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LECTURE 1
Course preliminaries

The term machine learning goes back to Arthur Samuels and his computer
checker playing algoriths. In 1959 Samuels described machine learning as: ”Field
of study that gives computers the ability to learn without being explicitly pro-
grammed.”

Machine learning is considered a subfield of artificial intelligence and the idea
of a learning machine is given in ”Computing Machinery and Intelligence,” by Alan
Turing in 1950 in Mind: A Quarterly Review of Psychology and Philosophy. The
question posed in the fist sentence of this paper was “Can machines think ?”.

For this class by ML we are going to consider algorithms and probabilistic
methods to ”learn from data.” The material is at the interface of statistics and
computer science and one caricature of ML is computer scientists doing statistics.
ML is often also associated with the term ”big data” which is often meant to be
statistical analysis with very large data sets, here the computational challenge is as
serious as the inference problem.

Broadly speaking the methods we will discuss can be placed into two categories:
proceduralists: This will cover both frequentist statistics, as well as algorithmic
approaches to ML. This approach is based upon coming up with good procedures
to apply to data. What is meant by good is some long run probability of the
procedure, for example the long run probability of errors made in classification is
small.
Bayesian: A coherent axiomatic approach to inference based on inference of the
posterior probability of parameters or models given data. Bayesian inference may
not be feasible or practical in certain situations.

1.1. Review

We’ll start with a basic review of statistics. We will examine a statistical question
using both Bayesian and frequentist analysis. The following formalism will be
quantified in both models

P(M | D) =
P(D |M)P(M)

P(D)

∝ P(D |M)P(M),

where P(M | D) is evidence for model M given data D, P(D | M) is evidence for
D given model M , P(M) is the probability of model M , and P(D) the probability
of data, The standard statistical terms for these objects are

P(D |M) ≡ Lik(D;M), Likelihood of data given model M

P(M | D) ≡ Post(D;M), Posterior evidence of model M given data

P(M) ≡ π(M), prior probability (before seeing data) for model M.

Example 1: Motif estimation
We consider a random variable X that is drawn from a alphabet of k = 4 letters

{A,C, T,G} where we represent A ≡ 1, C ≡ 2, T ≡ 3, and G ≡ 4. We set the
probability distribution on X as the following multinomial distribution, note we
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are modeling a draw of four letters

P(n1, n2, n3, n4 | p1, p2, p3, p4) ≡ Multi(p1, p2, p3, p4)

∝
4∏
j=1

p
nj
j ,

4∑
j=1

pj = 1, pj ≥ 0 ∀j = 1, ..., 4,

where pi is the probability of observing the i-th letter ({A,C, T,G} in the alphabet
and ni states how many times the i-th letter is observed (either 1 or 0). The above
is an example of the multinomial distribution.

The random variable X is a string in a sequence and we can think of the
random string Z = (X1, ..., Xm) as a string of length m with each Xi drawn iid
from a distribution. This is an example of a string, let us call these strings motifs.
The data consists of a series of n strings, D = {Z1, ..., Zn} with each string Zi
drawn iid (independently and identically distributed).

We first state the likelihood of observing the data D

P(D |M) = Lik(D | p1, ..., p4)

Lik(D | p1, ..., p4) ∝
n∏
i=1

 m∏
`=1

 k∏
j=1

p
ni`j
j


∝

m∏
`=1

 n∏
i=1

 k∏
j=1

p
ni`j
j


∝

m∏
`=1

 k∏
j=1

p
ñ`j
j

 ,
where ni`j is the number of observations of letter j at position ` in observation i
(again this is 0 or 1) and ñ`j =

∑
i ni`j is the number of times in the n sequences

that letter j is observed at position `.
A classical method for estimating p1, .., pk is the maximum likelihood formula-

tion

{p̂1, ..., p̂k} = arg max
p1,...,pk

[Lik(D | p1, ..., pk)] ,

subject to

k∑
j=1

pj = 1, pj ≥ 0 ∀j = 1, ..., k.

To understand how to do the above optimization learn about the method of lagrange
multipliers. This is a very reasonable approach but it has one problem, how does
one estimate the uncertainty in the estimate of {p̂1, ..., p̂k} ?

We can formally model the uncertainty using Bayes rule

P(M | D) ∝ P(D |M)P(M),

if we can put a probability distribution on the model space, in this case (p1, ..., pk).
The space of all points p = (p1, ..., pk) such that

∑
j pk = 1 and pk ≥ 0 for all

j = 1, ..., k is called the simplex. We now state a classical distribution on the
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simplex called the Dirichlet distribution

f(p1, ..., pk | α1, ..., αk) ≡ Dir(α1, ..., αk)

∝
k∏
j=1

p
αj−1
j , αj ≥ 0∀j, αj ∈ N,

where N are the natural numbers, it is natural to think of the {α1, ..., αk} parameters
as counts. We can use the Dirichlet distribution as a prior π(M) with the uniform
prior being Dir(α1 = 1, ..., αk = 1). We now state the posterior

P(M | D) ∝ Lik(D | p1, ..., p4)× π(p1, ..., p4)

∝
n∏
i=1

 m∏
`=1

 k∏
j=1

p
ni`j
j

× k∏
j=1

p
αj−1
j

∝
m∏
`=1

 n∏
i=1

 k∏
j=1

p
ni`j
j

× k∏
j=1

p
αj−1
j

∝
m∏
`=1

 k∏
j=1

p
ñ`j
j

× k∏
j=1

p
αj−1
j

∝
m∏
`=1

 k∏
j=1

p
ñ`j
j

× k∏
j=1

p
αj−1
j

∝

 k∏
j=1

p
n̆j
j

× k∏
j=1

p
αj−1
j

∝

 k∏
j=1

p
n̆j+αj−1
j


= Dir(n̆1 + α1, ..., n̆k + αk),

where n̆j =
∑
i` ni`j . The strength of this estimation procedure is that we end up

with not just a point estimate {p̂1, ..., p̂k} as we did in the MLE approach but we
end up with a posterior distribution. We can use the highest probability value for
(p1, ..., pk) as an estimate or the mean of the posterior distribution. The reason why
this example worked so easily is that the multinomial and Dirichlet distributions
are conjugate. By this we mean that

Multi(p1, ..., pk)×Dir(α1, ..., αk) = Dir(p1 + α1, ...., pk + αk).


