ≤ j ≤ n2 and then taking the limit as n → ∞,

0 ≤
∫∫

R2

e−ix(u−v)−ǫ(u2+v2)/2φ(u− v) du dv

Now change variables from v to ω := (u− v):

=

∫∫

R2

e−ixω−ǫ[u2+(u2−2uω+ω2)]/2φ(ω) du dω

=

∫

R

e−ixω−ǫω2/2

{
∫

R

e−ǫ(u−ω/2)2+ω2/4 du

}

φ(ω) dω

=
√

π/ǫ

∫

R

e−ixω−ǫω2/4φ(ω) dω

Re-scaling and then taking ǫ → 0, we find that f(x) := 1
2π

∫

R
e−ixωφ(ω) dω ≥ 0 for every

x ∈ R and can verify that φ(ω) =
∫

R
eiωxµ(dx) for the absolutely-continuous distribution

given by µ(dx) = f(x) dx.
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9.1.3 Inversion: Integer-valued Discrete Case

Notice that the integer-valued discrete distributions always satisfy φ(ω + 2π) = φ(ω) (and
in particular are not integrable over R), while the continuous ones satisfy |φ(ω)| → 0 as
ω → ±∞. For integer-valued random variables X we can recover the probability mass
function pk := P[X = k] by inverting the Fourier series:

φ(ω) = E[eiωX ] =
∑

pk e
ikω, so (by Fubini’s thm)

pk =
1

2π

∫ π

−π

e−ikω φ(ω) dω.

9.1.4 Inversion: Continuous Random Variables

Now let’s turn to the case of a distribution with a density function; first two preliminaries.
For any real or complex numbers a, b, c it is easy to compute (by completing the square)
that

∫ ∞

−∞
e−a−bx−cx2

dx =

√

π

c
e−a+b2/4c (1)

if c has positive real part, and otherwise the integral is infinite. In particular, for any ǫ > 0
the function γǫ(x) := 1√

2πǫ
e−x2/2ǫ satisfies

∫

γǫ(x) dx = 1 (it’s just the normal pdf with mean

0 and variance ǫ).

Let µ(dx) = f(x)dx be any probability distribution with density function f(x) and ch.f.
φ(ω) = µ̂(ω) =

∫

eiωx f(x) dx. Then |φ(ω)| ≤ 1 so for any ǫ > 0 the function |e−iyω−ǫω2/2φ(ω)|
is bounded above by e−ǫω2/2 and so is integrable w.r.t. ω over R. We can compute

1

2π

∫

R

e−iyω−ǫω2/2φ(ω) dω =
1

2π

∫

R

e−iyω−ǫω2/2

[
∫

R

eixωf(x) dx

]

dω

=
1

2π

∫

R2

ei(x−y)ω−ǫω2/2f(x) dx dω

=
1

2π

∫

R

[
∫

R

ei(x−y)ω−ǫω2/2 dω

]

f(x) dx (2)

=
1

2π

∫

R

[

√

2π

ǫ
e−(x−y)2/2ǫ

]

f(x) dx (3)

=
1√
2πǫ

∫

R

e−(x−y)2/2ǫf(x) dx

= [γǫ ⋆ f ](y) = [γǫ ⋆ µ](y)

(where the interchange of orders of integration in (2) is justified by Fubini’s theorem and the
calculation in (3) by equation (1)), the convolution of the normal kernel γǫ(·) with f(y). As
ǫ → 0 this converges
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• uniformly (and in L1) to f(y) if f(·) is bounded and continuous, the most common
case;

• pointwise to f(y−)+f(y+)
2

if f(x) has left and right limits at x = y; and

• to infinity if µ({y}) > 0, i.e., if P[X = y] > 0.

This is the Fourier Inversion Formula for f(x): we can recover the density f(x) from its
Fourier transform φ(ω) = µ̂(ω) by f(x) = 1

2π

∫

e−iωxφ(ω) dω, if that integral exists, or
otherwise as the limit

f(x) = lim
ǫ→0

1

2π

∫

e−iωx−ǫω2/2φ(ω) dω.

