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Abstract. Direct coupling of computer models is often difficult for computational and logistical reasons. We4
propose coupling computer models by linking independently developed Gaussian process emulators5
(GaSPs) of these models. Linked emulators are developed that are closed form, namely normally6
distributed with closed form predictive mean and variance functions. These are compared with a7
more direct emulation strategy, namely running the coupled computer models and directly emulating8
the system; perhaps surprisingly, this direct emulator was inferior in all illustrations. Pedagogical9
examples are given as well as an application to coupling of real computer models.10
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1. Introduction. Gaussian processes (GaSPs) have become a common tool for emulating13

(approximating) complex computer models. An example is [1], where an objective Bayesian14

implementation of a GaSP is used to approximate a computer model of a pyroclastic flow on15

a volcano, with the ultimate goal of identifying conditions which lead to hazardous events.16

Sometimes more than one computer model needs to be utilized for the predictive goal. For17

instance, to model the true danger of a pyroclastic flow, one might need to combine the flow18

model (which can produce the flow size and force at a location) with a computer model that19

provides an assessment of structural damage, for a given flow size and force. Or to predict the20

danger from volcanic ash, one needs to combine a plume model that gives the magnitude and21

height of an eruption, together with a wind model that will predict its dispersion. Coupling of22

a system of models is used in many other important applications, e.g. climate modeling [22],23

oil fracturing simulation [19], and seismic activity modeling [13].24

The specific context we consider is that of having a computer model g(z1, . . . , zd), the25

zi being model inputs, at least some of which themselves arise from computer models, i.e.,26

zi = fi(·), where fi(·) is a computer model with its own inputs.27

Direct coupling of computer models is often difficult, for both computational reasons and28

logistical reasons (e.g., the outputs of one model may not be completely compatible with29

the inputs of the other). Thus, in this work, we propose coupling computer models by first30

developing separate Gaussian process emulators for each model, and then linking the emulators31

through analytic methods; we will call this the linked emulator.32

Another possible approach is to sequentially exercise the coupled computer models, ob-33

taining input/output pairs, the inputs from the first model and the outputs from the coupled34
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model. A composite emulator is an emulator developed directly from this input/output data.35

While seemingly the natural way to emulate a coupled system, this approach cannot always36

be implemented; it might not be feasible to sequentially exercise the computer models, or one37

might only have previous separate runs of the models to deal with. This provided the original38

motivation for developing the linked emulator.39

Perhaps surprisingly, we found in all our illustrations that the linked emulator actually40

performed better than the composite emulator (and often dramatically so) according to all41

evaluation measures used. The reason appears to be that coupled models are typically less42

smooth than the component models, making their emulation more difficult. This, of course,43

need not always be the case, but the fact that we encountered this in all our examples (many44

not shown in the paper) is revealing.45

The approach to the problem of linking statistical emulators that we have taken origi-46

nates from the work on sensitivity analysis of the output due to uncertain inputs [4, 16]. The47

straightforward approach to linking would be simply to do so by simulation [8]: for a given48

input to the first emulator, draw a sample from the GaSP emulator output, and then run this49

sample through the second emulator to obtain a sample from the linked emulator. This can50

become computationally expensive, however, especially because one often needs to perform an51

optimization or MCMC analysis involving randomness in the original emulator input. Alter-52

natively, variational Bayesian methods [7] may be applied for finding a good approximation to53

the system. Other papers also work with individual models of coupled systems. For instance,54

[21] provides an excellent review of the uses of experiments on individual models in the overall55

task of verification and assessment of a coupled system; the paper does not consider emulators,56

however.57

In this work, we seek a closed form expression for the linked emulator and its uncertainty.58

For certain GaSPs, one can give closed form expressions for the overall mean and variance of59

the linked emulator [6], and we generalize those results to the more complex situations con-60

sidered herein. Unfortunately, the linked emulator itself does not have a simple distribution,61

so we simply approximate it by a normal distribution with the closed form mean and vari-62

ance; this forms our recommended closed form linked emulator. The accuracy of the normal63

approximation is studied, empirically and with limited theoretical results, and seems to be64

very good.65

Illustrations given in the paper include several pedagogical examples and an application66

to coupling of real computer models: coupling of bent – a computer model of volcanic ash67

plumes arising from a vent – and puff – a computer model of ash dispersion.68

The model bent has four inputs: vent radius, vent source velocity, and the mean and69

standard deviation of ejected volcanic particles. The model solves for characteristics of the70

ensuing volcanic eruption column, in particular, giving the minimum and maximum height71

of the column, its width, and the size characteristics of ash particles in the plume (in terms72

of their means and standard deviations); denote these d = 5 outputs f1(·), . . . , f5(·). The73

outputs of bent act as inputs to the model puff, denoted as g(f1(·), . . . , f5(·)), which solves for74

the ensuing ash cloud height at various space-time locations, based on a specified wind-field75

that disperses the ash. The schematic diagram of inputs and outputs of the coupled model is76

provided in Figure 1.77

The outline of the paper is as follows. Section 2 gives a general description of the GaSP78
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Figure 1. The diagram of the composite coupled model of volcano eruption, bent-puff.

emulator methodology. We present the linked emulator in section 3 and its linear approxima-79

tion in section 4. An illustration of the approach is given in subsection 4.1. In section 5 we80

compare the linked emulator to the alternative composite emulator, directly constructed from81

the coupled computer models.82

For computational reasons, uncertainty in the parameters of Gaussian process emulators is83

often ignored. Objective Bayes methodology provides a framework to overcome this problem,84

by providing analytically tractable full Bayesian inference [2]. Section 6 provides a description85

of the GaSP emulator within this framework, and the corresponding linked emulators are86

given. We present the bent-puff case study in section 7. We conclude with a discussion87

in section 8.88

2. Preliminaries.89

2.1. GaSP emulator of a computer model. Suppose a computer model g represents90

a smooth function g(z), which takes input z ∈ D ⊆ Rd (possibly, multidimensional,91

d ≥ 1) and produces an output g(z) ∈ R. Suppose we observe m computer model out-92

puts (g(z1), . . . , g(zm)), evaluated at corresponding inputs z = (z1, . . . , zm). From this set of93

inputs and outputs, assuming a Gaussian process prior on computer model data, one finds a94

probabilistic representation of an output of a computer model g at a new input z′.95

A Gaussian stochastic process, gM (·), is fully specified by its mean and covariance function.96

