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The Theme...

We teach our students
about ARMA, ARIMA, Diffusions, and such, featuring

» Nicely behaved sample paths,
> Tame tail behavior,

» Regularly-spaced observations;
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The Theme...

We teach our students
about ARMA, ARIMA, Diffusions, and such, featuring

» Nicely behaved sample paths,
> Tame tail behavior,

» Regularly-spaced observations;

Then they graduate and face data with

» Jumps,
» Heavy tails,
» Spikiness,

» Irregularly-spaced observations & /or missing data.
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Time-series Data 1: Rockfalls at Soufriére Hills Volcano

Number of rockfalls per day
(Rockfall data: 12/12/1995 - 06/13/2007)
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9SHV on island of Montserrat, BOT in Lesser Antilles, Caribbean.
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Time-series Data 2: Proteomics (MALDI-ToF)
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Point Process Data 3: Forest Ecology (Spatial Biodiversity)
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%Data from 140m x 140m Borman plot in Duke Forest
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Time-series Data 4. GRB Light Curves from BATSE
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°Burst & Transient Source Experiment on Compton GRO
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LARK Models

One approach: Lévy Adaptive Regression Kernels

» General goal: inference on unknown function 7(+)

> Usual Kernel regression approximates unknown function with
weighted sum of functions

» Adaptive kernel regression infers the kernel shape locally:

f(x) ~ Z uiK(x | sj,0;)

where x, {s;j} C & are times, locations, etc.,
and {6;} C © determine the kernel shapes.
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LARK Models

One approach: Lévy Adaptive Regression Kernels

» General goal: inference on unknown function 7(+)

> Usual Kernel regression approximates unknown function with
weighted sum of functions

» Adaptive kernel regression infers the kernel shape locally:

f(x) ~ Z uiK(x | sj,0;)

where x, {s;j} C & are times, locations, etc.,
and {6;} C © determine the kernel shapes.

» Good things happen if we take {(uj,sj,0;)} to be spt(H) for a
Poisson random measure H ~ Po(v(du ds df)).
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LARK Models

LARK as a Stochastic Integral

RxSxO©

x):Zqu(x\sj,Hj):/ uK(x|s,0)H(duds db)

» Infinitely-many terms if ¥(R x S x ©) =

» But f(x) < oo as. if uK(x|s,0) isin the Musielak-Orlicz
space of functions that satisfy

/ (1/\‘qu\$«9)|) (duds df) < o0
RxSx©
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LARK Models

Features of LARK Models

f(x) = /RXSXO uK(x|s,0)H(duds db)

» Marginal dist'ns of f(x) are ID (Infinitely-Divisible);

> Any ID dist'n can be attained with suitable Lévy Measure
v(duds df): Po, Ga, aSt, IG, NB, No, ...

» Theorem: Any Stationary Moving Average process is LARK
with kernel K(x | s,0) = by(x — s)

F(x) = / b(x — 5)¢(ds db)
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LARK Models

Bayesian Inference for LARK Models

More important: Bayesian Inference is straightforward:
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LARK Models

Bayesian Inference for LARK Models

More important: Bayesian Inference is straightforward:

f(x) :Zuj K(x | s, 0;)

1. Find Likelihood Function describing how badly f(x) fits data;
2. Truncate to a finite sum with (random?) J € N terms;

3. Wiggle J and the {(uj,s;,0;)} in a RJI-MCMC scheme;
4

. Generate posterior samples of anything you like.
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Example 1: Biomass and Biodiversity

We construct a moving-average Cox model, with:
» Inhomogeneous Poisson random field for trees;

» Intensity is moving average of latent Gamma random field
(Poisson/Gamma conjugacy lends computational advantages);
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Examples

Example 1: Biomass and Biodiversity

We construct a moving-average Cox model, with:

» Posterior mean of Poisson intensity is NPB estimate of tree
density;

» Simultaneous estimation for eight species leads to spatial
biodiversity index.
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Examples

Over-story Trees (D > 25cm) in Bormann Plot
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Eight species of large trees in Duke Forest

Robert L Wolpert '72

Lévy NPB Models & Applications



Moving-Average Cox Model for Oak Density

Trees: N(dx) ~ Po(A(x) dx)
Intensity: A(x) = / k(x —s | 0)¢(dsdb), xeS
Sx©

:/ K(x — s | 8) u H(du ds db)
RxSx©
Innovation: ((ds df) ~ Ga(a(ds db), B(s,0))
Poisson Rep'n: H(du ds df) ~ Po(a(ds df) u=te P50 qu)
Kernel: k(x —s | 0) = e O—/Nx=9)/2" g — (A . ..)

