
LECTURE 15
Markov chain Monte Carlo

There are many settings when posterior computation is a challenge in that
one does not have a closed form expression for the posterior distribution. Markov
chain Monte Carlo methods are a general all purpose method for sampling from
a posterior distribution. To explain MCMC we will need to present some general
Markov chain theory. However, first we first justify Gibbs sampling, this can be
done without the use of any Markov chain theory.

The basic problem is we would like to generate samples from

π(θ) ≡ f(θ | x) =
f(x | θ)f(θ)

f(x)
≡ w(θ)

Z
,

here the normalization constant Z =
∫
f(x, θ)dθ is in general intractable. The

objective of our MCMC algorithms will be to sample from π(θ) without ever having
to compute Z. The computation of w(θ) is usually tractable since evaluating the
likelihood and prior are typically analytic operations.

15.1. Gibbs sampler

The idea behind a Gibbs sampler is that one wants to sample from a joint posterior
distribution. We do not have access to a closed form for the joint, however we
do have an analytic form form for the conditionals. Consider a joint posterior
f(θ | x) where x is the data and θ = {θ1, θ2}. For ease of notation we will write
π(θ1, θ2) ≡ f(θ1, θ2 | x). The idea behind the Gibbs sampling algorithm is that the
following procedure will provide samples from the joint distribution π(θ1, θ2):

1) Set θ2 ∼ Unif[support of θ2]
2) Draw θ′1 ∼ π(θ′1 | θ2)
3) Draw θ′2 ∼ π(θ′2 | θ′1)
4) Set θ2 := θ′2
5) Goto step 2.

We now show why the draws θ′1, θ
′
2 from the above algorithm are from π(θ1, θ2).

The following chain starts with the joint distribution specified by following the

117

118 S. MUKHERJEE, PROBABILISTIC MACHINE LEARNING

above algorithm and proceeds to show it is the joint distribution

p(θ′1, θ
′
2) =

∫
π(θ1, θ2)π(θ′1 | θ2)π(θ′2 | θ′1)dθ1dθ2

=

∫
π(θ1, θ2)

π(θ′1, θ2)

π(θ2)

π(θ′1, θ
′
2)

π(θ′1)
dθ1dθ2

=

∫
π(θ1 | θ2)π(θ2 | θ′1)π(θ′2, θ

′
1)dθ1dθ2

= π(θ′1, θ
′
2)

[∫
π(θ1 | θ2)π(θ2 | θ′1)dθ1dθ2

]
= π(θ′1, θ

′
2)

[∫
π(θ1, θ2 | θ′1)dθ1dθ2

]
= π(θ′1, θ

′
2).

One can also derive the Gibbs sampler from the more general Metropolis-
Hastings algorithm. We will leave that as an exercise.

15.2. Markov chains

Before we discuss Markov chain Monte Carlo methods we first have to define some
basic properties of Markov chains. The Markov chains we discuss will always be
discrete time. The state space or values the chain can take at an time t = 1, ..., T
can be either discrete or continuous. We will denote the state space as S and for
almost all examples we will consider a finite discrete state space S = {s1, ..., sL},
this is so we can use linear algebra rather than operator theory for all our analysis.
In the context of Bayesian inference it is natural to think of the state space S as
the space of parameter values Θ and a state si corresponding to a parameter value
θi.

For a discrete state Markov chain we can define a Makov transition matrix P
where each element

Pst→st+1
= Pr(st → st+1),

is the probability of moving from one state to another at any time t. We consider a
probability vector ν as a vector of L numbers with

∑
` ν` = 1 and ν` ≥ 0. We will

require our chain to mix and have a unique stationary distribution. This require-
ment will be captured by two criteria: invariance and irreducibility or ergodicity.

We start with invariance: we would like the chain to have the following property

lim
T→∞

PT ν = ν∗, ∀ν

the limit ν∗ is called the invariant measure or limiting distribution. The existence
of a unique invariant distribution piles the following general balance condition∑

s′

P(s′ → s) ν∗(s′) = ν∗(s).

There is a simple check for invariance given the transition matrix P by computing

P = UTΛU,

where if we rank the eigenvalues λ` from largest to smallest we know the largest
eigenvalue λ1 = 1. We also know that all the eigenvalues cannot be less than −1.

