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Example #1: Handwritten Digit Recognition
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Imagine you are asked to write a computer program that recognizes postal
codes on envelopes. You observe the huge amount of variation and
ambiguity in the data:
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One can try to hard-code all the possibilities, but likely to fail. It would be
nice if a program looked at a large corpus of data and learned the
distinctions!

This picture of MNIST dataset was yanked from http://www.heikohoffmann.de/htmlthesis/node144.html



Example #1: Handwritten Digit Recognition

Need to represent data in the computer. Pixel intensities is one possibility,
but not necessarily the best one. Feature representation:

1.1
5.3

6.2
r 29
2.3

feature map :

We also need to specify the “label” of this example: “3”. The labeled
example is then

1.1
5.3
6.2
2.9

3

)

After looking at many of these examples, we want the program to predict
the label of the next hand-written digit.
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Example #2: Predict Topic of a News Article

You would like to automatically collect news stories from the web and
display them to the reader in the best possible way. You would like to
group or filter these articles by topic. Hard-coding possible topics for
articles is a daunting task!

Representation in the computer:

June 29: Obama Rises to 67.8 Percent
By NATE SILVER

( Obama w16 got good news in Thursday’s health care ruling, \

received more overnight on Friday when European leaders agreed to terms on
a bank bailout. That sent the S.&P. 500 up by 2.5 percent on the hopes that
this will reduce some of the downside risk in the economy.

Since the stock market is one of the economic variables the model considers,
M1 Obama’iprobability of winning the Electoral College rose with the

European news, to 67.8 percents
the model this month.

Preside

: 5—&001‘040

highest figure since we began publisht

This is a bag-of-words representation. If “1” stands for the category
“politics”, then this example can be represented as

1

ot ouNO=O

After looking at many of such examples, we would like the program to

predict the topic of a new article.
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Why Machine Learning?

» Impossible to hard-code all the knowledge into a computer program.

» The systems need to be adaptive to the changes in the environment.

Examples:
» Computer vision: face detection, face recognition
» Audio: voice recognition, parsing
» Text: document topics, translation
» Ad placement on web pages
» Movie recommendations

» Email spam detection
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Machine Learning

(Human) learning is the process of acquiring knowledge or skill.

Quite vague. How can we build a mathematical theory for something so
imprecise?

Machine Learning is concerned with the design and analysis of algorithms
that improve performance after observing data.

That is, the acquired knowledge comes from data.

We need to make mathematically precise the following terms: performance,
improve, data.
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Learning from Examples
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How is it possible to conclude something general from specific examples?

Learning is inherently an ill-posed problem, as there are many alternatives
that could be consistent with the observed examples.

Learning can be seen as the process of induction (as opposed to deduction):
“extrapolating” from examples.

Prior knowledge is how we make the problem well-posed.

Memorization is not learning, not induction. Our theory should make this
apparent.

Very important to delineate assumptions. Then we will be able to prove
mathematically that certain learning algorithms perform well.



Data

Space of inputs (or, predictors): X

> e.g. xeX c{0,1,...,2'°1% ig a string of pixel intensities in an 8 x 8
image.
33,000 :
> eg. xeXcR is a set of gene expression levels.
W0
- & -
7
B 5 ) B 1 ) # cigarettes/day
0 # drinks/day
X1 = X9 =
22 17 BMI
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Data

Sometimes the space X is uniquely defined for the problem. In other cases,
such as in vision/text/audio applications, many possibilities exist, and a
good feature representation is key to obtaining good performance.

This important part of machine learning applications will not be discussed
in this lecture, and we will assume that X has been chosen by the
practitioner.
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Data

Space of outputs (or, responses): )V

> e.g. ye )Y ={0,1} is a binary label (1 = “cat”)
> e.g. ye)=1[0,200] is life expectancy

A pair (x,y) is a labeled example.

> e.g. (x,y) is an example of an image with a label y = 1, which stands for
the presence of a face in the image x

Dataset (or training data): examples {(xl,yl), o (xn,yn)}

> e.g. a collection of images labeled according to the presence or absence
of a face
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The Multitude of Learning Frameworks

Presence/absence of labeled data:
» Supervised Learning: {(xl,yl), L (xn,yn)}
» Unsupervised Learning: {xl, e ,xn}
» Semi-supervised Learning: a mix of the above

This distinction is important, as labels are often difficult or expensive to
obtain (e.g. can collect a large corpus of emails, but which ones are spam?)

