Lévy-based Nonparametric Bayesian Models and their Applications

Robert L Wolpert '72

Duke University

2019 September 06

The Theme...

We teach our students about ARMA, ARIMA, Diffusions, and such, featuring

- ▶ Nicely behaved sample paths,
- Tame tail behavior,
- Regularly-spaced observations;

Then they graduate and face data with

- Jumps
- Heavy tails,
- Spikiness,
- ► Irregularly-spaced observations &/or missing data.

The Theme...

We teach our students

about ARMA, ARIMA, Diffusions, and such, featuring

- Nicely behaved sample paths,
- Tame tail behavior,
- Regularly-spaced observations;

Then they graduate and face data with

- Jumps,
- Heavy tails,
- Spikiness,
- ► Irregularly-spaced observations &/or missing data.

Motivation

Time-series Data 1: Rockfalls at Soufrière Hills Volcano

⁰SHV on island of Montserrat, BOT in Lesser Antilles, Caribbean.

Time-series Data 2: Proteomics (MALDI-ToF)

Point Process Data 3: Forest Ecology (Spatial Biodiversity)

Oak Trees

Hickories

⁰Data from 140m × 140m Borman plot in Duke Forest (♂) (≥) (≥) (○

Time-series Data 4: GRB Light Curves from BATSE

otivation LARK Models Examples Conclusion

One approach: Lévy Adaptive Regression Kernels

- ▶ General goal: inference on unknown function $f(\cdot)$
- Usual Kernel regression approximates unknown function with weighted sum of functions
- Adaptive kernel regression infers the kernel shape locally:

$$f(x) \approx \sum_{j} u_{j} K(x \mid s_{j}, \theta_{j})$$

where $x, \{s_j\} \subset \mathcal{S}$ are times, locations, *etc.*, and $\{\theta_j\} \subset \Theta$ determine the kernel shapes.

▶ Good things happen if we take $\{(u_j, s_j, \theta_j)\}$ to be $\operatorname{spt}(H)$ for a Poisson random measure $H \sim \operatorname{Po}(\nu(\operatorname{d} u\operatorname{d} s\operatorname{d} \theta))$.

otivation LARK Models Examples Conclusion

One approach: Lévy Adaptive Regression Kernels

- ▶ General goal: inference on unknown function $f(\cdot)$
- Usual Kernel regression approximates unknown function with weighted sum of functions
- Adaptive kernel regression infers the kernel shape locally:

$$f(x) \approx \sum_{j} u_{j} K(x \mid s_{j}, \theta_{j})$$

where $x, \{s_j\} \subset \mathcal{S}$ are times, locations, *etc.*, and $\{\theta_j\} \subset \Theta$ determine the kernel shapes.

▶ Good things happen if we take $\{(u_j, s_j, \theta_j)\}$ to be $\operatorname{spt}(H)$ for a Poisson random measure $H \sim \operatorname{Po}(\nu(du\,ds\,d\theta))$.

LARK as a Stochastic Integral

$$f(x) = \sum_{j} u_{j} K(x \mid s_{j}, \theta_{j}) = \int_{\mathbb{R} \times S \times \Theta} u K(x \mid s, \theta) H(du ds d\theta)$$

- ▶ Infinitely-many terms if $\nu(\mathbb{R} \times \mathcal{S} \times \Theta) = \infty$
- ▶ But $f(x) < \infty$ a.s. if $uK(x \mid s, \theta)$ is in the Musielak-Orlicz space of functions that satisfy

$$\int_{\mathbb{R}\times\mathcal{S}\times\Theta} \left(1 \wedge \left|u\,K(x\mid s,\theta)\right|\right) \nu(du\,ds\,d\theta) < \infty$$

Features of LARK Models

$$f(x) = \int_{\mathbb{R}\times\mathcal{S}\times\Theta} u \, K(x\mid s,\theta) \, H(du\,ds\,d\theta)$$

- ▶ Marginal dist'ns of f(x) are **ID** (Infinitely-Divisible);
- ▶ Any **ID** dist'n can be attained with suitable Lévy Measure $\nu(du\,ds\,d\theta)$: Po, Ga, α St, IG, NB, No, ...
- ▶ Theorem: Any Stationary Moving Average process is LARK with kernel $K(x \mid s, \theta) = b_{\theta}(x s)$ (plus Wiener integral)

$$f(x) = \int_{\mathbb{R}^n} b_{\theta}(x-s) \, \zeta(ds \, d\theta) + \int_{\mathbb{R}^n} \dots \, W(ds)$$