There are several interesting connections between the density function f(x) and characteristic
function φ(ω). If φ(ω) “wiggles” with rate approximately ξ, i.e., if φ(ω) ≈ a cos(ωξ) +
b sin(ωξ) + c, then f(x) will have a spike at x = ξ and X will have a high probability of
being close to ξ; if φ(ω) is very smooth (i.e., has well-behaved continuous derivatives of high
order) then it does not have high-frequency wiggles and f(x) falls off quickly for large |x|, so
E[|X|p] < ∞ for large p. If |φ(ω)| falls off quickly as ω → ±∞ then φ(ω) doesn’t have large
low -frequency components and f(x) must be rather tame, without any spikes. Thus φ and
f both capture information about the distribution, but from different perspectives. This is
often useful, for the vague descriptions of this paragraph can be made precise:

Theorem 2 If
∫

R
|µ̂(ω)| dω < ∞ then µǫ := µ ⋆ γǫ converges a.s as ǫ → 0 to an L1 function

f(x), µ̂ǫ(ω) :=
∫

eiωxµǫ(dx) converges uniformly to f̂(ω) :=
∫

eiωxf(x) dx, and µ(A) =
∫

A
f(x) dx for each Borel A ⊂ R. Also f(x) = 1

2π

∫

R
e−iωxµ̂(ω) dω for almost-every x.

Theorem 3 For any distribution µ and real numbers a < b,

µ(a, b) +
1

2
µ

(

{a, b}
)

= lim
T →∞

∫ T

−T

e−iωa − e−iωb

2πiω
µ̂(ω) dω.

Theorem 4 If
∫

R
|x|k µ(dx) < ∞ for an integer k ≥ 0 then µ̂(ω) has continuous derivatives

of order k given by

µ̂(k)(ω) =

∫

R

(ix)keiωx µ(dx). (1)

Conversely, if µ̂(ω) has a derivative of finite even order k at ω = 0, then
∫

R
|x|k µ(dx) < ∞

and

EXk =

∫

R

xk µ(dx) = (−1)k/2 µ̂(k)(0). (2)
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To prove (1) first note it’s true by definition for k = 0, then apply induction:

µ̂(k+1)(ω) = lim
ǫ→0

∫

R

(ix)k

(

eiǫx − 1

ǫ

)

eiωx µ(dx)

=

∫

R

(ix)k+1eiωx µ(dx)

by LDCT since |eiǫx − 1| ≤ ǫ|x|.
By Theorem 4 the first few moments of the distribution, if they exist, can be determined
from derivatives of the characteristic function or its logarithm logφ(z) at z = 0: φ(0) = 1,
φ′(0) = iE[X], φ′′(0) = −E[X2], so

[log φ] (0) = log φ(0) = log 1 = 0
Mean: [log φ]′ (0) = φ′(0)/φ(0) = iE[X] = iµ

Variance: [log φ]′′ (0) = φ′′(0)φ(0)−(φ′(0))2

φ(0)2 = E[X]2 − E[X2] = −σ2

Etc.: [log φ]′′′ (0) = −iE[X3] − 3σ2µ− µ3 ≤ cE|X|3

for some c < ∞, so by Taylor’s theorem we have:1

logφ(ω) = 0 + iµω − σ2ω2/2 + O(ω3) (3)

φ(ω) ≈ eiµω−σ2ω2/2+O(ω3)

9.1.5 Convergence in Distribution

In the Week 6 Notes we defined convergence in distribution of a sequence of distributions
{µn} to a limiting distribution µ on a measurable space (X , E) (written µn ⇒ µ):

(

∀φ ∈ Cb(X )
)

lim
n→∞

∫

X
φ(x)µn(dx) =

∫

X
φ(x)µ(dx) (4)

In fact requiring this convergence for all bounded continuous functions φ is more than what
is necessary. For X = Rd, for example, it is enough to verify (4) for infinitely-differentiable
C∞

b , or even just for complex exponentials φω(x) = exp(iω′x) for ω ∈ Rd, i.e.,

Theorem 5 Let {µn(dx)} and µ(dx) be distributions on Euclidean space (Rd,B). Then
µn ⇒ µ if and only if the characteristic functions converge pointwise, i.e., if

φn(ω) :=

∫

Rd

eiω′x µn(dx) → φ(ω) :=

∫

Rd

eiω′x µ(dx) (5)

for all ω ∈ R
d.