Features of a(ds df), (s, 0), k(x — s | #) may be treated as
uncertain, with joint prior distributions.
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Examples

Posterior Image Estimate of Oak Density
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Examples

Posterior Contour Estimate of Oak Density
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Examples

Oaks and Hickories

Oaks Hickories
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Note Oaks are under-dispersed, Hickories over-dispersed.
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Posterior Estimates of Hickory Density
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Examples

Spatial Biodiversity

How Much Diversity? One Species or Two?
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Examples

Spatial Biodiversity

How Much Diversity? One Species or Two?
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Each figure has same number of Red and Blue dots.
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Examples

Spatial Hill's Index of Biodiversity
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Mark Hill's Equivalent Number of Species index (Ecol., 1973)
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Examples

Example 2: Bayesian Semipar. Spatial Epidemiology

Does traffic pollution induce respiratory disease in children?

Model spatially-varying disease rate A(s) (cases/100 pop)
dependence on:

» Individual-level covariates (sex, parental smoking, coal);

» Spatially-varying covariates (NO; levels as surrogate);

» Unattributed spatial variation (possible clues for
etiology!).

Use LARK to capture Unattributed spatial variation.
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The Study Area: Hudd

i

ersfield, UK
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Examples

Health Data

— 10 100 1000 ° center w/ 1 case
children/km?2 O postcode center w/ 2 cases

Population density (shading) and case locations for Severe \Wheeze
among 7-9 year old Huddersfield school children
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Exposure Data

I —
20 30 40 50 60
NO 2(Hg/m3)

Modeled NO> concentrations, as surrogate for all road pollution
(PMjg, PM25, SO4, CO, NO, ...) Note A62 (SW-NE), A629
(NW-SE), A640 (W), A616 (S).
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Examples

Non-nested Spatial Scales
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Three non-nested spatial scales: postcode centres, 250m grid,
EDs.
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Examples

Objective

Question:

> Is severe wheeze incidence within 7-9 year old school children
in Huddersfield, UK associated with traffic pollution?

» Note: Could be any <disease>>, any specified <population>,
any spatially varying <risk factor>.

Goal: Analyze point count intensities regressing on
spatial covariates and individual marks, all
at their natural levels of aggregation, using a
single class of marked point process models.
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Examples

Usual Approaches Fail

SAS: Small Area Statistics (averaging data over EDs)
don't reflect individual risk factors: e.g., about
52% are “boys” in every ED;

LR: Logistic Regression doesn't reflect spatial exposure
patterns
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Examples

Latent Spatial Effect, in Pictures:
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Results:

Risk factor Contribution

Dampness 8.1% (0.18)

Tobacco 3.5% (0.08)

NO, 4.4% (0.10)

Intercept 12.8% (0.28)

Latent term | 71.3% (1.57)

RR Boys:Girls 2.96:1
Conclusion:

Traffic pollution doesn't cause Severe Wheeze. Population does.
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Motivation LARK Models Examples Conclusion

Last Example: Gamma Ray Burst Light Curves

Afterglow

Photo credit: NASA Goddard Space Center [via M. E. Broadbent]
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Examples

GRB Pulse Number and Shape

Figure: A dozen GRB

photon rate time series
(known as light curves)
Timescale: 0.5 to 100s

Number of pulses: 1 to 5 or
more

Just one (lowest) of four
energy channels

Higher energy photons arrive
sooner. Why?
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Examples

Norris (“Fred") Kernels

Norris: 1y =1,1,=2

00 02 04 06 08 1.0

Norris Kernel: 0 = (A, ty, 11, 72),
Kn(t | 0) oc Aexp{—T1/(t — to) — (t — tO)/TZ}l{t>to}'
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Norris & GiG Kernels

Norris and GiG Kernels with duration 5s

10r — Norris|]

GiG

Amplitude of pulse

T 6 i v 5 i
time (s) since maximum amplitude

Generalized Inverse Gaussian (“GiG") Kernel: 6 = (A, to, 11, 72,p),
KG(t | (9) X A(t — to)p_l exp{—Tl/(t — to) — (t — to)/Tz}l{t>t0}.
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Examples

GRB 2571: Six Posterior Samples
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Figure: Posterior samples for the mean for GRB 2571.
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Examples

GRB 2571: How many pulses with u > €?