Bayesian Inference for LARK Models

More important: Bayesian Inference is straightforward:

$$f(x) = \sum_{j} u_{j} K(x \mid s_{j}, \theta_{j})$$

- 1. Find Likelihood Function describing how badly f(x) fits data;
- 2. Truncate to a finite sum with (random?) $J \in \mathbb{N}$ terms
- 3. Wiggle J and the $\{(u_j, s_j, \theta_j)\}$ in a RJ-MCMC scheme
- 4. Generate posterior samples of anything you like

Bayesian Inference for LARK Models

More important: Bayesian Inference is straightforward:

$$f(x) = \sum_{j} u_{j} K(x \mid s_{j}, \theta_{j})$$

- 1. Find Likelihood Function describing how badly f(x) fits data;
- 2. Truncate to a finite sum with (random?) $J \in \mathbb{N}$ terms;
- 3. Wiggle J and the $\{(u_j, s_j, \theta_j)\}$ in a RJ-MCMC scheme;
- 4. Generate posterior samples of anything you like.

Example 1: Biomass and Biodiversity

We construct a moving-average Cox model, with:

- Inhomogeneous Poisson random field for trees;
- Intensity is moving average of latent Gamma random field (Poisson/Gamma conjugacy lends computational advantages);
- Posterior mean of Poisson intensity is NPB estimate of tree density;
- ▶ Simultaneous estimation for eight species leads to spatial biodiversity index.

otivation LARK Models **Examples** Conclusion

Example 1: Biomass and Biodiversity

We construct a moving-average Cox model, with:

- ▶ Inhomogeneous Poisson random field for trees;
- Intensity is moving average of latent Gamma random field (Poisson/Gamma conjugacy lends computational advantages);
- Posterior mean of Poisson intensity is NPB estimate of tree density;
- Simultaneous estimation for eight species leads to spatial biodiversity index.

Over-story Trees (D > 25cm) in Bormann Plot

Eight species of large trees in Duke Forest

Moving-Average Cox Model for Oak Density

Trees:
$$N(dx) \sim \text{Po}(\Lambda(x) \, dx)$$
Intensity: $\Lambda(x) = \int_{\mathcal{S} \times \Theta} k(x - s \mid \theta) \, \zeta(ds \, d\theta), \qquad x \in \mathcal{S}$

$$= \int_{\mathbb{R} \times \mathcal{S} \times \Theta} k(x - s \mid \theta) \, u \, H(du \, ds \, d\theta)$$

Innovation: $\zeta(ds d\theta) \sim Ga(\alpha(ds d\theta), \beta(s, \theta))$

Poisson Rep'n: $H(du ds d\theta) \sim Po(\alpha(ds d\theta) u^{-1}e^{-\beta(s,\theta)u} du)$

Kernel: $k(x - s \mid \theta) = e^{-(x-s)'\Lambda(x-s)/2}, \quad \theta = (\Lambda, ...)$

Features of $\alpha(ds d\theta)$, $\beta(s, \theta)$, $k(x - s \mid \theta)$ may be treated as uncertain, with joint prior distributions.

Posterior Image Estimate of Oak Density

Posterior Contour Estimate of Oak Density

lotivation LARK Models **Examples** Conclusion

Oaks and Hickories

Note Oaks are under-dispersed, Hickories over-dispersed.

Posterior Estimates of Hickory Density

lotivation LARK Models **Examples** Conclusion

Spatial Biodiversity

Each figure has same number of Red and Blue dots

lotivation LARK Models **Examples** Conclusion

Spatial Biodiversity

Each figure has same number of Red and Blue dots.

Spatial Hill's Index of Biodiversity

Mark Hill's Equivalent Number of Species index (Ecol., 1973)

$$1 \leq H_1 \equiv \exp(H) = \prod_{i=1}^n (1/p_i)^{p_i} \leq n$$

otivation LARK Models **Examples** Conclusion

Example 2: Bayesian Semipar. Spatial Epidemiology

Does traffic pollution induce respiratory disease in children?

Model spatially-varying disease rate $\Lambda(s)$ (cases/100 pop) dependence on:

- Individual-level covariates (sex, parental smoking, coal);
- Spatially-varying covariates (NO₂ levels as surrogate);
- Unattributed spatial variation (possible clues for etiology!).

Use LARK to capture Unattributed spatial variation.

The Study Area: Huddersfield, UK

Health Data

Population density (shading) and case locations for Severe Wheeze among 7–9 year old Huddersfield school children

lotivation LARK Models **Examples** Conclusion

Exposure Data

Modeled NO₂ concentrations, as surrogate for all road pollution (PM₁₀, PM_{2.5}, SO₄, CO, NO, ...) Note **A62** (SW–NE), **A629** (NW–SE), **A640** (W), **A616** (S).

