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Prelude

Progress isn’t made by early risers. It’s made

by lazy men trying to find easier ways to do

something.

- Robert Heinlein, Time Enough for Love
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Modeling Correlated Count Data

Q: How can we model processes or time series of counts Xt (e.g.,
dial-ins to a call-center), w/serial autocorrelation?

A: Obvious idea: Xt ∼ Po(Λt), with random Λt ≥ 0.

X: That sounds hard— even if Λt ≥ 0 is Markov, Xt would only
be hidden Markov. Any easier ideas?

A: Okay— how about Markov Xt?

Q: Great. What other properties should we impose?
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ID Count Models

For either discrete (t ∈ T = Z) or continuous (t ∈ T = R) time,
model count data Xt such that for each ~t = (t1, t2, ..., tp) ∈ T p,
p ∈ N, the joint distribution

p~t(~x) = P[Xti = xi ]

is:

1. Supported on the non-negative integers Z
p
+;

2. Markov.;

3. Stationary;

4. Infinitely-divisible (not just the marginals);

5. Time-reversible.

Why?
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Why Markov?

• To specify the distribution of a general Z+-valued process Xt

would require specifying all finite-dimensional marginal
distributions

p~t(~x) = P[Xti = xi ], ~t ∈ T p, ~x ∈ X p, p ∈ N

That sounds hard.

• For Markov processes we need only to specify the marginal

pt(x) = P[Xt = x ]

and transition distributions

qst(y | x) = P[Xt = y | Xs = x ].

That sounds easier— but not easy enough.
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Why Stationary?

• Under stationarity, the Markov specification of marginal

p(x) = P[Xt = x ]

and transition distributions

qs(y | x) = P[Xt+s = y | Xt = x ]

are simpler because they don’t depend on t.

• We’ll worry later about temporal patterns;
we can use stationary processes as building-blocks.

• Simplify the problem by facing one issue at a time.
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Why Infinitely Divisible?

• A random vector ~Y ∈ R
p is ID if for every n ∈ N we can write

~Y = ~Y
(n)
1 + · · · + ~Y

(n)
n w/iid ~Y

(n)
j .

• Calls arrive from otherwise similar individuals of different
◦ Hair color; ◦ Zip codes; ◦ Gender; ◦ Profession;
◦ Experience; ◦ SES; ◦ Age; ◦ SSN (mod 10);

• Lévy-Khinchine characterization (for counts):

log E
[

e iω·~Y
]

=
∑

j

(

e iω·uj − 1
)

νj , {uj} ⊂ R
p, {νj} ⊂ R+

=

∫

Z
p
+

(

e iω·u − 1
)

ν(du)

• Simplicity: All we need specify is ν(du) on Z
2
+.
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Why Time-Reversible?

• That surprised us too. Turns out it’s needed for uniqueness.
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Recap

SO— what are all discrete time (t ∈ T = Z) and continuous

time (t ∈ T = R) time series with distributions that are:

1. Supported on the non-negative integers Z+;

2. Markov;

3. Stationary;

4. Infinitely-divisible (not just the marginals); and

5. Time-reversible?
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The usual solutions I

• Trivial:

Xt ≡ X0 ∼ p(x), an arbitrary ID distribution
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The usual solutions II

• Trivial:

Xt ≡ X0 ∼ p(x), an arbitrary ID distribution, or:

Xt
iid
∼ p(x), an arbitrary ID distribution
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The usual solutions III

• Well-known: First, recall “Bivariate Poisson” distribution.
Set: X1 = ζ1 + ζ12, X2 = ζ12 + ζ2

ζ1, ζ2
iid
∼ Po

(

λ(1 − ρ)
)

⊥⊥ ζ12 ∼ Po(λρ);

X1, X2 ∼ Po(λ), Cov(X1,X2) = λρ.