Given parameters, θg, of the GaSP, for any finite set z = {z1, . . . , zm} of d-dimensional97

inputs {zi = (zi1, zi2, . . . , zid)}mi=1, g
M(z) = {gM (z1), . . . , gM (zm)} = (g(z1), . . . , g(zm)) has98

a multivariate normal distribution. That is,99

gM(z) ∼ N(µ(z), σ2gKz) ,100

where µ(z) = (µ̃(z1), . . . , µ̃(zm)) and µ̃(·) is the mean function of the GaSP, σ2g is the unknown101

variance andKz is the correlation matrix whose (k, l) element is a correlation function c(zk, zl).102

Sometimes the GaSP model has to be augmented with iid mean-zero Gaussian white noise103

ε to provide a more appropriate emulator [11] or for numerical stability of a GaSP [9]. Then,104

for any z, gM(z) ∼ N(µ(z), σ2Kz + τ2I). For convenience we reparametrize the model as105

(1) gM(z) ∼ N(µ(z), σ2gCz) ,106

where Cz = Kz + ηI, with Kz being a correlation matrix defined as before and η determining107

the ratio of the nugget variance τ2 to σ2g .108
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We present the methodology for this general case of an emulator augmented with a nugget;109

note, however, that the results will also apply if the nugget effect is initially assumed to be110

zero (simply set η = 0 in the expressions).111

Note that GaSP computer model run outputs, gM(z), at a set of inputs z, together with112

computer model run outputs, gM(z′), at another set of inputs z′, follow a joint multivariate113

normal distribution114 (
gM(z)
gM(z′)

)
∼ N

((
µ(z)
µ(z′)

)
, σ2

(
Cz c(z, z′)

c(z′, z) Cz′

))
,115

where Cz′ is the correlation matrix whose (k, l)th element is a correlation function c(·, ·) and116

a nugget component for diagonal elements, that is c(z′k, z
′
l) + η1k=l.117

It follows that, conditional on the observed computer model evaluations gM(z), the poste-118

rior predictive GaSP at any input z′ (given GaSP parameters θg) follows a normal distribution119

with mean µ∗(z′) and variance σ∗2(z′) given by120

µ∗(z′) = µ(z′) + c(z′, z)C−1z (gM(z)− µ(z)),(2)121

σ∗2(z′) = σ2(Cz′ − c(z′, z)C−1z c(z, z′)).(3)122123

Traditionally the GaSP mean function µ̃(·) is chosen to be a linear model h(·)β, where124

h(·)T is a vector of regression functions [18] and β ∈ Rn is a vector of unknown regression125

coefficients, i.e.,126

h(·)β = β0h0(·) + β1h1(·) + . . .+ βnhn(·) .127

The GaSP correlation function c(·, ·) is typically assumed to be in the form of a product of128

one-dimensional correlation functions along each dimension of the d-dimensional inputs. The129

correlation between outputs at two inputs zk and zl equals130

c(zk, zl) =

d∏
j=1

c(zkj , zlj).131

For the jth coordinate, the correlation is often assumed to be of the power exponential form132

c(zkj , zlj) = exp

{
−
(
|zkj − zlj |

δj

)αj}
,133

with a range parameter δj ∈ (0,∞) and a smoothness parameter αj ∈ (0, 2] along each134

coordinate.135

The correlation c(z, z′)T = c(z′, z) = (c(z′, z1), . . . , c(z′, zm)). For any two inputs zi and136

z′, the resulting power exponential correlation is c(z′, zi) = exp
(
−
∑d

j=1

( |z′j−zij |
δj

)αj)
, where137

d is the number of coordinates in input z and j = 1, . . . , d denotes one of the d coordinates in138

each zi = (zi1, . . . , zid); i = 1, . . . ,m denotes one of m inputs z1, . . . , zm.139

We will primarily consider the case αj = 2, j = 1, . . . ,m, as this is the most important140

scenario in which closed form expressions for the mean and variance of the linked emulator141

are available. This will be discussed in section 3.142
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Once all the parameters of the GaSP, θg, are specified, the conditional posterior predictive143

distribution is used for emulation of the computer model g.144

2.2. Estimating parameters in the GaSP. It is common to just use maximum likelihood145

to estimate the GaSP parameters. However, these can be very problematical [12], and a better146

method is to develop estimates as posterior modes using an objective Bayesian implementa-147

tion, as initially done in [3]. Follow up work in [10], [12] and [17] has led to the following148

recommendations for estimating the highly confounded parameters σ2, η and {δj}j=1,...,d in the149

covariance function. First, transform to δ̃j = −αj log δj , for all j = 1, . . . , d, and η̃ = log η
1−η .150

Then estimate these as the marginal posterior modes found by objective Bayesian analysis,151

using the reference priors that are available in the above references. Finally, transform back to152

obtain estimates of η and {δj}j=1,...,d. All our analyses will be based on using these estimates.153

For the parameters β and σ2, however, there are several possibilities. One is to just154

use their maximum likelihood estimates, which are readily available; we will give resulting155

emulators the label ML. The second possibility is to perform a full objective Bayesian analysis156

with the mean parameters β, but use the maximum likelihood estimate of σ2; such emulators157

we assign the label POB, for ‘partial objective Bayes.’ We discuss this choice in subsection 6.1.158

The third possibility is to perform a full objective Bayesian analysis for both β and σ2; such159

emulators will be given the label OB, and will be discussed in subsection 6.2.160

2.3. Predictive evaluations. Although some theoretical evaluations of studied emulators161

will be possible, for most of the paper the evaluations will be empirical. We will utilize three162

standard predictive criteria: empirical frequency coverage (EFC) of a function by credible163

intervals from the emulator, root-mean-square predictive error (RMSPE) and average length164

(LCI) of the credible intervals.165

Let u = (u1, . . . , un) be n test points, for which the true value of a simulator f(ui) is known166

for each i = 1, . . . , n. For each test point we find a predictive distribution pi ∼ N(µi, σ
2
i ) or167

pi ∼ Tdf(µi, σ
2
i ) (needed for evaluation of later emulators), and form the 95% credible interval168

CIi = (q0.025i , q0.975i ), where q0.025i and q0.975i are, respectively, the 2.5% and 97.5% quantiles of169

the predictive distribution pi. Then the predictive criteria are defined as follows:170

EFC =
n∑
i=1

IYi∈CIi/n,171

RMSPE =

√√√√ n∑
i=1

(f(ui)− µi)2/n,172

LCI =

∑n
i=1(q

0.975
i − q0.025i )

n
.173

174

EFC, with the nominal value 95%, is the propotion of times the true function falls within175

the 95% credible intervals. RMSPE assesses the discrepancy between a simulator and an176

emulator’s mean. LCI is a measure of the stated accuracy of an emulator.177
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It is sometimes helpful to compare RMSPE with the reference quantity178