Non-nested Spatial Scales

Three non-nested spatial scales: **postcode** centres, 250m **grid**, **EDs**.

Objective

Question:

- ▶ Is severe wheeze incidence within 7–9 year old school children in Huddersfield, UK associated with traffic pollution?
- Note: Could be any <disease>, any specified <population>, any spatially varying <risk factor>.

Goal: Analyze point count intensities regressing on spatial covariates and individual marks, all at their natural levels of aggregation, using a single class of marked point process models.

Usual Approaches Fail

SAS: Small Area Statistics (averaging data over EDs) don't reflect individual risk factors: e.g., about 52% are "boys" in every ED;

LR: Logistic Regression doesn't reflect spatial exposure patterns

Latent Spatial Effect, in Pictures:

Results:

Contribution
8.1% (0.18)
3.5% (0.08)
4.4% (0.10)
12.8% (0.28)
71.3% (1.57)
2.96 : 1

Conclusion:

Traffic pollution doesn't cause Severe Wheeze. Population does.

Last Example: Gamma Ray Burst Light Curves

Photo credit: NASA Goddard Space Center [via M. E. Broadbent]

lotivation LARK Models **Examples** Conclusion

GRB Pulse Number and Shape

- ► Figure: A dozen GRB photon rate time series (known as *light curves*)
- ► Timescale: 0.5 to 100s
- Number of pulses: 1 to 5 or more
- Just one (lowest) of four energy channels
- Higher energy photons arrive sooner. Why?

Norris ("Fred") Kernels

Norris Kernel: $\theta = (A, t_0, \tau_1, \tau_2)$,

$$K_{\mathsf{N}}(t \mid \theta) \propto A \exp\{-\tau_1/(t-t_0) - (t-t_0)/\tau_2\}\mathbf{1}_{\{t>t_0\}}.$$

otivation LARK Models **Examples** Conclusion

Norris & GiG Kernels

Generalized Inverse Gaussian ("GiG") Kernel: $\theta = (A, t_0, \tau_1, \tau_2, p)$,

$$K_{\mathsf{G}}(t\mid\theta)\propto A(t-t_0)^{p-1}\exp\{-\tau_1/(t-t_0)-(t-t_0)/\tau_2\}\mathbf{1}_{\{t>t_0\}}.$$

→□ → ← = → ← = → ○

GRB 2571: Six Posterior Samples

Figure: Posterior samples for the mean for GRB 2571.

GRB 2571: How many pulses with $u > \epsilon$?

Figure: Posterior histogram for # of pulses comprising GRB 2571.

otivation LARK Models Examples Conclusion

Four Energy Channels

- ► Figure: Photons are sorted into 4 energy channels, based on energy deposited (not incident energy, alas)
- Channel 1 is lowest energy;Channel 4 is highest
- Energy deposited is less than incident energy
- Scientific interest is in incident space.

- Heavy Tails \Rightarrow Switched from ID Gamma process with Lévy measure $\nu(u) \propto u^{-1} \, e^{-\beta u}$ to α -Stable with $\alpha = 3/2$, and Lévy measure $\nu(u) \propto u^{-5/2}$ to match photon fluence decay rate;
- Sticky MCMC ⇒ Parallel Thinning (a new variant of Parallel Tempering), exploiting ID property of LARK;
- NB modeling of bin counts instead of Po, exploiting Gamma mixture property.

- Heavy Tails \Rightarrow Switched from ID Gamma process with Lévy measure $\nu(u) \propto u^{-1} e^{-\beta u}$ to α -Stable with $\alpha = 3/2$, and Lévy measure $\nu(u) \propto u^{-5/2}$ to match photon fluence decay rate;
- Sticky MCMC ⇒ Parallel Thinning (a new variant of Parallel Tempering) exploiting ID property of LARK;
- Overdispersion ⇒
 NB modeling of bin counts instead of Po, exploiting Gamma mixture property.

- Heavy Tails \Rightarrow Switched from ID Gamma process with Lévy measure $\nu(u) \propto u^{-1} \, e^{-\beta u}$ to α -Stable with $\alpha = 3/2$, and Lévy measure $\nu(u) \propto u^{-5/2}$ to match photon fluence decay rate;
- Sticky MCMC ⇒ Parallel Thinning (a new variant of Parallel Tempering), exploiting ID property of LARK;
- Overdispersion ⇒ NB modeling of bin counts instead of Po, exploiting Gamma mixture property.