How would you prove this?

1The “big oh” notation “f = O(g) at a” means that for some M < ∞ and ǫ > 0, |f(x)| ≤ Mg(x)
whenever |x − a| < ǫ— roughly, that lim sup

x→a
|f(x)/g(x)| < ∞. Here (implicitly) a = 0.
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Examples

Un: Let Xn have the discrete uniform distribution on the points j/n, for 1 ≤ j ≤ n. Then
its ch.f. is

φn(ω) =
1

n

n
∑

j=1

eiωj/n

=
eiω/n − ei(n+1)ω/n

n(1 − eiω/n)

=
1 − eiω

n(e−iω/n − 1)

→ 1 − eiω

−iω =
eiω − 1

iω
=

∫ 1

0

eiωx dx,

the ch.f. of the Un(0, 1) distribution.

Po: Let Xn have Binomial Bi(n, pn) distributions with success probabilities pn ≍ λ/n, so
that n pn → λ for some λ > 0 as n → ∞. Then the ch.f.s satisfy

φn(ω) =
n

∑

k=0

(

n

k

)

eiωk pk
n (1 − pn)n−k

=
[

1 + pn(eiω − 1)
]n → e(eiω−1)λ,

the ch.f. of the Po(λ) distribution. This is an example of a “law of small numbers”.

No: Let Xn have Binomial Bi(n, pn) distributions with success probabilities pn such that
σ2

n := n pn(1 − pn) → ∞ as n → ∞, and set µn := npn. Then the ch.f.s of Zn :=
(Xn − µn)/σn satisfy

φn(ω) =
[

1 + pn(eiω/σn − 1)
]n
e−iωµn/σn

≈ exp
{

µn(eiω/σn − 1) − pnµn(eiω/σn − 1)2/2 − iωµn/σn

}

≈ exp
{

iµnω/σn − µnω
2/2σ2

n − pnµn(−ω2/σ2
n)/2 − iωµn/σn

}

→ e−ω2/2,

the ch.f. of the No(0, 1) distribution. This result is called the “DeMoivre-Laplace”
theorem, a pre-cursor (and special case) of the Central Limit Theorem.

9.2 Limits of Partial Sums and the Central Limit Theorem

Let {Xi} be iid and L2, with common mean µ and variance σ2, and set Sn :=
∑n

i=1 Xi for
n ∈ N. We’ll need to center and scale the distribution of Sn before we can hope to make
sense of Sn’s distribution for large n, so we’ll need some facts about characteristic functions
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of linear combinations of independent RVs. For independent X and Y , and real numbers α,
β, γ,

φα+βX+γY (ω) = Eeiω(α+βX+γY ) = Eeiωα
EeiωβX

EeiωγY = eiωα φX(ωβ)φY (ωγ).

In particular, for iid L3 random variables {Xi} with characteristic function φ(t), the nor-
malized sum [Sn − nµ]/

√
nσ2 has characteristic function

φn(ω) =

n
∏

j=1

[

φ
(

ω/
√
nσ2

)

e−iωµ/
√

nσ2
]

Setting s := ω/
√
nσ2, this is

=
[

φ(s)e−isµ
]n

= en[log φ(s)−isµ]

with logarithm

logφn(ω) = n
[

logφ(s) − isµ
]

= n
[

0 + iµs− σ2s2/2 + O(s3)
]

− nisµ (by (3))

= −n
[

σ2(ω2/nσ2)/2 + O(n−3/2)
]

(since s2 = ω2/nσ2)

= −ω2/2 + O(n−1/2),

so φn(ω) → e−ω2/2 for all ω ∈ R and hence Zn := [Sn − nµ]/
√
nσ2 ⇒ No(0, 1), the Central

Limit Theorem.