Types of labels:
» Binary Classification / Pattern Recognition: ) ={0,1}
» Multiclass: Y ={0,...,K}
» Regression: ) € R

» Structure prediction: )Y is a set of complex objects (graphs,
translations)
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The Multitude of Learning Frameworks

Problems also differ in the protocol for obtaining data:
» Passive

» Active

and in assumptions on data:
» Batch (typically i.i.d.)

> Online (i.i.d. or worst-case or some stochastic process)

Even more involved: Reinforcement Learning and other frameworks.

14 / 130



Why Theory?
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“... theory s the first term in the Taylor series of practice”

— Thomas M. Cover, “1990 Shannon Lecture”

Theory and Practice should go hand-in-hand.
Boosting, Support Vector Machines — came from theoretical considerations.

Sometimes, theory is suggesting practical methods, sometimes practice
comes ahead and theory tries to catch up and explain the performance.



This tutorial

First 2/3 of the tutorial: we will study the problem of supervised learning
(with a focus on binary classification) with an i.i.d. assumption on the data.

The last 1/3 of the tutorial: we will turn to online learning without the
1.i.d. assumption.
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Statistical Learning Theory
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The variable x is related to y, and we would like to learn this relationship
from data.

The relationship is encapsulated by a distribution P on X x V.

FExample: x = [weight, blood glucose,...| and y is the risk of diabetes. We
assume there is a relationship between x and y: it is less likely to see
certain x co-occur with “low risk” and unlikely to see some other x co-occur
with “high risk”. This relationship is encapsulated by P(x,y).

Y

This is an assumption about the population of all (x,y). However, what we
see 1s a sample.



Statistical Learning Theory
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Data denoted by {(Xl,yl), L (xn,yn)}, where n is the sample size.

The distribution P is unknown to us (otherwise, there is no learning to be
done).

The observed data are sampled independently from P (the 4.4.d.
assumption)

It is often helpful to write P = Py x Pyx- The distribution Px on the inputs is
called the marginal distribution, while P is the conditional distribution.



Statistical Learning Theory
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Upon observing the training data {(x1,Y1),..., (xn,Yn)}, the learner is
asked to summarize what she had learned about the relationship between x
and y.

The learner’s summary takes the form of a function ?n : X = ). The hat
indicates that this function depends on the training data.

Learning algorithm: a mapping {(x1,Y1),..., (Xn,Yn)} —> fn.

The quality of the learned relationship is given by comparing the response

fr (x) to y for a pair (x,y) independently drawn from the same distribution
P:

E(x,y)e(]gTL (X) ) y)

where {: )Y x )V — R is a loss function. This is our measure of performance.



l.oss Functions

» Indicator loss (classification): €(y,y") = Iryeyn

» Square loss: {(y,y’) = (y _U,)2
» Absolute loss: £(y,y’) =y -y’|
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Examples

Probably the simplest learning algorithm that you are probably familiar
with is linear least squares:

Given (X1,Y1),---,(Xn,yn), let

A

1 m
B =arg énin — > (yi — (B, xi))’

ERd n i=1

and define A A
fn (X) = (B)X>

Another basic method is reqularized least squares:

A

p ~ arg win LS (i = (B, xi))? + AR

ERd n i=1
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Expected Loss and Empirical Loss

The expected loss of any function f: X — ) is

L(f) = EL(f(x),y)

Since P is unknown, we cannot calculate L(f).

However, we can calculate the empirical loss of f: X — )

L(1) =+ > U(F(x0). 90
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again, what i1s random here?

Since data (x1,Y1),...,(Xn,Yn) are a random i.i.d. draw from P,
» L(f) is a random quantity

» f,n is a random quantity (a random function, output of our learning
procedure after seeing data)

» hence, L(fn) is also a random quantity

» for a given f: X — ), the quantity L(f) is not random!

It is important that these are understood before we proceed further.
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Data Generated By A Probability
Distribution

We assume that X and Y are two sets of random variables.
We are given a training set S consisting n samples drawn
i.i.d. from the probability distribution u(z) on Z =X x Y

(xlayl)a I (m’nayn)
that is z1,..., zn.

We will make frequent use of the conditional probability
of y given X, written p(y|z):

u(z) = p(z,y) = p(ylz) - p(z)

It is crucial to note that we view p(x,y) as fixed but un-
known.



