Motivation Conditions Solutions

[e] [e]
0000

000000

Stationary Infinitely-Divisible Markov Processes
with Non-negative Integer Values

Robert L Wolpert

Department of Statistical Science
Duke University

Borrowing Strength: Theory Powering Applications—
A Conference in Honor of Larry Brown’s 70th Birthday
December 2010, Philadelphia, PA



Motivation

Prelude

Progress isn't made by early risers. It's made
by lazy men trying to find easier ways to do
something.

- Robert Heinlein, Time Enough for Love
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Q: How can we model processes or time series of counts X; (e.g.,
dial-ins to a call-center), w/serial autocorrelation?

A: Obvious idea: X; ~ Po(A;), with random A; > 0.
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Modeling Correlated Count Data

How can we model processes or time series of counts X; (e.g.,
dial-ins to a call-center), w/serial autocorrelation?

Obvious idea: X; ~ Po(A¢), with random A; > 0.

That sounds hard— even if A; > 0 is Markov, X; would only
be hidden Markov. Any easier ideas?
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Modeling Correlated Count Data

Q: How can we model processes or time series of counts X; (e.g.,
dial-ins to a call-center), w/serial autocorrelation?

A: Okay— how about Markov X;?
Q: Great. What other properties should we impose?
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ID Count Models

For either discrete (t € 7 = Z) or continuous (t € 7 = R) time,
model count data X; such that for each t = (1, tp, ..., tp) € TP,
p € N, the joint distribution

pe(X) = P[Xs; = xi]

e p.
Supported on the non-negative integers Z7 ;
Markov;

Stationary;

Infinitely-divisible (not just the marginals);

A

Time-reversible.
Why?
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Why Markov?

e To specify the distribution of a general Z,-valued process X;
would require specifying all finite-dimensional marginal
distributions

pi(X) =P[X; = x], t€ TP, X € XP, peN

That sounds hard.
e For Markov processes we need only to specify the marginal

pt(x) = P[Xt = ]
and transition distributions
gst(y | x) =P[Xe =y | Xs = x].

That sounds easier— but not easy enough.
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Why Stationary?

e Under stationarity, the Markov specification of marginal
p(x) = PX; =
and transition distributions
gs(y | x) = P[Xeqs =y [ Xe = X]

are simpler because they don't depend on t.
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are simpler because they don't depend on t.

o We'll worry later about temporal patterns;
we can use stationary processes as building-blocks.
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Why Stationary?

e Under stationarity, the Markov specification of marginal
p(x) = P[X: = x]
and transition distributions
gs(y | x) = P[Xeqs = y | Xe = ]

are simpler because they don't depend on t.

o We'll worry later about temporal patterns;
we can use stationary processes as building-blocks.

e Simplify the problem by facing one issue at a time.
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Why Infinitely Divisible?
A random vector Y € RP is ID if for every n € N we can write
Y=V V" wid Y

Calls arrive from otherwise similar individuals of different
o Hair color; o Zip codes; o Gender; o Profession;

o Experience; o SES; o Age; o SSN (mod 10);
Lévy-Khinchine characterization (for counts):

|ogE|:eiw~\7:| :Z(eiowuj'_l) Vj7 {UJ}CRP, {VJ}CR+
J

:/Z (e —1) v(du)

P
T

Simplicity: All we need specify is v(du) on Z3.
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Why Time-Reversible?

e That surprised us too. Turns out it's needed for uniqueness.
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Recap

SO— what are all discrete time (t € 7 = Z) and continuous
time (t € 7 = R) time series with distributions that are:

1.

AR

Supported on the non-negative integers Z. ;
Markov;

Stationary;

Infinitely-divisible (not just the marginals); and

Time-reversible?
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The usual solutions I

e Trivial:

Xt = Xo ~ p(x), an arbitrary ID distribution, or:

X, % p(x), an arbitrary ID distribution
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The usual solutions |1

e Well-known: First, recall “Bivariate Poisson” distribution.

Set: X1 = (1 + (2, X2 =C2+ (2
GG S Po(A(1—p)) L (ia ~ Po(Ap);
Xl, X2 ~ PO()\), COV(Xl, X2) = )\p

e Equivalent recursive construction:

X1 ~ PO()\) X2 ‘ X1 ~ Bi(Xl,p) + PO()\(]. — p))
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e The recursive (or Thinning) bivariate rep'n
Xy | X1 ~ Bi(X1, p) + Po(A(1 - p))
leads to recursive Markov prescription (E McKenzie '85, etc.):

XtO ~ PO()\)
Xet1 | Fr ~ Bi(Xe,p) +Po(M1—p)), t>t



Motivation Conditions Solutions

The usual solutions Ill: Thinning Construction

e The recursive (or Thinning) bivariate rep'n
Xy | X1 ~ Bi(X1, p) + Po(A(1 - p))
leads to recursive Markov prescription (E McKenzie '85, etc.):

XtO ~ PO()\)
Xet1 | Fr ~ Bi(Xe,p) +Po(M1—p)), t>t

e But—isit ID?