Note: We assumed Xi were iid with finite third moment γ := E|Xi|3 < ∞. Under those con-
ditions one can prove the uniform “Berry-Esséen” bound supx |Fn(x) − Φ(x)| ≤ γ/

[

2σ3
√
n

]

for the CDF Fn of Zn. Another version of the CLT for iid {Xi} asserts weak convergence of
Zn to No(0, 1) assuming only E[X2

i ] < ∞ (i.e., no L3 requirement), but this version gives no
bound on the difference of the CDFs. Another famous version, due to Lindeberg and Feller,
asserts that

Sn

sn
=⇒ No(0, 1)

for partial sums Sn = X1 + · · · +Xn of independent mean-zero L2 random variables Xj that
need not be identically distributed, but whose variances σ2

j = V[Xj ] aren’t too extreme. The
specific condition, for s2

n := σ2
1 + · · · + σ2

n, is

1

s2
n

n
∑

j=1

E
{

X2
j 1{|Xj |>tsn}

}

→ 0
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as n → ∞ for each t > 0. This follows immediately for iid {Xj} ⊂ L2 (where it becomes
1

σ2 E
[

|X1|2 1{|X1|2>nt2σ2}
]

which tends to zero as n → ∞ by the DCT), but for applications
it’s important to know that independent but non-iid summands still lead to a CLT.

This “Lindeberg Condition” implies both of

max
j≤n

σ2
j

s2
n

→ 0 max
j≤n

P {|Xj|/sn > ǫ} → 0

as n → ∞, for any ǫ > 0; roughly, no single Xj is allowed to dominate the sum Sn. This
condition follows from the easier-to-verify Liapunov Condition, (∃δ > 0) s.t.:

s−2−δ
n

n
∑

j=1

E|Xj|2+δ → 0 as n → ∞.

Other versions of the CLT apply to non-identically distributed or nonindependent {Xj}, but
Sn cannot converge to a normally-distributed limit if E[X2] = ∞; ask for details (or read
Gnedenko and Kolmogorov (1968)) if you’re interested.

More recently an interesting new approach to proving the Central Limit Theorem and related
estimates with error bounds was developed by Charles Stein (Stein, 1972, 1986; Barbour and
Chen, 2005), described later in these notes.

9.3 Failure of Central Limit Theorem

The CLT only applies to square-integrable random variables {Xj} ⊂ L2. Some contemporary
statistical work, both theoretical and applied, entails heavier-tailed distributions that do not
have a finite variance (or, often, even a finite mean). In these cases, sums and averages of
independent random variables do not have have approximate normal distributions, and may
not even be concentrated around a central value.

For example, if {Xi} iid∼ Ca(m, s) are IID Cauchy random variables with pdf and ch.f.

f(x) =
s/π

s2 + (x−m)2
χ(ω) = exp

(

imω − s|ω|
)

then the sample mean X̄n ∼ Ca(m, s) also has the same Cauchy distribution— and, in
particular, no weak or strong LLN applies and no CLT applies.

Worse— if {ζi} iid∼ No(0, 1) are IID standard Normals, then the random variables Xi :=
1/ζi|ζi| have the symmetric α-stable St(1

2
, 0, 1, 0) distribution with ch.f. χ1(ω) := exp(−|ω|1/2),

so the sample average X̄n has ch.f.

χn(ω) =
[

χ1(ω/n)
]n

= exp
(

− |nω|1/2
)

,

the same distribution as nX1. The average of several independent replicates has a much
wider distribution than the individual terms.

Heavy-tailed distributions like the Fréchet, α-Stable, and Pareto arise when modeling income
distribution, weather extremes, volcanic flows, and many other phenomena.
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10 Distributional Limits of Heavy-Tailed Sums

Although one cannot expect X̄n to have an approximate normal distribution for {Xi} 6⊂ L2,
other distributional limit theorems may still apply. Before we introduce those, we introduce
some tools useful for studying heavy-tailed distributions.