RMSPEbase =

√√√√ m∑
i=1

(f(ui)− f(z))2/m,179

where f(z) is the sample mean of the observed computer model outputs over the design points180

z = (z1, . . . , zm) used to construct the emulator. f(z) is, in some sense, the crudest possible181

emulator, so the ratio RMSPE/RMSPEbase measures the quality of the emulator being studied.182

3. Linked emulator. Suppose that we have two computer models, g and f , and have183

constructed their corresponding GaSP emulators, gM and fM , as described in subsection 2.1.184

Thus the GaSP emulator gM (·), of the model g at any new input, given pairs {z,g(z)} of185

model runs and GaSP parameters θg, is186

(4) gM (·) | gM(z), θg ∼ GaSP(µ∗g(·), σ∗2g (·, ·)).187

Likewise, the GaSP emulator fM (·), of the model f , given pairs {x, f(x)} of model runs and188

its parameters θf , is189

fM (·) | fM(x), θf ∼ GaSP(µ∗f (·), σ∗2f (·, ·)).190

In this section, the GaSP parameters are assumed known. In practice, they will either be191

specified (in the case of the shape parameters) or estimated, following subsection 2.2. The192

expressions in this section then just apply with the estimates plugged in.193

Suppose first that input z to g arises from the computer model f , so that we have the194

composite computer model g ◦ f . Assuming we have the above emulators for each model, we195

can then define the associated emulator gM ◦ fM . Actually, we are primarily interested only196

in the marginal distribution of this emulator, namely197

198

(5) p((g ◦ f)M (u) | gM(z), fM(x), θf , θg,u) =199 ∫
p(gM (fM (u)) | gM(z), fM (u), θg)p(fM (u) | fM(x), θf )df

M (u).200
201

202

Definition 3.1. The variable ξ = (g ◦ f)M (u) | gM(z), fM(x), θf , θg,u with the distribu-203

tion (5) is called the linked emulator.204

We will sometimes use the shortcut notation for the linked emulator205

(6) p((g ◦ f)M (·) =

∫
p(gM (fM (·)))p(fM (·))dfM (·).206

More generally, as defined in subsection 2.1, g will have a d-dimensional input. Suppose207

that the first b− 1 inputs do not arise from other computer models and hence do not need to208

be linked. (But they will still be part of the emulation of g.) The remaining inputs will result209

from computer models, fj , for coordinates j ∈ b, . . . , d. Assume, for each j ∈ b, . . . , d, that210
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we then construct a GaSP emulator, fMj (·), of the model fj , given pairs {xj, f(xj)} of model211

runs and parameters θfj , as212

fMj (·) | fM(xj), θfj ∼ GaSP(µ∗fj (·), σ
∗2
fj

(·, ·)).(7)213
214

Assuming independence of the fMj (·), the marginal distribution of the emulator of the215

composite computer model g ◦ (fb, . . . , fd), at a new input u, is then216

217

(8) p((g ◦ (fb, . . . , fd))
M (u) | gM(z), fMj (xj)

j∈b,...,d, θfjj∈b,...,d, θg,u) =218 ∫
p(gM (u0, fMb (ub), . . . , fMd (ud)) | gM(z), fMj (xj)

j∈b,...,d, θg)219

d∏
j=b

p(fMj (uj) | fMj (xj), θfj)df
M
b (ub), . . . , dfMd (ud),220

221

where the new input u consists of the first b− 1 inputs of the model g and the new inputs uj222

are the inputs to the models fj ∀j ∈ b, . . . , d, i.e. u = ∪(u0, {uj}dj=b) with u0 = (z1, . . . , zb−1).223

Definition 3.2. The variable ξ = (g ◦ (fb, . . . , fd))
M (u) | gM(z), fMj (xj)

j∈b,...,d,224

θfjj∈b,...,d, θg,u, with the distribution (8), is called the multivariate-input linked emulator.225

For brevity, in the rest of the paper we will simply write gM (·) and fM (·), without the226

conditioning, implicitly assuming the conditioning on relevant model run data and model227

parameters.228

The linked emulator ξ does not have a closed form distribution. The key fact in developing229

an approximation is that, if the smoothness parameter of the power exponential correlation230

function is α = 2 or α = 1 and if p(z) is one of three distributions – Normal, Laplace or231

Exponential – one can give closed form expressions for the overall mean and variance of the232

linked emulator, providing the regression functions in the GaSP mean h(z) (and h(z)2) have233

closed form expectations when z ∼ p(z). Typically h(z) is either zero, constant, or linear in234

the inputs, in which case these expectations will be available in closed form.235

The choice α = 1 corresponds to the exponential covariance function, which yields GaSP236

sample paths that are not mean-square differentiable. In most applications, the computer237

model is a smooth function of the inputs, so α = 1 is not usually a reasonable choice. On the238

other hand, α = 2 corresponds to the squared exponential covariance function, which results239

in a GaSP with infinitely differentiable sample paths, and so is a better reflection of the240

smoothness of the computer model in applications. In the spatial statistics literature, α = 2 is241

often criticized for producing too smooth sample functions, but the situation with computer242

models is different than that for most spatial models, in that the input points for the computer243

model runs are usually quite distant. GaSPs with squared exponential covariance functions244

have also proven to be useful for incorporating shape constraints such as monotonicity and245

convexity [23].246

Theorem 3.3. Suppose gM has the linear mean function h(z′)β = β0 +β1z
′
b, and a product247

power correlation function with αj = 2 for coordinates j ∈ b, . . . , d. For each j ∈ b, . . . , d, let248
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fMj , as in (7), be an independent emulator of fj, the function which gives rise to the value of249

input j for g(·). Then the mean Eξ and variance Vξ of the linked emulator ξ of the coupled250

simulator (g ◦ (fb, . . . , fd))(u), as defined in Definition 3.2, are251

Eξ = β0 + β1µ
∗
fb

(ub) +
m∑
i=1

ai

b−1∏
j=1

exp

(
−
(
|uj − zij |

δj

)αj) d∏
j=b

Iij ,252

Vξ = σ2(1 + η) + β20 + 2β0β1µ
∗
fb

(ub) + β21(σ∗2fb (ub) + (µ∗fb(u
b))2)− (Eξ)2+ m∑

k,l=1

(alak − σ2{Cz−1}k,l)
b−1∏
j=1

e
−
((
|uj−zkj |

δj

)αj
+

(
|uj−zlj |

δj

)αj) d∏
j=b

I1
k,l
j

+

2

m∑
i=1

ai

b−1∏
j=1

exp

(
−
(
|uj − zij |

δj

)αj)(
β0I

i
b + β1I

+i
b

) d∏
j=b+1

Iij ,

253

254

where a = (a1, . . . , am)T = C−1z (gM(z)− h(z)β) and255

Iij =
1√

1 + 2
σ∗2fj

(uj)