ζ12

ζ1 ζ2

X1 X2

• Equivalent recursive construction:

X1 ∼ Po(λ) X2 | X1 ∼ Bi(X1, ρ) + Po
(

λ(1 − ρ)
)
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The usual solutions III: Thinning Construction

• The recursive (or Thinning) bivariate rep’n

X2 | X1 ∼ Bi(X1, ρ) + Po
(

λ(1 − ρ)
)

leads to recursive Markov prescription (E McKenzie ’85, etc.):

Xt0 ∼ Po(λ)

Xt+1 | Ft ∼ Bi(Xt , ρ) + Po
(

λ(1 − ρ)
)

, t ≥ t0

• But— is it ID? Yes. Because...
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The usual solutions III: Another Construction
Fix s, u ∈ T := Z with s ≤ u; construct Xt as finite sum:

Xt =

u−s
∑

i=u−t

i
∑

j=i−u+t

ζij , ζij
ind
∼ Po(λij) (1)

with intensities λij = λρj (1 − ρ)2, 0 ≤ j < i

Time t
t−3 t−2 t−1 t

ζ30 ζ20 ζ10 ζ00

ζ31 ζ21 ζ11

ζ32 ζ22

ζ33

Figure: Illustration of Poisson process Xt
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Is that it?

Are these three the only time series whose joint distribution

p~t(~x) = P[Xti = xi ]

is:

1. Supported on the non-negative integers Z+;

2. Markov;

3. Stationary;

4. Infinitely-divisible (not just the marginals);

5. Time-reversible.

?
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No.

Theorem
Let Xt be a nonnegative integer-valued process indexed by time
t ∈ Z that is Markov, Stationary, (multivariate) Infinitely

Divisible, and Time-reversible. Then the joint distribution of
{Xt} is one of the four possibilities:

1. Xt ≡ X for some X with arbitrary ID dist’n on Z+; or

2. Xt
iid
∼ µ0 for some arbitrary ID dist’n µ0 on Z+; or

3. Xt ∼ Po(λ) with Bivariate Poisson 2-marginals.; or

4. Xt ∼ NB(α, p) with Negative Trinomial 2-marginals.
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The Negative Trinomial distribution

• For α > 0 and 0 ≤ p, q, r ≤ 1 with p + q + r = 1,
let X0, X1 have joint pmf:

P[X0 = j ,X1 = k] =

(

−α

j , k

)

rα (−p)j (−q)k

=
Γ(α + j + k)

Γ(α) j! k!
rα pj qk ,

with negative binomial univariate marginals and conditionals

X0 ∼ NB

(

α,
r

r + p

)

, X1 | X0 ∼ NB(α + X0, r + p)

• Note that (X0,X1) is ID...
and Stationary if p = q ≤ 1

2 , w/correlation ρ = p/(1 − p).
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Proof of Theorem

• By Stationarity & Markov property, probability generating
function

φ(s, t, u) = E sX0 tX1 uX2

determines distribution of entire process;

• By Lévy-Khinchine, for some νijk ≥ 0,

log φ(s, t, u) =
∑

Z
3
+

(s i t j uk − 1) νijk

• Poisson representation: for indep. Nijk ∼ Po(νijk),

X0 =
∑

iNi++ X1 =
∑

jN+j+ X2 =
∑

kN++k
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• By Lévy-Khinchine, for some νijk ≥ 0,

log φ(s, t, u) =
∑

Z
3
+

(s i t j uk − 1) νijk

• Poisson representation: for indep. Nijk ∼ Po(νijk),

X0 =
∑

iNi++ X1 =
∑

jN+j+ X2 =
∑

kN++k



Motivation Conditions Solutions

Proof of Theorem

• By Time Reversibility,

νijk = νkji

• By Stationarity,
νij+ = ν+ij

• By Markov Property and Conditioning, eventually we find just
four solutions: two trivial, one Poisson, and one Negative
Binomial, as claimed.
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Continuous Time

• The continuous-time case turns out to be easier than the
discrete one!

• The same four solutions arise: constant, iid, Poisson, and
Negative Binomial.

• The Po case is a Linear Death branching process, with
immigration;

• The NB case is a Linear Birth/Death branching process, with
immigration.
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What’s Next?

• Stationary Markov ID Processes abound, with every ID
marginal distribution— No, Ga, St, Po, NB, etc.

• Could be useful— e.g., stationary Gamma processes
Λt ∼ Ga(α, β) for point process rates Xt ∼ Po(Λt).

• The families are rich— e.g., we know of at least four distinct
stationary Gamma processes Λt with identical marginals and
covariance structures!

• Characterizing all of them could take us until Larry’s 80th
birthday... or longer... so stay tuned!
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Thanks!

More details (references, this talk in .pdf, related work) are
available at

http://www.stat.duke.edu/∼rlw/.

Thanks to Jim, Tony, Linda, and everyone at the Wharton Dept of
Statistics. And thanks to SAMSI, the NSF, and NASA for their
support. And, especially, thanks to

Larry!
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