Motivation Conditions Solutions

The usual solutions Ill: Thinning Construction

e The recursive (or Thinning) bivariate rep'n
Xy | X1 ~ Bi(X1, p) + Po(A(1 - p))
leads to recursive Markov prescription (E McKenzie '85, etc.):

XtO ~ PO()\)
Xet1 | Fr ~ Bi(Xe,p) +Po(M1—p)), t>t

e But—isit ID? Yes. Because...
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The usual solutions Ill: Another Construction

Fix s,u € T := Z with s < u; construct X; as finite sum:
u—s i

Xe= >0 > G G Po()y) (1)

i=u—tj=i—u+t

with intensities \j = \p/ (1 — p)%, 0 < j < i

€9 €% L1 Zoo
Ga1 [ lu
% [
— % |
-3 -2 -1 t
Time t

Figure: Illustration of Poisson process X;
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Is that it?

Are these three the only time series whose joint distribution

o~ b=

pe(%) = P[X,, = x]

Supported on the non-negative integers Z;
Markov;

Stationary;

Infinitely-divisible (not just the marginals);

Time-reversible.

?
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Let X; be a nonnegative integer-valued process indexed by time
t € Z that is Markov, Stationary, (multivariate) Infinitely
Divisible, and Time-reversible. Then the joint distribution of
{Xt} is one of the four possibilities:

1. Xy = X for some X with arbitrary ID dist’'n on Z.; or
2. Xi i o for some arbitrary ID dist'n ug on Z..; or

3. Xt ~ Po(X) with Bivariate Poisson 2-marginals.
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No.

Theorem

Let X; be a nonnegative integer-valued process indexed by time
t € Z that is Markov, Stationary, (multivariate) Infinitely
Divisible, and Time-reversible. Then the joint distribution of
{Xt} is one of the four possibilities:

1. Xy = X for some X with arbitrary ID dist’'n on Z.; or
2. Xi i o for some arbitrary ID dist'n ug on Z..; or
3. X¢ ~ Po(X) with Bivariate Poisson 2-marginals; or

4. X ~ NB(a, p) with Negative Trinomial 2-marginals.
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The Negative Trinomial distribution

e Fora>0and0<p,q,r <lwithp+qg+r=1,
let Xp, X1 have joint pmf:

(07

P[Xo =/, X1 = k] = (; k) o (—pY (—g)¥

e tj+k) o 5 o«
T )k P

with negative binomial univariate marginals and conditionals

X0~N8<a,4>, X1 | Xo ~ NB(a + Xo, r + p)
r+p
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The Negative Trinomial distribution
e Fora>0and 0<p,q,r<1lwithp+qg+r=1,
let Xp, X1 have joint pmf:
: -« «a j k
Plxo=jxa =k = () (oY (-0
_Motj+k) o o«
T )k P

with negative binomial univariate marginals and conditionals
Xo ~ NB <a;> X1 | Xo ~ NB(a + Xo, r + p)
r+p

e Note that (Xp, X1) is ID...
and Stationary if p=¢g < % w/correlation p = p/(1 — p).
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Proof of Theorem

e By Stationarity & Markov property, probability generating
function
o(s, t,u) = E 70 tX1 %

determines distribution of entire process;
e By Lévy-Khinchine, for some vy > 0,
log (s, t,u) = Z(si tuk — 1) vijk
7

e Poisson representation: for indep. Njj ~ Po(vji),

Xo=> iNigy Xo=) jNyjr Xo=) kN
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Proof of Theorem

e By Time Reversibility,
Vijk = Viji

e By Stationarity,

Vij+ = V+ij

Solutions
o

0000
00@000



Motivation Conditions Solutions

000000

Proof Sketch of Theorem

e By Time Reversibility,
Vijk = Viji
e By Stationarity,

Vij+ = Vij

e By Markov Property and Conditioning, eventually we find just
four solutions: two trivial, one Poisson, and one Negative
Binomial, as claimed.
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Continuous Time

The continuous-time case turns out to be easier than the
discrete one!

The same four solutions arise: constant, iid, Poisson, and
Negative Binomial.

The Po case is a Linear Death branching process, with
immigration;

The NB case is a Linear Birth/Death branching process, with
immigration.
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What's Next?

Stationary Markov ID Processes abound, with every ID
marginal distribution— No, Ga, St, Po, NB, etc.

Could be useful— e.g., stationary Gamma processes

At ~ Ga(a, ) for point process rates X; ~ Po(A;).

The families are rich— e.g., we know of at least four distinct
stationary Gamma processes A; with identical marginals and
covariance structures!

Characterizing all of them could take us until Larry’'s 80th
birthday... or longer... so stay tuned!



Motivation Conditions Solutions

[e]

[e]
0000
O0000e

Thanks!

More details (references, this talk in .pdf, related work) are
available at
http://www.stat.duke.edu/~rlw/.

Thanks to Jim, Tony, Linda, and everyone at the Wharton Dept of
Statistics.
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Thanks!

More details (references, this talk in .pdf, related work) are
available at
http://www.stat.duke.edu/~rlw/.

Thanks to Jim, Tony, Linda, and everyone at the Wharton Dept of
Statistics. And thanks to SAMSI, the NSF, and NASA for their
support. And, especially, thanks to

Happy Birthday, Larry!
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