δ2j

exp

(
−

(zij − µ∗fj (u
j))2

δ2j + 2σ∗2fj (uj)

)
256

I1
k,l
j =

1√
1 + 4

σ∗2fj
(uj)

δ2j

e

−

(
zkj+zlj

2 −µ∗fj
(uj)

)2

δ2
j
2 +2σ∗2

fj
(uj)

e
−

(zkj−zlj)
2

2δ2
j257

I+
i
b =

2
σ∗2fb

(ub)

δ2b
zib + µ∗fb(u

b)√(
1 + 2

σ∗2fb
(ub)

δ2b

)3
exp

(
−

(zib − µ∗fb(u
b))2

δ2b + 2σ∗2fb (ub)

)
.258

259

The proof of a more general theorem, having mean h(·)β, is given in the appendix.260

4. Linked GaSP as a normal approximation to the linked emulator. In this section261

we consider the normal approximation to the linked emulator, using its analytical mean and262

variance. After the definition, we present a numerical example and then some theoretical263

results.264

Definition 4.1. Whereas ξ in Definition Definition 3.2 was called the linked emulator, the265

variable ζ ∼ N(Eξ,Vξ) will be called the linked GaSP.266

4.1. Illustration 1. To illustrate the developed methodology of the linked GaSP, two
functions are considered as simulators: f(x) = 3x+cos(5x), x ∈ [−1, 1] and g(z) = cos(7z/5)−
z, z ∈ [−4, 4], and we are interested in coupled model

g ◦ f(x) = cos(7[3x+ cos(5x)]/5)− [3x+ cos(5x)] .
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COUPLING COMPUTER MODELS THROUGH LINKING THEIR STATISTICAL EMULATORS 9

−1 −0.63 −0.26 0.11 0.48 0.85

−
4

−
2

0
2

4

●
●

●

●

●

●

x

f

f(x2)f(x1) f(x3) f(x5)f(x4) f(x6)

−
4

−
2

0
2

4

●
●

●

●

●

●

z

g

Figure 2. Independent emulators constructed for two test functions: f(x) on the left panel and g(z) on the
right. Each emulator is an interpolator at its design points. The pink lines are the true functions. The dark
green lines are the emulator means. The green shaded regions are the regions enclosed by the 2.5% and 97.5%
quantiles of the emulators. The circles on the plots correspond to the design points which were used to fit the
emulators.

Model f is evaluated at 6 equally spaced training input points x =267

(−1,−0.63,−0.26, 0.11, 0.48, 0.85), resulting in z = f(x) = (f(x1), . . . , f(x6)) = (z1, . . . , z6).268

An emulator fM (·) of the model f is constructed, based on these observations {x, z}, as269

described in subsection 2.1.270

The output points z are then used as design input points to the model g. (This utilization271

of the output of one model as input to the other was done so that this example can be used272

later to compare the linked emulator strategies with traditional coupling strategies; of course,273

the linked emulator strategies do not require using the outputs of one model as the design274

points for the other, one of the their big advantages.) Model g is evaluated at z, resulting275

in g(z) = (g(z1), . . . , g(z6)). We then use {z,g(z)} to construct the emulator gM (·) of the276

simulator g.277

Parameter estimates of each of the GaSPs were obtained, using the methodology described278

in subsection 2.2, with the ML approach used for the mean and variance parameters. (We279

refrain from attaching the ML label to the emulators, until we later encounter emulators280

arising from other estimation methods.) The resulting emulators are shown in Figure 2.281

Utilizing the individual function emulators, the linked GaSP (ζ) and linked emulator (ξ)282

were then determined, the latter through simulation. (After constructing the emulator fM (·)283

of model f and the emulator gM (·) of model g, one simply generates a realization from the284

emulator fM (·) and then a realization from gM (·) conditional on the realization from fM (·);285

the result is a realization from the true linked emulator (g ◦f)M (·).) Repeating this procedure286

many times results in a Monte Carlo representation of the true linked emulator.The results are287

presented in Figure 3. The linked GaSP is doing exceptionally well, acting as an interpolator288

at the design points to the simulator f and capturing the entire composite function g◦f(x) on289

x ∈ [−1, 1] within its 95% credible area. Furthermore, it is indistinguishable from the linked290

emulator, providing support for the use of the normal approximation based on the known291

mean and variance.292
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Figure 3. The left panel is the linked GaSP constructed from fM (·) and gM (·), and the right panel is
the linked emulator, estimated by simulation (104 samples). The pink lines are the true functions. The dark
green lines are the emulator means. The green shaded regions are the regions enclosed by the 2.5% and 97.5%
quantiles of the emulators. The dashed lines correspond to quantiles of the linked emulator. The circles on the
plots correspond to the design points {x, (g ◦ f)(x)}.

4.2. Theoretical results. We consider the situation in which the variances of the fMj (·)293

are small, establishing theoretically (as expected) that the linked GaSP is then an excellent294

approximation to the linked emulator.295

First, it is useful to find a first order approximation to the linked emulator.296

Lemma 4.2. If, for each j ∈ b, . . . , d, the emulators fMj (·) are as in (7) and gM (·) is an297

emulator as in (4), then, for any new input u,298
299

E

∣∣∣∣∣ξ − (gM (u0, µ∗fb(u
b), . . . , µ∗fd(u

d)) +
d∑
j=b

µ∗g
′

zj
(u0, µ∗fb(u

b), . . . , µ∗fd(u
d))σ∗fj (u

j)N0,1

)∣∣∣∣∣
2

300

=

d∑
j=b,kj=1

σ∗2g
′′

zjzj
(u0, µ∗fb(u

b), . . . , µ∗fd(u
d))σ∗2fj +O


∑

|K|=3,|L|=1;
|K|=|L|=2;
|K|=1,|L|=3

σ∗fj (u
j)
kj+lj

σ∗fi(ui)
ki+li

 ,301

302

where ξ is the linked emulator, µ∗g
′

zj
is the partial derivative of the function µ∗g(·, . . . , ·) with303

respect to the jth coordinate, σ∗2g
′′

zjzj
is the second-order partial derivative of the function304

σ∗2g (·, . . . , ·) with respect to the jth coordinate and N0,1 is a standard normal random variable.305