Probabilistic setting




Hypothesis Space

The hypothesis space 'H is the space of functions that
we allow our algorithm to search. It is often chosen with
respect to the amount of data available.



Learning As Function Approximation From

Samples: Regression and Classification

T he basic goal of supervised learning is to use the training
set S to “learn” a function fg that looks at a new z value
rnew and predicts the associated value of y:

Ypred — fs(znew)-

If y is a real-valued random variable, we have regression.

If y takes values from an unordered finite set, we have
pattern classification. In two-class pattern classification

problems, we assign one class a y value of 1, and the other
class a y value of —1.



Loss Functions

In order to measure goodness of our function, we need a
loss function V. In general, we let V(f,z) = V(f(x),y™)
denote the price we pay when we see x and guess that the
associated y value is f(x) when it is actually y*.



Common Loss Functions For Regression

For regression, the most common loss function is square
loss or L2 loss:

V(f(z),y) = (f(z) —y)*.

We could also use the absolute value, or L1 loss:

V(f(z),y) = |f(z) —yl.

Vapnik’'s more general e-insensitive loss function is:

V(f(z),y) = ([f(z) —y| —€)4.



Common Loss Functions For Classification
For binary classification, the most intuitive loss is the 0-1 loss:

V(f(z),y) =0(—yf(x)).

For tractability and other reasons, we often use the hinge loss (im-
plicitely introduced by Vapnik) in binary classification:

V(If(z),y) =10 —y- f@))+.



The learning problem: summary so far

Thereis an unknown probability distribution on the prod-
uct space Z = X x Y, written u(z) = u(x,y). We assume
that X iIs a compact domain in Euclidean space and Y a
closed subset of Rk.

The training set S = {(x1,v1),..-, Xn,yn)} = 21, ...2n, CON-
sists of n samples drawn i.i.d. from pu.

'H is the hypothesis space, a space of functions f : X — Y.

A learning algorithm is a map L : Z" — ‘H that looks
at S and selects from H a function fg : x — y such that
fg(x) =y in a predictive way.



Empirical error, generalization error,

generalization

Given a function f, a loss function V, and a probability distribution u
over Z, the expected or true error of f is:

Im=ENMd=/V%@@@

Z

which is the expected loss on a new example drawn at random from
.

We would like to make I[f] small, but in general we do not know pu.

Given a function f, a loss function V, and a training set S consisting
of n data points, the empirical error of f is:

Il = = 3 V().



Empirical error, generalization error,

generalization

A very natural requirement for fg is distribution independent general-
ization

Yu, lim |Ig[fs] — I[fs]| = O in probability.

In other words, the training error for the ERM solution must converge
to the expected error and thus be a “proxy"” for it. Otherwise the
solution would not be “predictive”.

A desirable additional requirement is universal consistency

Ve > 0 lim supPg {I[fg] > inf I[f] —I—s} = 0.
feH

n—aoo 7!



A reminder: convergence in probability

Let { X} be a sequence of bounded random variables. We
say that

lim X,, = X in probability

n—oeo

Ve >0 lim P{|| X, — X|| >e} =0

n—aoeo

or if for each n there exists a €, and a ¢, such that

P {l|Xn — X|| = en} < dn,

with ¢, and 0, going to zero for n — oo.



3. ERM and conditions for generalization
(and consistency)

Given a training set S and a function space 'H, empirical
risk minimization (Vapnik) is the algorithm that looks at
S and selects fg as

fs = arg ;P Is[f].

This problem does not in general show generalization and
is also ill-posed, depending on the choice of H.

If the minimum does not exist we can work with the infi-
mum.

Notice: For ERM generalization and consistency are equiv-
alent.



Generalization and Well-posedness of
Empirical Risk Minimization

For the solution of ERM to be useful in the context of
learning, the solution must

e ‘‘generalize”

e exist, be unique and be “stable” (well-posedness).



Here is a graphical example for
generalization: given a certain number of
samples...

f(x)




suppose this is the “true’” solution...

f(x)
)




. but supose ERM gives this solution!

f(x)
)




How can I guarantee that for a sufficient
number of examples the ERM solution will
converge to the true one?

f(x)
A




Classical conditions for consistency of ERM

Uniform Glivenko-Cantelli Classes
L={H,V} is a (weak) uniform Glivenko-Cantelli (uGC) class
it

Ve >0 lim suplPg {sup 1[4] — Ig[4]| > s} = 0.
el

n—oo 7!

