A Bayesian approach to linear regression

The main motivations behind a Bayesian formalism for inference are a coherent approach to modeling uncertainty as well as an axiomatic framework for inference. We will reformulate multivariate linear regression from a Bayesian formulation in this section.

Bayesian inference involves thinking in terms of probability distributions and conditional distributions. One important idea is that of a conjugate prior. Another tool we will use extensively in this class is the multivariate normal distribution and its properties.

4.1. Conjugate priors

Given a likelihood function $p(x \mid \theta)$ and a prior $\pi(\theta)$ one can write the posterior as

$$p(\theta \mid x) = \frac{p(x \mid \theta)\pi(\theta)}{\int_{\theta'} p(x \mid \theta')\pi(\theta')d\theta'} = \frac{p(x, \theta)}{p(x)},$$

where $p(x)$ is the marginal density for the data, $p(x, \theta)$ is the joint density of the data and the parameter θ.

The idea of a prior and likelihood being conjugate is that the prior and the posterior densities belong to the same family. We now state some examples to illustrate this idea.

Beta, Binomial: Consider the Binomial likelihood with n (the number of trials) fixed

$$f(x \mid p, n) = \binom{n}{x} p^x (1 - p)^{n-x},$$

the parameter of interest (the probability of a success) is $p \in [0, 1]$. A natural prior distribution for p is the Beta distribution which has density

$$\pi(p; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}p^{\alpha-1}(1 - p)^{\beta-1}, \quad p \in (0,1) \text{ and } \alpha, \beta > 0,$$
where \(\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \) is a normalization constant. Given the prior and the likelihood densities the posterior density modulo normalizing constants will take the form

\[
f(p | x) \propto \left[\binom{n}{x} \times \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \right] p^x (1 - p)^{n-x} \times p^{\alpha-1} (1 - p)^{\beta-1},
\]

which means that the posterior distribution of \(p \) is also a Beta with

\[
p | x \sim \text{Beta}(\alpha + x, \beta + n - x).
\]

Normal, Normal: Given a normal distribution with unknown mean the density for the likelihood is

\[
f(x | \theta, \sigma^2) \propto \exp\left(-\frac{1}{2\sigma^2} (x - \theta)^2\right),
\]

and one can specify a normal prior

\[
\pi(\theta; \theta_0, \tau_0^2) \propto \exp\left(-\frac{1}{2\tau_0^2} (\theta - \theta_0)^2\right),
\]

with hyper-parameters \(\theta_0 \) and \(\tau_0 \). The resulting posterior distribution will have the following density function

\[
f(\theta | x) \propto \exp\left(-\frac{1}{2\sigma^2} (x - \theta)^2\right) \times \exp\left(-\frac{1}{2\tau_0^2} (\theta - \theta_0)^2\right),
\]

which after completing squares and reordering can be written as

\[
\theta | x \sim N(\theta_1, \tau_1^2), \quad \theta_1 = \frac{\theta_0 + \frac{x}{\sigma^2}}{\tau_0^{-1} + \frac{1}{\sigma^2}}, \quad \tau_1^2 = \frac{1}{\tau_0^{-1} + \frac{1}{\sigma^2}}.
\]

4.2. Bayesian linear regression

We start with the likelihood as

\[
f(Y | X, \beta, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{||y_i - \beta^T x_i||^2}{2\sigma^2}\right),
\]

and the prior as

\[
\pi(\beta) \propto \exp\left(-\frac{1}{2\tau_0^2} \beta^T \beta\right).
\]

The density of the posterior is

\[
\text{Post}(\beta | D) \propto \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{||y_i - \beta^T x_i||^2}{2\sigma^2}\right) \times \frac{1}{(2\pi)^{p/2} \gamma^{1/2}} \exp\left(-\frac{1}{2\tau_0^2} \beta^T \beta\right).
\]

With a good bit of manipulation the above can be rewritten as a multivariate normal distribution

\[
\beta | Y, X, \sigma^2 \sim N_p(\mu_1, \Sigma_1)
\]

with

\[
\Sigma_1 = (\tau_0^{-2} I_p + \sigma^{-2} X^T X)^{-1}, \quad \mu_1 = \sigma^{-2} \Sigma_1 X^T Y.
\]

Note the similarities of the above distribution to the MAP estimator. Relate the mean of the above estimator to the MAP estimator.
Predictive distribution: Given data $D = \{(x_i, y_i)\}_{i=1}^n$ and a new value x_* one would like to estimate y_*. This can be done using the posterior and is called the posterior predictive distribution

$$f(y_* | D, x_*, \sigma^2, \tau^2_0) = \int_{\mathbb{R}^p} f(y_* | x_*, \beta, \sigma^2)f(\beta | Y, X, \sigma^2, \tau^2_0) \, d\beta,$$

where with some manipulation

$$y_* | D, x_*, \sigma^2, \tau^2_0 \sim N(\mu_*, \sigma_*^2),$$

where

$$\mu_* = \frac{1}{\sigma^2} \Sigma_1 X^T Y x_*, \quad \sigma_*^2 = \sigma^2 + x_*^T \Sigma_1 x_*.$$