The proof of the lemma is given in the appendix.306

The following are immediate consequences.307

Theorem 4.3. Under the same conditions and using Lemma 4.2 ξ −308 (
gM (u0, µ∗fb(u

b), . . . , µ∗fd(u
d)) +

∑d
j=b µ

∗
g

′

zj
(u0, µ∗fb(u

b), . . . , µ∗fd(u
d))σ∗fj (u

j)N0,1

)
converges309

in L2-norm to zero when all σ∗2fj (uj) go to zero.310
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Corollary 4.4. Under the same conditions as in Lemma 4.2, it follows from Theorem 4.3311

that ξ and ζ both converge in L2-norm to gM (u0, µ∗fb(u
b), . . . , µ∗fd(u

d)) as all the σ∗2fj (uj) go312

to zero.313

Theorem 4.5. Under the same conditions as in Lemma 4.2 and if, for each j ∈ b, . . . , d,314

uj is such that σ∗2fj (uj) = 0, then ξ = gM (u0, µ∗fb(u
b), . . . , µ∗fd(u

d)) = ζ.315

This last theorem states that, under the indicated conditions, the linked GaSP is exactly the316

linked estimator.317

5. Comparison of the linked GaSP to the composite emulator. The other natural emu-318

lator that we mentioned is the composite emulator, formed by sequentially running the simu-319

lators f and g, and then developing an emulator based only on the inputs to f and outputs of320

g. More formally, suppose we have m d-dimensional inputs z = {z1, . . . , zm} to a composite321

simulator g ◦ (fb, . . . , fd). In order to evaluate a composite computer model at these inputs,322

we first evaluate each model fj , for j ∈ b, . . . , d, at corresponding inputs zj1:m = (zj1, . . . , z
j
m)323

where zji = {zik}k∈Ij . That is, for each input zji we obtain output fj(z
j
i). Then, using the324

outputs from all models fj , j ∈ b, . . . , d, we evaluate g at each of the ith d-dimensional in-325

puts (zi1, . . . , zi (b−1), fb(z
b
i ), . . . , fd(z

d
i )). Thus, we obtain a set of training inputs-outputs326

of the composite simulator z = {zi}mi=1 and {(g ◦ (fb, . . . , fd))(zi)}mi=1. Then the emulator of327

(g◦(fb, . . . , fd))
M (·) may be constructed, using these inputs-outputs from the coupled system,328

as described in subsection 2.1.329

Definition 5.1. The GaSP emulator (g ◦ (fb, . . . , fd))
M (·) of the composite model330

g ◦ (fb, . . . , fd), given GaSP parameters θg◦(fb,...,fd), namely the emulator (g ◦331

(fb, . . . , fd))
M (·)|·, (g ◦ (fb, . . . , fd))M(z), θg◦(fb,...,fd) described above, will be called the com-332

posite emulator.333

It may not always be possible to construct a composite emulator, in that one might not334

have control over running the models f(·) or g(·), and instead just have available collections335

of previous runs. Thus there will always be times in which only the linked emulator (or linked336

GaSP) is available.337

Perhaps surprisingly, it seems that utilization of the composite emulator may not be desir-338

able, even when it can be constructed. As a first indication of this, consider the illustration in339

subsection 4.1. Figure 4 shows the composite emulator for (g◦f)(x) in the domain x ∈ [−1, 1],340

using the same design points x as in subsection 4.1, and with parameters again estimated341

through the ML approach from subsection 2.2. Surprisingly, the composite emulator does a342

much worse job of emulation (compare to Figure 3). It has a much bigger variance but, even343

worse, the confidence bands miss the true composite function over part of the domain.344

This comparatively poor behavior of the the composite emulator is quite common. It345

seems to arise because, while the functions f and g might be quite smooth – which allows346

for their accurate emulation with a small number of design points, the composite function347

(g ◦ f)(x) can be considerably more ‘wiggly’, and hence much harder to emulate directly.348

Additional evidence for this will be seen later.349

Note that the computational costs in training the linked emulator and the composite350

emulator were identical in this example; each required six runs of each model.351

We also assessed the linked GaSP and the composite emulator of the coupled simulator352
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Figure 4. Composite emulator of a composite test function. The pink line is the true function. The dark
green line is the emulator mean. The green shaded region is the region enclosed by the 2.5% and 97.5% quantiles
of the emulator. The circles on the plot correspond to the design points {x, (g ◦ f)(x)}.

Table 1
Predictive evaluations for the linked GaSP and composite emulators in the illustration.

Emulator EFC RMSPE LCI

Linked 1.00 0.13 0.62
Composite 0.76 0.43 0.92

g ◦ f , using the predictive measures from subsection 2.3. 201 test points, u, equally spaced353

in [−1, 1], were used for the assessment. Numerical results are presented in Table 1. The354

performance of the linked GaSP is much better in terms of the predictive measures than the355

performance of the composite emulator. The RMSPE of the linked GaSP is more than 3356

times smaller than that of the composite emulator. While the linked GaSP is capturing the357

composite simulator on the whole domain [−1, 1] in its 95% credible intervals, the composite358

emulator intervals miss the truth about 24% of the time. The length of the credible intervals359

of the linked GaSP are about two thirds of those of the composite emulator.360

6. The POB and OB linked emulators. Previously, we have only considered emulators361

of a function g when all parameters of the emulator are given; in the illustrations, we simply362

replaced parameters by their estimates, discussed in subsection 2.2 as the ML approach.363

Here we develop linked emulators for the POB approach (full objective Bayesian treatment364

of the mean parameters, but utilizing an estimate for the variance) and the OB approach365

(full objective Bayesian treatment of both mean and variance parameters). Emulators that366

account for the uncertainty in the mean or mean and variance parameters give more accurate367

assessments of the emulator predictive variance, and hopefully this will carry through when368

they are linked.369

6.1. POB linked emulator. Suppose that the GaSP mean is a linear function. We perform370

an objective Bayesian analysis with the parameters β in the mean (using a constant prior371

π(β) ∝ 1), but use the marginal maximum likelihood estimate of σ2. The corresponding372
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GaSP (with β integrated out, the MLE estimate of σ2 plugged in, and the reference posterior373

mode estimates of ζ plugged in), conditional on the observed computer model evaluations374

gM(z), follows a normal distribution with mean µ∗(z′) and variance σ∗(z′) given by375

µ∗(z′) = h(z′)β + c(z′, z)C−1z (gM(z)− h(z)β),376

σ∗(z′) = σ2
(
Cz′ − c(z′, z)C−1z c(z, z′) + (h(z′)− c(z′, z)C−1z h(z))