10.1 Compound Poisson Distributions

Let Xj have independent Poisson distributions with means νj and let uj ∈ R; then the ch.f.
for Y :=

∑

uj Xj is

φY (ω) =
∏

exp
[

νj(e
iωuj − 1)

]

= exp
[

∑

(eiωuj − 1)νj

]

= exp
[

∫

R

(eiωu − 1)ν(du)
]

for the discrete measure ν(du) =
∑

νjδuj
(du) that assigns mass νj to each point uj. Evidently

we could take a limit using a sequence of discrete measures that converges to a continuous
measure ν(du) so long as the integral makes sense, i.e.,

∫

R
|eiωu−1|ν(du) < ∞; this will follow

from the requirement that
∫

R
(1 ∧ |u|)ν(du) < ∞. Such a distribution is called Compound

Poisson, at least when ν+ := ν(R) < ∞; in that case we can also write represent it in the
form

Y =
N

∑

i=1

Xi, N ∼ Po(ν+), Xi
iid∼ ν(dx)/ν+.

We’ll now see that it includes an astonishingly large set of distributions, each with ch.f. of
the form exp

{ ∫

(eiωu − 1)ν(du)
}

with “Lévy measure” ν(du) as given:

Distribution Log Ch Function φ(ω) Lévy Measure ν(du)

Poisson Po(λ) λ(eiω − 1) λδ1(du)
Gamma: Ga(α, λ) −α log(1−iω/λ) αe−λuu−1 1{u>0}du
Normal: No(0, σ2) −ω2σ2/2 −1

2
σ2δ′′

0(du)

Neg Bin: NB(α, p) −α log[1 − p
q
(eiω − 1)]

∑∞
k=1

αpk

k
δk(du)

Cauchy: Ca(γ, 0) −γ|ω| γ
π
u−2 du

Stable: StA(α, β, γ) −γ|ω|α[1 − iβ tan πα
2

sgn(ω)] γcα [1 + β sgn u]α|u|−1−α du,

where cα := 1
π
Γ(α) sin πα

2
. Try to verify the measures ν(du) for the Negative Binomial and

Cauchy distributions. All these distributions share the property called infinite divisibility
(“ID” for short), that for every integer n ∈ N each can be written as a sum of n independent
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identically distributed terms. In 1936 the French probabilist Paul Lévy and Russian proba-
bilist Alexander Ya. Khinchine discovered that every distribution with this property must
have a ch.f. of a very slightly more general form than that given above,

log φ(ω) = iaω − σ2

2
ω2 +

∫

R

[

eiωu − 1 − iω h(u)
]

ν(du),

where a ∈ R and σ ∈ R+ are constants and where h(u) is any bounded Borel function
that acts like u for u close to zero (for example, h(u) = arctan(u) or h(u) = sin(u) or
h(u) = u/(1 + u2)). The measure ν(du) need not quite be finite, but we must have u2

integrable near zero and 1 integrable away from zero... one way to write this is to require
that

∫

(1 ∧ u2) ν(du) < ∞, another is to require
∫

u2

1+u2 ν(du) < ∞. Some authors consider

the finite measure κ(du) = u2

1+u2ν(du) and write

log φ(ω) = iaω +

∫

R

[

eiωu − 1 − iω h(u)
]1 + u2

u2
κ(du),

where now the Gaussian component −σ2ω2

2
arises from a point mass for κ(du) of size σ2 at

u = 0.

If u is locally integrable, i.e., if
∫ ǫ

−ǫ
|u| ν(du) < ∞ for some (and hence every) ǫ > 0, then

the term “−iω h(u)” is unnecessary (it can be absorbed into iaω). This always happens if
ν(R−) = 0, i.e., if ν is concentrated on the positive half-line. Every increasing stationary
independent-increment stochastic process Xt (or subordinator) has increments which are
infinitely divisible with ν concentrated on the positive half-line and no Gaussian component
(σ2 = 0), so has the representation

logφ(ω) = iaω +

∫ ∞

0

[

eiωu − 1
]

ν(du)

for some a ≥ 0 and some measure ν on R+ with
∫ ∞

0
(1 ∧ u) ν(du) < ∞. In the compound

Poisson example, ν(du) =
∑

νjδuj
(du) was the sum of point masses of size νj at the possible

jump magnitudes uj. This interpretation extends to help us understand all ID distributions:
every ID random variable X may be viewed as the sum of a constant, a Gaussian random
variable, and a compound Poisson random variable, the sum of independent Poisson jumps
of sizes u ∈ E ⊂ R with rates ν(E).

