
LECTURE 16
Hidden Markov Models

The idea of a hidden Markov model (HMM) is an extension of a Markov chain.
The basic formalism is that we have two variables X1, ..., XT which are observed
and Z1, ..., ZT which are hidden states and they have the following conditional
dependence structure

xt+1 = f(xt; θ1)

zt+1 = g(xt+1; θ2),

where we think of t as time and f(·) and g(·) are conditional distributions. In this
case we think of time as discrete. Typically in HMMs we consider the hidden states
to be discrete, there are more general state space models where both the hidden
variables and the observables are continuous. The parameters of the conditional
distribution g(·) is often called the transition probabilities and the parameters for
observed distribution g(xt+1; θ2) are often called the emission probabilities. We will
often use the notation x1:t ≡ x1, ..., xt.

The questions normally asked using a HMM include:

• Filtering: Given the observations x1, ..., xt we want to know the hidden
states z1, ..., zt so we want to infer – p(z1:t | x1:t).

• Smoothing: Given the observations x1, ..., xT we want to know the hidden
states z1, ..., zt where t < T . Here we are using past and future observation
to infer hidden states – p(z1:t)

• Posterior sampling: z1:T ∼ p(z1:T | x1:T )

The hidden variables in an HMM are what make inference challenging. We
start by writing down the joint (complete) likelihood

Lik(x1, ..., xT , z1, ..., zT ; θ1, θ2) = π(z1)

T∏
t=2

f(zt+1 | zt, θ1)

T∏
t=1

g(xt | zt, θ2),

here π(·) is the probability of the initial state. One can obtain the likelihood of the
observed data by marginalization

Lik(x1, ..., xT ; θ1, θ2) =
∑

z1,...,xT

(
π(z1)

T∏
t=2

f(zt+1 | zt, θ1)

T∏
t=1

g(xt | zt, θ2)

)
.

Naively the above sum is brutal since it consists of all possible hidden trajectories.
If we assume N hidden states then we would have NT possible trajectories. We
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will see that the Markov structure will buy us a great deal in terms of reducing
computations.

16.1. EM algorithm

We start with the complete log likelihood

`c(z, x; θ) = log[Lik(z, x | θ)]

= log

{
p(z1)

[
T∏
t=1

p(zt | zt−1)

][
T∏
t=1

p(xt | zt)

]}

= log π(z1) +

T−1∑
t=1

log azt,zt+1
+

T∑
t=1

log p(xt | zt, θ2).

We then write the expected complete log likelihood

IE`c(z, x; θ) = IE log[Lik(z, x | θ)]

= IE log

{
p(z1)

[
T∏
t=1

p(zt | zt−1)

][
T∏
t=1

p(xt | zt)

]}

=

N∑
k=1

IE[zk1 ] log πk + log π(z1) +

T−1∑
t=1

K∑
j,k=1

IE[zjt z
k
t+1] log ajk

+

T∑
t=1

IE[log p(Xt | Zt, θ2)],

where zkt indicates that at time t one is in the k-th state.
For the E step of theEM algorithm we will need to compute

IE[Zk1 ] = IE[Zk1 | X1:T , θ] = p(Zk1 = 1 | X1:T , θ)

This is what we expect since Z1 follows a Multinomial distribution, so its expecta-
tion is simply the vector of posterior probabilities. We will also need to compute

IE[Zjt , Z
k
t+1] = IE[Zjt , Z

k
t+1 | X1:T , θ] =

T−1∑
t=1

p(ZjtZ
k
t+1 | X1:T , θ)

Note that intuitively, IE[Zjt , Z
k
t+1] counts how often we see transition pairs.
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We now state the forward-backward algorithm which is an efficient way of
computing the expectations above. We would like to compute p(z1 | x1:T ) so we
start by writing

p(zt | x1:T ) =
p(zt, x1:T )

p(y1:T )

p(zt, x1:T ) = p(x1:T | zt)p(zt)
= p(x1:t, zt)p(xt+1:T | zt)
= α(zt)β(zt),

where α(zt) looks back and β(zt) looks forward. Both can be computed recursively.
For α:

α(zt) = p(x1:t, zt)

=
∑
zt−1

p(x1:t, zt, zt−1)

=
∑
zt−1

p(x1:t−1, zt−1)p(xt, zt | x1:t−1, zt−1)

=
∑
zt−1

p(x1:t−1, zt−1)p(zt | zt−1)p(xt | zt)

=
∑
zt−1

α(zt−1)p(zt | zt−1)p(xt | zt),

note that given parameter models the above is easy to compute since p(xt | zt) is
the emission probability and p(zt | zt−1) is the state transition probability. Note
that we can initialize α as α(z1) = p(x1, z1) = p(z1)p(x1 | z1).

For β:

β(zt) = p(xt+1:T | zt)
=

∑
zt+1

p(xt+1:T , zt+1 | zt)

=
∑
zt+1

p(xt+1:T | zt+1, zt)p(zt+1 | zt)

=
∑
zt+1

p(xt+2:T | zt+1)p(xt+1 | yt+1)p(zt+1 | zt)

=
∑
zt+1

β(zt+1)p(xt+1 | zt+1)p(zt+1 | zt)

note that given parameter models the above is easy to compute since p(xt+1 | zt+1)
is the emission probability and p(zt+1 | zt) is the state transition probability. Note
that we can initialize β as β(zT−1) = p(xT | zT−1) =

∑
zT
p(xT | zT )p(zT | zT−1).

This results in an algorithm with two phases
forward phase: α(zt) = p(xt | zt)

∑
zt−1

p(zt | zt−1)α(zt−1)

backward phase: β(zt) =
∑
zt+1

p(xt+1 | zt+1)p(zt+1 | zt)β(zt+1).

Also we observe

p(zt | x1:T ) =
p(z1 | x1:T )

p(x1:T )
∝ α(zt)β(zt).
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Recall in the E step we need to compute

IE[Zk1 ] = p(zk1 | x1:T ) ∝ α(z1)β(z1),

and

IE[ZjtZ
k
t+1] = p(zjt z

k
t+1 | x1:T )

∝ p(zjt z
k
t+1, xt+1:T )

∝ p(xt+2:T | zkt+1)p(xt+1 | zkt+1)p(zkt+1 | z
j
t )p(z

j
t | x1:t))

= β(zkt+1) p(xt+1 | zkt+1) p(zkt+1 | z
j
t )α(zjt ).

The above equations provide our estimates of IE[Zk1 ] and IE[ZjtZ
k
t+1] give current

model parameters and the α and β computations.
We now specify the M step. For notation, we set the parameters of the tran-

sition probabilities are denoted as ajk = p(zjt | zkt+1), the initial probabilities as
πi, the parameters of the emission probabilities which is again a multinomial as
ηjk = p(xjt | zkt ). The complete log likelihood with the parameters can be stated as

N∑
i=1

E[Zi1] log πi +

T∑
t=1

N∑
i,j=1

E[ZitZ
j
t ] log aij +

T∑
t=1

N,O∑
i,j=1

IE[ZitX
j
t ] log ηij ,

we have assumed N hidden states and O observable states. For ease of notation we
define the following terms ẑit = E[Zit ], ẑ ijt = E[ZitZ

j
t ]. We now write down the

sufficient statistics

zi1, mij =

T∑
t=1

ẑ ijt , nij =

T∑
t=1

ẑitx
j
t .

Given the sufficient statistics and the parameters we minimize the complete log
likelihood subject to the constraints∑

i

πi = 1,

N∑
j=1

aij = 1,

O∑
i=1

nij = 1.

Using Lagrange multipliers we obtain

π̂i = zi1

âij =
mij∑N
k=1mik

η̂ij =
nij∑O
k=1 nik

.