(h(z)TC−1z h(z))−1(h(z′)− c(z, z′)C−1z h(z))T
)

;
377

378

this is the POB GaSP emulator. Note that it differs from the ML GaSP emulator only in379

having additional (positive) terms in the predictive variance.380

6.1.1. Development of the POB linked emulator.381

Theorem 6.1. Let gM , with given parameters θg = (σ2, η, {δj}j=1,...,d), be a POB GaSP382

emulator of a simulator g exercized at training input points z. Suppose the mean is linear383

in the bth cooordinate of an input z′, so that the mean is h(z′)β = β0 + β1z
′
b. Let the gM (·)384

GaSP correlation function smoothness parameters αj of coordinates j ∈ b, . . . , d be equal to 2.385

For each j ∈ b, . . . , d let fMj be an independent emulator of a simulator fj, corresponding to386

the coordinate j of the input to the simulator g, i.e. fMj (·) is any GaSP with predictive mean387

and variance at any input · denoted as µ∗fj (·) and σ∗2fj (·) respectively. Then the mean Eξ and388

variance Vξ of the linked emulator ξ of the coupled simulator (g ◦ (fb, . . . , fd))(u) are389

Eξ = β̂0 + β̂1µ
∗
fb

+
m∑
i=1

ai

b−1∏
j=1

exp

(
−
(
|uj − zij |

δj

)αj) d∏
j=b

Iij ,390

Vξ = σ̂2(1 + η) + β̂0
2

+ 2β̂0β̂1µ
∗
fb

(ub) + β̂1
2
(σ∗2fb (ub) + (µ∗fb(u

b))2)− (Eξ)2+

m∑
k,l=1

(alak + σ̂2qkl)
b−1∏
j=1

e
−
((
|uj−zkj |

δj

)αj
+

(
|uj−zlj |

δj

)αj) d∏
j=b

I1
k,l
j +

2

m∑
i=1

ai

b−1∏
j=1

exp

(
−
(
|uj − zij |

δj

)αj)(
β̂0I

i
b + β̂1I

+i
b

) d∏
j=b+1

Iij+

σ̂2(T11 + (T12 + T21)µ
∗
fb

(ub) + T22(σ
∗2
fb

(ub) + (µ∗fb(u
b))2))+

σ̂2
m∑
i=1

(
A2iI

u
2
i
b − 2A1iI

u
1
i
b

)
,

391

392
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Figure 5. Independent POB emulators constructed for two test functions: f(x) on the left panel and g(x)
on the right. Each emulator is an interpolator at its design points. The pink lines are the true functions. The
dark green lines are the emulator means. The green shaded regions are the regions enclosed by the 2.5% and
97.5% quantiles of the emulators. The circles on the plots correspond to the design points which were used to
fit the emulators.

where393 (
β̂0
β̂1

)
= (h(z)TC−1z h(z))−1(h(z)TC−1z gM(z),394

qkl = (C−1z h(z)(h(z)TC−1z h(z))−1h(z)TC−1z − C−1z )k,l,395

T =

(
T11 T12
T21 T22

)
= (h(z)TC−1z h(z))−1,396

A = (h(z)TC−1z h(z))−1h(z)TC−1z ,397

σ̂2 =
1

m
gM(z)

T
(C−1z − C−1z h(z)(h(z)TC−1z h(z))−1h(z)TC−1z )gM(z) ,398

399

and400

Iu1
i
b =

δb√
δ2b + 2σ∗2fb (ub)

e
−

(
ui−µ

∗
fb

(ub)

)2

δ2
b
+2σ∗2

fb
(ub)

, Iu2
i
b =

2δbσ
∗2
fb

(ub)ui + δ3bµ
∗
fb

(ub)√(
δ2b + 2σ∗2fb (ub)

)3 e
−

(
ui−µ

∗
fb

(ub)

)2

δ2
b
+2σ∗2

fb
(ub)

.401

402

Definition 6.2. ζ ∼ N(Eξ,Vξ) will be called the POB linked GaSP.403

6.1.2. Illustration 2. Two functions are considered as simulators: f(x) = sin(πx) in the404

domain x ∈ [−1, 1] and g(z) = cos(5z) in the domain z ∈ [−1, 1]. Model f(x) was evaluated405

at 6 equally spaced training input points x, resulting in z = f(x). Model g was then evaluated406

at these output points, z. POB emulators, fM (·) and gM (·), of the functions were developed407

using these input, and shown in Figure 5,408

The POB linked emulator was then constructed using Theorem 6.1 and is shown in the409

left panel of Figure 6. The linked GaSP is a good emulator, acting as an interpolator at the410
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Figure 6. The left panel is the POB linked GaSP of g ◦ f . The right panel is the POB composite emulator
of the composite model. The pink lines are the true functions. The dark green lines are the emulator means.
The green shaded regions are the regions enclosed by the 2.5% and 97.5% quantiles of the emulators. Circles
on the plot correspond to sequentially obtained design points {x, (g ◦ f)(x)}.

design points of the emulator fM (·) and providing 100% coverage, better than the nominal411

coverage.412

The first example in the supplementary materials demonstrates that if we take two func-413

tions and run them on separately developed designs, then we can still construct a good ap-414

proximation to the coupled model without ever observing the coupled system. In our previous415

examples we get design for two functions sequentially, not independently. This may not be416

desirable in practice, since this brings restrictions on possible experimental designs and may417

be detrimental for individual emulators. The example in the supplementary materials high-418

lights that there is no need for running computer models sequentially in order to apply the419

methodology of the linked emulator.420

Important though is that we can not construct the composite emulator if the simulators421

are ran independently (not sequentially), so then there is no any benchmark to compare our422

linked emulator to. Thus, we left the example with the sequential designs in the manuscript,423

and the additional example with independent designs (using the same functions) is given in424

the supplementary materials.425

6.1.3. Comparison of the POB linked GaSP and POB composite emulator. The POB426

composite emulator of g ◦ f was also constructed, and is represented in the right panel of427

Figure 6. The emulator completely misses the behavior of the function, and the reason is that428

mentioned earlier: g ◦ f is much more wiggly than either g or f , and so cannot be captured429

with only 6 design points.430

The predictive criterion of subsection 2.3 were also applied for this comparison, but there431

is no point in reporting the results here, since the POB composite emulator was so bad. These432

results can be found in the supplementary materials.433

6.2. OB linked emulator. The OB emulator of g utilizes the usual objective prior434

π(β, σ2) ∝ 1/σ2 for the mean parameters and variance of the GaSP, and treats these pa-435

rameters in a full Bayesian fashion. The remaining parameters are estimated as discussed436
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in subsection 2.2, but here will just be considered given. The resulting emulator (see [11]),437

gM , conditional on the observed computer model evaluations gM(z), follows Student’s t-438

distribution with m− q degrees of freedom and mean µ∗(z′) and variance σ∗(z′) given by439