Theorem [Vapnik and Cervonenkis (71), Alon et al (97), Dudley, Giné€, and Zinn
(91)]

A necessary and sufficient condition for consistency of ERM is that L is uGC.

Thus, as we will see later, a proper choice of the hypothesis space H ensures gen-
eralization of ERM (and consistency since for ERM generalization is necessary and
sufficient for consistency and viceversa). We will be exploring the uGC definition
(and equivalent definitions) in detail in 9.520.



Well-posedness of ERM

ERM is in general an ill-posed problem. It can be made
well-posed by an appropriate choice of H.

As we will see |later, well-posedness is mainly used to mean
stability of the solution: fg depends continuously on the
training set S. In particular, changing one of the training
points should affect less and less the solution as n goes to
infinity.



General definition of Well-Posed and
IlI-Posed problems

A problem is well-posed if its solution:

® &xXists
® S UNique
e depends continuously on the data (e.g. it is stable)

A problem is ill-posed if it is not well-posed.



Here is a graphical example for stability:
given 10 samples...
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...we can find the smoothest interpolating
polynomial.
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But if we perturb the points slightly...
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...the solution changes a lot.

0.9

0.1



If we restrict ourselves to degree two
polynomials...
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...the solution varies only a small amount
under a small perturbation.
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Regularization

The basic idea of regularization (originally introduced in-
dependently of the learning problem) is to restore well-
posedness of ERM by constraining the hypothesis space
H. The direct way — minimize the empirical error subject
to f in a ball in an appropriate ‘H — is called Ivanov reg-
ularization. The indirect way is Tikhonov regularization
(which is not ERM).



Ivanov and Tikhonov Regularization

ERM finds the function in ‘"H which minimizes
1 n
=Y V(f(x),vs)
Ni=1

which in general — for arbitrary hypothesis space 'H —
ill-posed. Ivanov regularizes by finding the function that
minimizes

1 n

— > V(f(z),9i)

n

1=1

while satisfying

Ifl% < A



Alternatively, Tikhonov regularization minimizes over the
hypothesis space '‘H, for a fixed positive parameter )\, the
regularized functional

D BRLCICHRDERII 3 (1)
1=1

where || f||%- is the norm in Hy — the Reproducing Kernel
Hilbert Space (RKHS), defined by the kernel K.



Tikhonov Regularization

As we will see in future classes

e [ikhonov regularization ensures well-posedness eg ex-
istence, uniqueness and especially stability (in a very
strong form) of the solution

e Tikhonov regularization ensures generalization

e [ikhonov regularization is closely related to — but dif-
ferent from — Ivanov regularization, eg ERM on a hy-
pothesis space H which is a ball in a RKHS.



Well-posed and Ill-posed problems

Hadamard introduced the definition of ill-posedness. Ill-posed prob-
lems are typically inverse problems.

As an example, assume g is a function in Y and u is a function in
X, with Y and X Hilbert spaces. Then given the linear, continuous
operator L, consider the equation

g = Lu.

The direct problem is is to compute g given u; the inverse problem is
to compute u given the data g. In the learning case L is somewhat
similar to a “sampling”’ operation.

The inverse problem of finding u is well-posed when

e the solution exists,

e IS unique and

e is stable, that is depends continuously on the initial data g.
Ill-posed problems fail to satisfy one or more of these criteria. Often

the term ill-posed applies to problems that are not stable, which in a
sense is the key condition.



Sample Error (also called Estimation Error)
Let fi; be the function in 'H with the smallest true risk.
We have defined the generalization error to be Ig[fs] — I[fs].

We define the sample error to be I[fs] — I[fx], the difference in true
risk between the best function in ‘'H and the function in ‘'H we actually
find. This is what we pay because our finite sample does not give us
enough information to choose to the “best” function in H. We'd like
this to be small. Consistency — defined earlier — is equivalent to the
sample error going to zero for n — oc.

A main topic of this course is “bounding” the generalization error.
Another topic — the main one in classical learning theory and statis-
tics — is bounding the sample error, that is determining conditions
under which we can state that I[fs] — I[fx] will be small (with high
probability).

As a simple rule, we expect that if 'H is “well-behaved”, then, as n
gets large the sample error will become small.



Approximation Errror
Let fo be the function in 7 with the smallest true risk.