10.2 Stable Limit Laws

Let Sn = X1+· · ·+Xn be the partial sum of iid random variables. IF the random variables are
all square integrable, THEN the Central Limit Theorem applies and necessarily Sn−nµ√

nσ2
=⇒

No(0, 1). But what if each Xn is not square integrable? We have already seen that the CLT
fails for Cauchy variables Xj. Denote by F (x) = P[Xn ≤ x] the common CDF of the {Xn}.

Page 12Page 12Page 12



STA 711 Week 9 R L WolpertSTA 711 Week 9 R L WolpertSTA 711 Week 9 R L Wolpert

Theorem 6 (Stable Limit Law) Let Sn =
∑

j≤nXj be the sum of iid random variables.
There exist constants An > 0 and Bn ∈ R and a non-trivial distribution G for which the
scaled and centered partial sums converge in distribution

Sn −Bn

An
=⇒ G

to a non-trivial limit G if and only if {Xj} ⊂ L2 (in which case An ≍ √
n, Bn = nµ+O(

√
n),

and G = No
(

µ, σ2) is the Normal distribution) or there are constants 0 < α < 2, M− ≥ 0,
and M+ ≥ 0, with M− + M+ > 0, such that as x → ∞ the following limits hold for every
ξ > 0:

M+ = lim
x→∞

xα[1 − F (x)] and, if M+ > 0,
1 − F (xξ)

1 − F (x)
→ ξ−α (6)

M− = lim
x→∞

xα[F (−x)] and, if M− > 0,
F (−xξ)
F (−x)

→ ξ−α

In this case the limit is the α-Stable Distribution, with index α, with characteristic
function

E
[

eiωY
]

= exp
{

iδω − γ|ω|α
[

1 − iβ tan πα
2

sgn(ω)
]}

(7a)

in the StA parametrization, where β = M+−M−

M−+M+ , γ = (M− + M+), and δ ∈ R is arbitrary.
The sequences An, Bn must be (see Section (10.5))

An =
(

LA
n

)

n1/α Bn =

{

(

LB
n

)(

βγ tan πα
2

− δ
)(

n1/α − n
)

α 6= 1
(

LB
n

)

2βγ
π
n logn α = 1

(8)

for constants or sequences LA
n ,LB

n that, like (logn)p for any power p ∈ R but not like np for
any p 6= 0, are “slowly varying” in the sense that

lim
n→∞

Lc n

Ln
= 1

for every c > 0. Don’t get mesmerized by this— think of the Lns as proportionality constants.

For α ∈ (1, 2) the sample means converge at rate n(1−α)/α to EY , more slowly (much more
slowly, if α is close to one) than in the L2 case where the central limit theorem applies and
X̄n → µ at rate n−1/2. No means exist for α ≤ 1. The limits in (6) above are equivalent
to the requirement that F (x) ∝ |x|−αL−(x) as x → −∞ and (1 − F (x)) ∝ x−αL+(x) as
x → +∞ for slowly varying functions L±— roughly, that F (−x) and 1 − F (x) are both
∝ x−α (or zero) as x → ∞, i.e., that the pdf falls off like |x|−α−1 in both directions.
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The simplest case is the symmetric α-stable (SαS). For 0 < α ≤ 2 and 0 < γ < ∞, the
St(α, 0, γ, 0) has ch.f.