µ∗(z′) = h(z′)β + c(z′, z)C−1z (gM(z)− h(z)β),440

σ∗(z′) =
gM(z)

T
(C−1z − C−1z h(z)(h(z)TC−1z h(z))−1h(z)TC−1z )gM(z)

m− q(
Cz′ − c(z′, z)C−1z c(z, z′) + (h(z′)− c(z′, z)C−1z h(z))

(h(z)TC−1z h(z))−1(h(z′)− c(z, z′)C−1z h(z))T
)
,

441

442

where q is the number of terms in the linear mean function.443

For linking with fM , it is not possible to compute the predictive mean and variance in444

closed form if an OB emulator is used for f . Thus we will assume that fM is a POB emulator.445

The resulting linked emulator is given in the next theorem.446

Theorem 6.3. Let gM , with given parameters θg = (η, {δj}j=1,...,d), be an OB GaSP emu-
lator of a simulator g that was exercized at training input points z. Suppose the mean is linear
in the bth cooordinate of an input z′, so that the mean is h(z′)β = β0 + β1z

′
b. Let the gM (·)

GaSP correlation function smoothness parameters αj of coordinates j ∈ b, . . . , d be equal to
2. For each j ∈ b, . . . , d let fMj be an independent emulator of a simulator fj, corresponding

to the coordinate j of the input to the simulator g, i.e. fMj (·) is any GaSP with predictive

mean and variance at any input · denoted as µ∗fj (·) and σ∗2fj (·) respectively. Then the mean

Eξ of the linked emulator ξ of the coupled simulator (g ◦ (fb, . . . , fd))(u) is the same as that of
POB linked emulator. The variance Vξ differs from that of the POB linked emulator by the
expression for σ̂2, which instead is

σ̂2 =
1

m− 2
gM(z)

T
(C−1z − C−1z h(z)(h(z)TC−1z h(z))−1h(z)TC−1z )gM(z) .

Definition 6.4. ζ ∼ N(Eξ,Vξ) will be called the OB linked GaSP.447

Note that the predictive means of the ML linked emulator, POB linked emulator, and448

OB linked emulator are all the same. Thus the linked emulator only differ in their predicted449

variances. The difference between the predictive variances of the ML linked emulator and450

POB linked emulator can be quite substantial, but the different between those of the POB451

and OB linked emulators is usually modest, since the only difference is normalizing the variance452

estimate by m instead of m− 2. For small m this could be an appreciable difference, but not453

for typical training sample sizes.454

7. Case study. We present an example of coupling two real computer models.455

7.1. Volcano ash cloud system of computer models. The two models that are to be456

coupled are the bent model of a volcanic ash plume and the puff model describing how the457

ash cloud disperses; see [5, 15, 20] for discussion. A direct coupling of bent and puff (not458

emulation) was used for analysis of the 14 April 2010 paroxysmal phase of the Eyjafjallajökull459

eruption, Iceland, based on observations of Eyjafjallajökull volcano and information from460
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Table 2
Predictive evaluations for the bent output emulators.

Bent output EFC RMSPE/RMSPEbase LCI

plumeMax (m) 0.980 0.017 58.84
plumeMin (m) 0.978 0.016 55.10
plumeHwidth (km) 0.949 0.030 0.196
AshLogMean,

(
log2

1
mm

)
0.991 0.007 0.009

AshLogSdev,
(
log2

1
mm

)
0.978 0.021 0.021

Table 3
Predictive evaluations for the emulator of puff.

EFC RMSPE/RMSPEbase LCI

0.95 0.16 18.46

other similar eruptions of the past. The goal in this section is to develop a linked emulator of461

these computer models.462

7.1.1. Bent simulator. Bent is a volcanic eruption column model. The inputs to this463

model are the source conditions for an eruption. Most of the parameters of the models are fixed464

at particular values, with only four parameters – vent radius, vent velocity, mean grain size,465

and grain size standard deviation – being variable. These four parameters, x = (x1, x2, x3, x4),466

are thus the inputs to the bent model.467

Bent produces 5 output variables: plumeMax, plumeMin, plumeHwidth, ashLogMean468

and ashLogStdev. We model each output variable, j = 1, . . . , 5, as an individual POB GaSP,469

depending on input x∗, so that fMj (x∗) ∼ N(µ∗fj (x
∗), σ∗2fj (x∗)).470

7.1.2. Puff simulator. The puff computer model takes the output of bent, the 5-471

dimensional vector z, and produces positions of representative numerical particles of the ash472

cloud, as they are affected by wind, turbulence and gravity. These outputs are post-processed473

to extract quantities of interest at a given geographical location and time point. The puff out-474

put that we emulate here is the maximum height of the ash (at a given space-time location)475

gM (·) ∼ GaSP(µ∗g(·), σ∗2g (·, ·)). The puff simulator produces different random output values476

for the same input, so that we choose an OB GaSP emulator, with a nugget, to model puff.477

7.1.3. Construction and evaluation of the individual GaSPs. The emulator of bent was478

trained on 400 randomly chosen design inputs and validated on 1000 randomly chosen held-479

out points, both chosen out of 5454 initial points from a Latin Hypercube Design. The puff480

emulator was trained on a total of 739 outputs and tested on 1000 held-out data points. The481

739 outputs were obtained by, using as inputs, the 400 outputs of bent, i.e., the models were482

run sequentially. (Again, this would not be necessary to construct the OB linked GaSP, but483

is necessary to construct the composite emulator for later comparison.) Since puff is not a484

deterministic model, it was rerun at 339 of these 400 inputs, resulting in the total of 739485

outputs.486

Tables 2 and 3 give the predictive evaluations of the bent and puff emulators, respectively,487
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Table 4
Predictive evaluations for the OB linked GaSP and composite emulator of a coupled system of puff and bent.