- Heavy Tails \Rightarrow Switched from ID Gamma process with Lévy measure $\nu(u) \propto u^{-1} \, e^{-\beta u}$ to α -Stable with $\alpha = 3/2$, and Lévy measure $\nu(u) \propto u^{-5/2}$ to match photon fluence decay rate;
- Sticky MCMC ⇒ Parallel Thinning (a new variant of Parallel Tempering), exploiting ID property of LARK;
- Overdispersion ⇒ NB modeling of bin counts instead of Po, exploiting Gamma mixture property.

GRB 501 Results: Cls

Figure: 95% Credible Interval for Mean, GRB 501

GRB 501 Results: PPIs

Figure: 95% Posterior Predictive Intervals for GRB 501

Notivation LARK Models Examples **Conclusion**

Benefits

Benefits of the LARK Method

- ▶ Nonnegative data (like [PM₁₀] and [CO] concentrations) modeled directly, w/o transformations
- Non-stationary, non-Gaussian okay
- Unequally spaced data okay
- No need to invert large matrices (as in Gaussian methods)
- Non-linear dependence structure okay
- Easy interpretability, good out-of-sample predictions, easy dove-tail with other models (e.g. trajectory analysis)
- Our Mov Avg method permits only positive auto-correlations

Notivation LARK Models Examples **Conclusion**

Benefits

Benefits of the LARK Method

- ▶ Nonnegative data (like [PM₁₀] and [CO] concentrations) modeled directly, w/o transformations
- Non-stationary, non-Gaussian okay
- Unequally spaced data okay
- No need to invert large matrices (as in Gaussian methods)
- Non-linear dependence structure okay
- Easy interpretability, good out-of-sample predictions, easy dove-tail with other models (e.g. trajectory analysis)
- Our Mov Avg method permits only positive auto-correlations

lotivation LARK Models Examples **Conclusion**

Benefits

Benefits of the LARK Method

- ▶ Nonnegative data (like [PM₁₀] and [CO] concentrations) modeled directly, w/o transformations
- Non-stationary, non-Gaussian okay
- Unequally spaced data okay
- No need to invert large matrices (as in Gaussian methods)
- Non-linear dependence structure okay
- Easy interpretability, good out-of-sample predictions, easy dove-tail with other models (e.g. trajectory analysis)
- Our Mov Avg method permits only positive auto-correlations

Motivation LARK Models Examples **Conclusion**

Benefits (??)

Un-Benefits of the LARK Method

- ▶ Nonnegative data (like [PM₁₀] and [CO] concentrations) modeled directly, w/o transformations
- Non-stationary, non-Gaussian okay
- Unequally spaced data okay
- ▶ No need to invert large matrices (as in Gaussian methods)
- Non-linear dependence structure okay
- Easy interpretability, good out-of-sample predictions, easy dove-tail with other models (e.g. trajectory analysis)
- Our Mov Avg method permits only positive auto-correlations

Thanks, Cornell!

LARK: Lévy Adapted Regression Kernels A general framework for NPB function estimation

Notivation LARK Models Examples **Conclusion**

Thanks, Cornell!

LARK: Lévy Adapted Regression Kernels A general framework for NPB function estimation

It's Good to be Back!

otivation LARK Models Examples **Conclusion**

And thanks to my LARK collaborators—

- Nicky Best
- ▶ Merlise Clyde
- ▶ Leanna House
- Katja Ickstadt
- Ksenia Kyzyurova
- Danilo Lopes
- Thomas Loredo
- Zhi Ouyang
- ► Natesh Pillai
- Andrew Thomas
- ► Chong Tu
- ▶ Jianyu Wang

lotivation LARK Models Examples **Conclusion**

Memorable Math Faculty

- Jack Kieffer (freshman advisor)
- ► Larry Brown (first statistics course: Decision Theory)
- Roger Farrell (multivariate)
- Jacob Wolfowitz (Math. Statistics, from Cramer's book)
- Frank Spitzer (Probability, from Chung's book)
- ► Harry Kesten (Real & Complex, from Green Rudin)
- Kiyoshi Itô (Stochastic Processes)
- Anil Nerode (logic)
- * Murad Taqqu
- * Iain Johnstone
- * George Casella

lotivation LARK Models Examples **Conclusion**

More Memorable Faculty, Outside Math

- ► Hans Bethe (Cambridge to London train)
- Carl Sagan (wouldn't let me take his seminar)
- David Mermin, freshman Physics (?)
- Robert Kaske, Icelandic Lit
- Carol Kaske, Divine Comedy (class met in our room)
- Walter LaFeber, History of American Foreign Relations
- Avgusta Levovna (Russian)