φ(ω) = e−γ|ω|α

This includes the centered Cauchy Ca(0, s) (with α = 1, γ = s) and the centered Normal
No(0, σ2) (with α = 2, γ = σ2/2). The SαS family interpolates between these (for 1 < α < 2)
and extends them (for 0 < α < 1) to distributions with even heavier tails.

Although each Stable distribution has an absolutely continuous distribution with continuous
unimodal probability density function f(y), these two cases and the “inverse Gaussian” or
“Lévy” distribution with α = 1/2 and β = ±1 are the only ones whose pdf is available in
closed form. Perhaps that’s the reason these are less studied than normal distributions; still,
they are very useful for problems with “heavy tails”, i.e., where P[X > u] does not die off
quickly with increasing u. The symmetric (SαS) ones all have bell-shaped pdfs.

Moments are easy enough to compute but, for α < 2, moments E|X|p are only finite for
p < α. In particular, means only exist for α > 1 and none of them has a finite variance.
The Cauchy has finite moments of order p < 1, but (despite its symmetry) does not have a
well-defined mean.

Equation (6) says that each tail must be fall off like a power (sometimes called Pareto tails),
and the powers must be identical; it also gives the tail ratio. A common special case is
M− = 0 (or equivalently β = 1) , the “one-sided” or “fully skewed” Stable. For 0 < α < 1
these take only values in [δ,∞) (R+ if δ = 0). For example, random variables Xn with
the Pareto distribution (often used to model income) given by P[Xn > t] = (1 + t/k)−α for
t ∈ R+ and some α > 0, k > 0 will have a stable limit for their partial sums if α < 2, and
(by CLT) a normal limit if α ≥ 2. There are close connections between the theory of Stable
random variables and the more general theory of statistical extremes. Ask me for references
if you’d like to learn more about this exciting area.

Expression (7a) for the α-stable ch.f. (called the “A-parametrization” StA(α, β, γ, δ) by Zolo-
tarev (1986)) behaves badly as α → 1 if β 6= 0, because the tangent function has a pole at
π/2— so, for β > 0, the imaginary part of log E

[

eiωY
]

converges to +∞ as α ր 1 and to
−∞ as α ց 1 (the signs reverse for β < 0). For α ≈ 1 the complex part of the log ch.f. is:

ℑ
{

log E[eiωY ]
}

= iδω + iβγ tan πα
2

|ω|α sgn(ω)

= iδω + iβγ tan πα
2

|ω|α−1ω

= iω
[

δ + βγ tan πα
2

]

− iβγ tan πα
2
ω

(

1 − |ω|α−1
)

where the last term is bounded as α → 1, so (following V. M. Zolotarev, 1986) the α-stable
is often parametrized differently in the “M-parametrization” StM(α, β, γ, δ) as

E[eiωY ] = exp
{

−γ|ω|α + iδ∗ω − iβγ tan πα
2
ω

(

1 − |ω|α−1
)}

(9)

for α 6= 1 with shifted “drift” term δ∗ = δ+ βγ tan(πα/2). You can find out more details by
asking me or reading Breiman (1968, Chapter 9).
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10.3 Examples

Let {Un} iid∼ Un(0, 1), and set Xn := 1/Un. How would you describe the distribution of

Sn :=
∑

j≤nXj , or of X̄n := 1
n
Sn? Evidently EXn =

∫ 1

0
1
u
du = ∞, so 1

n
Sn → ∞ a.s.; to get

any interesting limit we will have to rescale or recenter or both.

By Theorem 6, there exist sequences {An}, {Bn} such that (Sn − Bn)/An ⇒ G for a non-
trivial distribution G if and only if Xn ∈ L2 (which fails in this case) or if the CDF

F (z) = P[Xn ≤ z] = P[Un ≥ 1/z] =

{

1 − 1/z z > 1

0 z ≤ 1

satisfies for some 0 < α < 2 the conditions M+ = limx→∞ xα[1 − F (x)] ≥ 0, M− =
limx→∞ xα[F (−x)] ≥ 0, (M− +M+) > 0 and, if M+ > 0,

1 − F (xξ)

1 − F (x)
=

1/xξ

1/x
→ ξ−α.