Emulator EFC RMSPE/RMSPEbase LCI

Linked GaSP 0.951 0.17 18.55
Composite 0.960 0.17 19.52

for each of the output variables for which the emulators were constructed. The relative ratios488

of RMSPEs are very low, and the CIs are small, indicating the emulators are giving excellent489

approximations to the simulators. The empirical coverages are either close to or greater than490

the 95% nominal values, indicating that the uncertainties given by the emulators are also491

good.492

7.2. OB linked GaSP and OB composite emulator. We constructed the OB linked GaSP493

(g ◦ (f1, . . . , f5))
M (·) from the individual GaSPs, utilizing Theorem 6.3. The emulator was494

evaluated at the same held-out test points as before; the resulting predictive evaluations are495

shown in Table 4. The performance of the emulator is excellent, with rather small credible496

intervals having empirical coverage very close to the nominal value.497

The OB composite emulator was constructed from the 739 outputs obtained by sequen-498

tially running bent and puff. The emulator was evaluated at the same held-out test points499

as before; the resulting predictive evaluations are shown in Table 4. The composite emulator500

performance is good here: small CIs with empirical coverage just above the nominal value.501

The credible intervals are slightly longer than those for the OB linked GaSP (indeed, 989 out502

of 1000 test points had linked emulator credible intervals smaller than that of the composite503

emulator), but are still fine.504

8. Conclusions and generalizations. The problem of coupling computer models was tack-505

led by developing a closed form linked emulator, from GaSP emulators of each computer model506

separately. In particular, multiple real-valued computer models were allowed as inputs to an-507

other computer model. Of the various linked emulators developed, we would recommend508

utilizing the OB linked GaSP, as it is closed form and incorporates the uncertainties in the509

mean and variance parameters of the component GaSPs (as well as the uncertainties in the510

individual GaSPs).511

The approach was based on utilization of separately developed emulators for each computer512

model, since these are available even when the computer models to be coupled cannot be run513

sequentially. The illustrations in the paper were constructed in a sequential fashion, with514

the outputs of one model being the inputs to the other; this also allowed construction of the515

composite emulator, based solely on the inputs to the first model and resulting outputs of the516

second. Perhaps surprisingly, the linked emulator performed better in the illustrations than517

the composite emulator, by all predictive measures considered.518

This also bodes well for the possibility of coupling emulators for more complex systems of519

computer models than considered here. Separately developing emulators for each computer520

model in the system, and then linking the emulators, is an attractive divide-and-conquer521

strategy. Of course, one would have to be careful in choosing the design spaces for each emu-522

lator development, to ensure the the emulator is being developed over the region of important523
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outputs from the preceding coupled model. Further discussion of this can be found in [14].524

The generalization of linking a GaSP emulator of computer model g with a GaSP emulator525

of f , having multivariate output, is presented in the supplementary materials to this paper.526

Closed form expressions for the resulting mean and variance functions are provided. We did527

not highlight these results in this paper because it was subsequently found that multivariate528

modeling does not bring significant advantages over individual modeling of each univariate529

output of f [14]; the results from multivariate modeling are almost the same as those from530

individual modeling of each output.531

Appendix A. Proof of 3.3.532

Proof. The mean and variance of the linked emulator can be expressed through the law533

of iterated expectation and the law of total variance respectively.534

For general mean of the GaSP h(·), the expressions are535

Eξ = Eh(u0, fMb (ub), . . . , fMd (ud))β +

m∑
i=1

ai

b−1∏
j=1

exp

(
−
(
|uj − zij |

δj

)αj) d∏
j=b

Iij ,536

Vξ = σ2(1 + η)− (Eξ)2+

m∑
k,l=1

(alak − σ2{Cz−1}k,l)
b−1∏
j=1

e
−
((
|uj−zkj |

δj

)αj
+

(
|uj−zlj |

δj

)αj) d∏
j=b

I1
k,l
j +

∫ ((
h(u0, fMb (ub), . . . , fMd (ud))β

)2
+ 2

(
h(u0, fMb (ub), . . . , fMd (ud))β

)
m∑
i=1

ai

d∏
j=1

exp

(
−
(
|uj − zij |

δj

)αj) d∏
j=b

p(fMj (uj))dfMj (uj).

537

538

Appendix B. Proof of lemma 4.2.539

Proof. Taylor expansion of gM (u1, . . . , ub−1, f
M
b (·), . . . , fMd (·)) is540

541

gM (u1, . . . , ub−1, f
M
b (ub), . . . , fMd (ud)) = gM (u1, . . . , ub−1, µ

∗
fb

(ub), . . . , µ∗fd(u
d))+542

∞∑
|K|=1

Dkb,...,kdgM (u1, . . . , ub−1, µ
∗
fb

(ub), . . . , µ∗fd(u
d))

kb! . . . kd!

d∏
j=b

(fMj (uj)− µ∗fj (u
j))kj ,543

544

where the sum is taken over all combinations of kb, . . . , kd such that kb + . . .+ kd = |K|.545
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The convergence in L2-norm is established as546

547

E

∣∣∣∣∣gM (u1, . . . , ub−1, f
M
b (ub), . . . , fMd (ud))−548 gM (u1, . . . , ub−1, µ

∗
fb

(ub), . . . , µ∗fd(u
d)) +

d∑
j=b

µ∗g
′
zj

(µ∗fj (u
j))σ∗j (u

j)N0,1

∣∣∣∣∣
2

=549

E

∣∣∣∣∣
d∑
j=b

(
D′zjg

M (u1, . . . , ub−1, µ
∗
fb

(ub), . . . , µ∗fd(u
d))− µ∗g

′
zj

(µ∗fj (u
j))
)

550

σ∗j (u
j)

(
fMj (uj)− µ∗fj (u

j)

σ∗j (u
j)

)
+551

∞∑
|K|=2

Dkb,...,kdgM (u1, . . . , ub−1, µ
∗
fb

(ub), . . . , µ∗fd(u
d))

kb! . . . kd!
552

d∏
j=b

σ∗j
kj (uj)

(
fMj (uj)− µ∗fj (u

j)

σ∗j (u
j)

)kj ∣∣∣∣∣
2

.553

554

Let Vj =
fMj (uj)−µ∗fj (u

j)

σ∗j (u
j)

∼ N(0, 1), then Vb, . . . , Vd are iid. The statement of the lemma follows.555

Appendix C. Proof of theorem 4.5.556

Proof. Since σ∗2fj (uj) = 0, fMj (uj) has a degenerate distribution with Pr(fMj (uj) =557

µ∗fj (u
j)) = 1.558

559

p((g ◦ (fb, . . . , fd))
M (u)|gM(z), fMj (xj)

j∈b,...,d, θfjj∈b,...,d, θg,u)560

=

∫
p(gM (u0, fMb (ub), . . . , fMd (ud))|gM(z), fMj (xj)

j∈b,...,d, θg)561

d∏
j=b

δ(fMj (uj)− µ∗fj (u
j))dfMb (ub), . . . , dfMd (ud).562

563
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