K-means and Gaussian Mixture Model

1 Clustering

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).

K-means is a partition or centroid-based clustering method.

Gaussian Mixture Model is a probabilistic distribution model.

2 Gaussian Mixture Model

Mixture models make use of latent variables to model different parameters for different groups (or clusters) of data points. A Gaussian Mixture Model (GMM) is a mixture of Gaussians with K components.

The Expectation Maximization Algorithm is a general method for parameter estimation when the model depends on unobserved or latent variables. We use EM to update our estimation for the parameters in the Gaussian Mixture Model.

1. (E-step) Assume we are given N data samples \(\{ x_i \}_{i=1}^{N} \) and a current guess of parameters \(\theta_0 = (\pi, \mu, \Sigma) \). Write down the formula for \(p(z_i = k \mid x_i, \theta_0) \), the posterior probability of assigning data point \(x_i \) to cluster component \(k \).

Let’s denote \(p(z_i = k \mid x_i, \theta_0) \) as \(r_{ik} \).
2. (M-step) The log-likelihood function is given as:

\[l(\theta) = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} (\log \pi_k + \log \mathcal{N}(x_i \mid \mu_k, \Sigma_k)) \]

(a) Write down the optimal choice for mean vectors \(\mu_k \) for all \(k = 1, \ldots, K \):
\[\arg\max_{\mu_k} (l(\theta)) = \]

(b) Write down the optimal choice for covariance matrices \(\Sigma_k \) for all \(k = 1, \ldots, K \):
\[\arg\max_{\Sigma_k} (l(\theta)) = \]

(c) Write down the optimal choice for weight vectors \(\pi_k \) for all \(k = 1, \ldots, K \):
\[\arg\max_{\pi_k} (l(\theta)) = \]
3 K-means Clustering

Compared to GMM, K-means is a hard clustering method. It has no underlying probability model, each data point is assigned to a specific centroid.

Use the K-means algorithm and Euclidean distance to cluster the 8 data points given into K = 3 clusters.

\[x^{(1)} = (2, 8), x^{(2)} = (2, 5), x^{(3)} = (1, 2), x^{(4)} = (5, 8), x^{(5)} = (7, 3), x^{(6)} = (6, 4), x^{(7)} = (8, 4), x^{(8)} = (4, 7). \]

\[
\begin{array}{cccccccc}
 & x^{(1)} & x^{(2)} & x^{(3)} & x^{(4)} & x^{(5)} & x^{(6)} & x^{(7)} & x^{(8)} \\
x^{(1)} & 0 & 3.0000 & 6.0828 & 3.0000 & 7.0711 & 5.6569 & 7.2111 & 2.2361 \\
x^{(2)} & 3.0000 & 0 & 3.1623 & 4.2426 & 5.3852 & 4.1231 & 6.0828 & 2.8284 \\
x^{(3)} & 6.0828 & 3.1623 & 0 & 7.2111 & 6.0828 & 5.3852 & 7.2801 & 5.8310 \\
x^{(4)} & 3.0000 & 4.2426 & 7.2111 & 0 & 5.3852 & 4.1231 & 5.0000 & 1.4142 \\
x^{(5)} & 7.0711 & 5.3852 & 6.0828 & 5.3852 & 0 & 1.4142 & 1.4142 & 5.0000 \\
x^{(6)} & 5.6569 & 4.1231 & 5.3852 & 4.1231 & 1.4142 & 0 & 2.0000 & 3.6056 \\
x^{(7)} & 7.2111 & 6.0828 & 7.2801 & 5.0000 & 1.4142 & 2.0000 & 0 & 5.0000 \\
x^{(8)} & 2.2361 & 2.8284 & 5.8310 & 1.4142 & 5.0000 & 3.6056 & 5.0000 & 0 \\
\end{array}
\]

Table 1: Distance matrix for training data from Table 1.

1. Let’s assume that points \(x^{(3)}, x^{(4)} \) and \(x^{(6)} \) were chosen as the initial centroids. Perform one iteration of the K-means algorithm and report the coordinates of the resulting centroids.
2. Calculate the loss function $J(c^{(1)}, \ldots, c^{(N)}, \mu_1, \ldots, \mu_K) = \frac{1}{N} \sum_{i=1}^{N} ||x^{(i)} - \mu_{c^{(i)}}||^2$ before and after the first iteration of K-means using the initialization given in (a).

4 K-means and GMM Example

The k-means clustering model explored in the previous section is simple and relatively easy to understand, but its simplicity leads to practical challenges in its application. In particular, the non-probabilistic nature of k-means and its use of simple distance-from-cluster-center to assign cluster membership leads to poor performance for many real-world situations.

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html