Evidently the conditions hold for α = 1, M− = 0, and M+ = 1, so β = M+/(M− +M+) = 1
and γ = (M− + M+) = 1. By (8), with α = β = γ = 1, suitable sequences are given by
An = n and Bn = 2

π
n logn, so

Sn − 2
π
n log n

n
=
Sn

n
− 2

π
log n ≈ StM(α = 1, β = 1, γ = 1, δ = 0),

or

Sn

n
≈ StM(α = 1, β = 1, γ = 1, δ =

2

π
logn).

Sample averages X̄n of Xj := (1/Uj) will grow to infinity at approximate rate (2/π) logn,
and X̄n − (2/π) logn will have an asymptotic StM(1, 1, 1, 0) distribution. What do you think

happens to X̄n for Xn := U
−1/α
n for other values of α > 0?

10.4 Key Idea of the Stable Limit Laws

The stable limit law of Theorem 6 says that if there exist nonrandom sequences An > 0 and
Bn ∈ R and a nondegenerate distribution G such that the partial sums Sn :=

∑

j≤nXj of
iid random variables {Xj} satisfy

Sn −Bn

An
=⇒ G (10)

then G must be either the normal distribution or an α-stable distribution for some 0 < α < 2.
The key idea behind the theorem is that if a distribution µ with cdf G satisfies (10) then
also for any n the distribution of the sum Sn of n independent random variables with cdf G
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must also (after suitable shift and scale changes) have cdf G— i.e., that cn Sn + dn ∼ G for
some constants cn > 0 and dn ∈ R, so the characteristic function χ(ω) :=

∫

eiωx G(dx) and
log ch.f. ψ(ω) := logχ(ω) must satisfy

χ(ω) = E exp {iω(cn Sn + dn)}
= exp(iωdn) χ(ωcn)n

ψ(ω) = iωdn + nψ(cnω) (11)

whose only solutions are the normal and α-stable distributions. Here’s a sketch of the proof
for the symmetric (SαS) case, where ψ(−ω) = ψ(ω) and so dn = 0. Set γ := −ψ(1) and
note that (11) with ω = ck

n for k = 0, 1, . . . implies successively:

ψ(cn) =
−γ
n

ψ(c2
n) = ψ(cn)

1

n
=

−γ
n2

. . . ψ(ck
n) =

−γ
nk

.

Results from complex analysis imply this must hold for all k ≥ 0, not just integers. Thus,
with |w| = ck

n and k = log |w|/ log cn,

ψ(w) = −γn−k

= −γ exp {−(log |w|)(logn)/(log cn)}
= −γ|w|−(log n)/(log cn)

= −γ|w|α,

where α is the constant value of − log n
log cn

. It follows that cn = n−1/α (i.e., Sn/n
1/α ∼ G) and

that χ(ω) = e−γ|ω|α, the ch.f. for SαS for 0 < α < 2 and for No(0, 2γ) for α = 2.

10.5 The constants An and Bn

Here we show where the constants given in (8) come from. Let φ(ω) be the ch.f. of iid random
variables Yi ∼ StM(α, β, γ, δ) (given in (9)), and let ψ(ω) := log φ(ω) be its logarithm. For
the partial sums Sn :=

∑n
j=1 Yj to have the property that (Sn −Bn)/An ∼ StM(α, β, γ, δ) has

the same distribution as Yj for each n, we need

ψ(ω) = −γ|ω|α + iδ∗ω − iβγ tan πα
2
ω

(

1 − |ω|α−1
)

= nψ(ω/An) − iωBn/An

= −
[ n

An
α

]

γ|ω|α + iω
n

An

{

δ∗ − βγ tan πα
2

− Bn/n
}

(12)

+
[ n

An
α

]

iβγ tan πα
2
ω|ω|α−1.

From the real part of (12) we find An = n1/α, and from the imaginary part we find Bn =
(

βγ tan πα
2

− δ
)(

n1/α − n
)

for α 6= 1. Find the value of Bn for α = 1 as a limit.
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