Number of Pulses

0 2 4 10 12 14

6 8
Number of Pulses

Figure: Posterior histogram for # of pulses comprising GRB 2571.
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Examples

Four Energy Channels

Channel 1
Channel 2
Channel 3
Channel 4

2000

1500

1000

R(E) (keV ")

E (keV)

Robert L Wolpert '72

Figure: Photons are sorted
into 4 energy channels,

based on energy deposited
(not incident energy, alas)

Channel 1 is lowest energy;
Channel 4 is highest

Energy deposited is less than
incident energy

Scientific interest is in
incident space.
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Examples

New Challenges for The GRB Application
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New Challenges for The GRB Application

> Heavy Tails =
Switched from ID Gamma process with Lévy measure
v(u) oc u=t eP¥ to a-Stable with o = 3/2, and Lévy
measure v(u) o< u~%/2 to match photon fluence decay rate;
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New Challenges for The GRB Application

> Heavy Tails =
Switched from ID Gamma process with Lévy measure
v(u) oc u=t eP¥ to a-Stable with o = 3/2, and Lévy
measure v(u) o< u~%/2 to match photon fluence decay rate;
> Sticky MCMC =-
Parallel Thinning (a new variant of Parallel Tempering),
exploiting ID property of LARK;
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New Challenges for The GRB Application

> Heavy Tails =
Switched from ID Gamma process with Lévy measure
v(u) oc u=t eP¥ to a-Stable with o = 3/2, and Lévy
measure v(u) o< u~%/2 to match photon fluence decay rate;
> Sticky MCMC =-
Parallel Thinning (a new variant of Parallel Tempering),
exploiting ID property of LARK;
> Overdispersion =
NB modeling of bin counts instead of Po, exploiting Gamma
mixture property.
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Examples

GRB 501 Results: Cls

Channel 1 Channel 2

-5 0 5 10 15 20 -5 0 5 10 15 20
time (s) since trigger time (s) since trigger
Channel 3 Channel 4

-5 0 5 10 15 20 -5 0 5 10 15 20
time (s) since trigger time (s) since trigger

Figure: 95% Credible Interval for Mean, GRB 501
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GRB 501 Results

4500
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Figure: 95% Posterior Predictive Intervals for GRB 501
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Channel 1

Examples

Channel 2

4000
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&+ 3000
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-5 0 5 10 15 20
time (s) since trigger

Channel 4
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Conclusion

Benefits

Benefits of the LARK Method

» Nonnegative data (like [PMjg] and [CO] concentrations)
modeled directly, w/o transformations
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Conclusion

Benefits

Benefits of the LARK Method

» Nonnegative data (like [PMjg] and [CO] concentrations)
modeled directly, w/o transformations
» Non-stationary, non-Gaussian okay

» Unequally spaced data okay
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Conclusion

Benefits

Benefits of the LARK Method
» Nonnegative data (like [PMjg] and [CO] concentrations)
modeled directly, w/o transformations
» Non-stationary, non-Gaussian okay
» Unequally spaced data okay
» No need to invert large matrices (as in Gaussian methods)
» Non-linear dependence structure okay

» Easy interpretability, good out-of-sample predictions, easy
dove-tail with other models (e.g. trajectory analysis)
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Conclusion

Benefits (77)

Un-Benefits of the LARK Method

— Our Mov Avg method permits only positive auto-correlations
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Conclusion

Thanks, Cornell!

LARK: Lévy Adapted Regression Kernels

A general framework for NPB function estimation
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Conclusion

Thanks, Cornell!
LARK: Lévy Adapted Regression Kernels

A general framework for NPB function estimation

It's Good to be Back!
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Conclusion

And thanks to my LARK collaborators—

» Nicky Best

» Merlise Clyde

» Leanna House

» Katja Ickstadt
» Ksenia Kyzyurova
» Danilo Lopes

» Thomas Loredo
» Zhi Ouyang

» Natesh Pillai

» Andrew Thomas
» Chong Tu

> Jianyu Wang
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Conclusion

Memorable Math Faculty

>

v

v

v

Jack Kieffer (freshman advisor)

Larry Brown (first statistics course: Decision Theory)
Roger Farrell (multivariate)

Jacob Wolfowitz (Math. Statistics, from Cramer’s book)
Frank Spitzer (Probability, from Chung's book)

Harry Kesten (Real & Complex, from Green Rudin)
Kiyoshi Ité (Stochastic Processes)

Anil Nerode (logic)

* Murad Taqqu

* lain Johnstone

* George Casella
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Conclusion

More Memorable Faculty, Outside Math

» Hans Bethe (Cambridge to London train)

» Carl Sagan (wouldn't let me take his seminar)

» David Mermin, freshman Physics (?)

» Robert Kaske, Icelandic Lit

» Carol Kaske, Divine Comedy (class met in our room)
» Walter LaFeber, History of American Foreign Relations

» Avgusta Levovna (Russian)
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