LECTURE 15. MARKOV CHAIN MONTE CARLO 119

So we now consider

lim
N→∞

[
PN =

(∑
`

λN` u`u
T
`

)]
which will converge as long as no eigenvalues λ` = −1. In addition, all eigenvalues
λ` ∈ (−1, 1) will not have an effect on the limit.

Ergodicity or irreducibility of the chain means the following:
There exists an N such that PN (s′ → s) > 0 for all s′ and ν∗(s) > 0.
Another way of stating the above is that the entire state space is reachable from
any point in the state space. Again we can check for irreducibility using linear
algebra. We first define the generator of the chain L = P− I. We now look at the
eigenvalues of L ordered from smallest to largest. We know the smallest eigenvalue
λ1 = 0 and has corresponding eigenvector 1. If the second eigenvalue λ2 > 0 then
the chain is irreducible and λ2 − λ1 = λ2 is called the spectral gap.

For a Makov chain with a unique invariant measure that is ergodic the following
mixing rate holds

sup
ν
‖ν∗ −Pν‖ = O((1− λ)N).

We want our chains to mix.
Algorithmically we will design Markov chains that satisfy what is called detailed

balance:

P(s′ → s)ν∗(s′) = P(s→ s′)ν∗(s), ∀s, s′.
Detailed balance is easy to check for in an algorithm and detailed balance plus er-
godicity implies that the chain mixes. In the next section we see why detailed bal-
ance is easy to verify for the most common MCMC algorithm Metropolis-Hastings.

15.3. Metropolis-Hastings algorithm

We begin with some notation we define a Markov transition probability or Markov
transition kernel as

Q(s′; s) ≡ f(s′ | s),
as a conditional probability of s′ | s, in the case of a finite state space these values
are given by a Markov transition matrix. We also have a state probabilities

p(s) ≡ w(s)

Z
,

where we can evaluate w(s) using the prior and likelihood. Note that whenever we

write p(s)
p(s′) we can use the computation w(s)

w(s′) as a replacement.

The following is the Metropolis-Hastings algorithm

1) t = 1
2) s(t) ∼ Unif[support of s]
3) Draw s′ ∼ Q(s′; s(t))
4) Compute acceptance probability α

α = min

(
1,
p(s′)Q(s; s′)

p(s)Q(s′; s)

)

5) Accept s′ with probability α: u ∼ Unif[0, 1], If u ≤ α then

{
t = t+ 1

s(t) = s′

6) If t < T goto step 3 else stop

120 S. MUKHERJEE, PROBABILISTIC MACHINE LEARNING

The Metropolis-Hastings algorithm is designed to generate (s(1),, s(T)) sam-
ples from the posterior distribution p(s). We will show soon that the algorithm
satisfies detailed balance. Before that we will state a properties of the above algo-
rithm. A common proposal Q(s′; s) is a random walk proposal s′ ∼ N(s, σ2). If σ2

is very small then typically the acceptance ratio α will be near 1, however in this
case two consecutive draws s(t), s(t+1) will be conditionally dependent. If σ2 is very
large then the acceptance ratio α will be near 0, however in this case two consecu-
tive draws s(t), s(t+1) will be independent. There is a trick of how local/global the
steps should be and what acceptance ratio α is good, some theory suggests α = .25
is optimal. It is also the case that the first T0 samples are not drawn form the
stationary distribution, the stationary distribution has not kicked in yet. For this
reason one typically does not include the first T0 samples, this is called the burn-in
period.

We now show detailed balance. First observe that P (s → s′) = αQ(s′; s). We
start with

P (s→ s′)ν∗(s) = Q(s′; s) min

(
1,
ν∗(s′)Q(s; s′)

ν∗(s)Q(s′; s)

)
ν∗(s)

= min
(
ν∗(s)Q(s′; s), ν∗(s′)Q(s; s′)

)
= Q(s; s′) min

(
1,
ν∗(s)Q(s′; s)

ν∗(s′)Q(s; s′)

)
ν∗(s′)

= P (s′ → s)ν∗(s′).