We define the approximation error to be I|fy]—1[fo], the
difference in true risk between the best function in 'H and
the best function in 7. This is what we pay because H is
smaller than 7. We'd like this error to be small too. In
much of the following we can assume that I[fg] = O.

We will focus less on the approximation error in 9.520, but
we will explore it.

As a simple rule, we expect that as 'H grows bigger, the
approximation error gets smaller. If 7 C 'H — which is a
situation called the realizable setting —the approximation
error Is zero.



Error

We define the error to be I[fq] — I[fo], the difference in
true risk between the function we actually find and the
best function in 7. We'd really like this to be small. As we
mentioned, often we can assume that the error is simply

I[fs].

The error is the sum of the sample error and the approxi-
mation error:

Ifs] = Ilfol = Ulfsl = I1fn]) + (ILfxl — 11fo])

If we can make both the approximation and the sample
error small, the error will be small. There is a tradeoff
between the approximation error and the sample error...



The Approximation/Sample Tradeoff

It should already be intuitively clear that making ‘H big
makes the approximation error small. This implies that we
can (help) make the error small by making H big.

On the other hand, we will show that making ‘H small will
make the sample error small. In particular for ERM, if 'H is
a uGC class, the generalization error and the sample error
will go to zero as n — oo, but how quickly depends directly
on the “size” of H. This implies that we want to keep H
as small as possible. (Furthermore, 7 itself may or may
not be a uGC class.)

Ideally, we would like to find the optimal tradeoff between
these conflicting requirements.



The Gold Standard

Within the framework we set up, the smallest expected loss is achieved by
the Bayes optimal function

f* = arg mfin L(f)
where the minimization is over all (measurable) prediction rules f: X — ).

The value of the lowest expected loss is called the Bayes error:
L(f") = ir]}fL(f)

Of course, we cannot calculate any of these quantities since P is unknown.
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Bayes Optimal Function

Bayes optimal function f* takes on the following forms in these two
particular cases:

» Binary classification () = {0,1}) with the indicator loss:

f>e (X) = I{n(x)21/2}7 where T](X) = E[Y|X = X]
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Bayes Optimal Function

Bayes optimal function f* takes on the following forms in these two
particular cases:

» Binary classification () = {0,1}) with the indicator loss:

f>e (X) = I{n(x)21/2}7 where T](X) = E[Y|X = X]

» Regression () = R) with squared loss:

f (x) =n(x), where mn(x)=E[Y[X=x]
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The big question: is there a way to construct a learning algorithm with a
guarantee that

L(fn) - L(f")

is small for large enough sample size n?
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Consistency

An algorithm that ensures

lim L(f,) =L(f*)  almost surely

is called consistent. Consistency ensures that our algorithm is approaching
the best possible prediction performance as the sample size increases.
The good news: consistency is possible to achieve.

» easy if X is a finite or countable set

» not too hard if X is infinite, and the underlying relationship between x
and y is “continuous”
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The bad news...

In general, we cannot prove anything “interesting” about L(fn) — L(f*),
unless we make further assumptions (incorporate prior knowledge).

What do we mean by “nothing interesting”? This is the subject of the
so-called “No Free Lunch” Theorems. Unless we posit further assumptions,

32 / 130



The bad news...

In general, we cannot prove anything “interesting” about L(fn) — L(f*),
unless we make further assumptions (incorporate prior knowledge).

What do we mean by “nothing interesting”? This is the subject of the
so-called “No Free Lunch” Theorems. Unless we posit further assumptions,

» For any algorithm fn, any n and any € > 0, there exists a distribution
P such that L(f") =0 and

1

EL(f,,) > = —
(frn) 5 €
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The bad news...

In general, we cannot prove anything “interesting” about L(]En) - L(f"),
unless we make further assumptions (incorporate prior knowledge).

What do we mean by “nothing interesting”? This is the subject of the
so-called “No Free Lunch” Theorems. Unless we posit further assumptions,

» For any algorithm ?n, any n and any € > 0, there exists a distribution
P such that L(f") =0 and

1

EL(f,,) > = —
(frn) 5 €

» For any algorithm fn, and any sequence an that converges to 0, there
exists a probability distribution P such that L(f") =0 and for all n

EL(fr) > an

Reference: (Devroye, Gyorfi, Lugosi: A Probabilistic Theory of Pattern Recognition),
(Bousquet, Boucheron, Lugosi, 2004)
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is this really “bad news””

Not really. We always have some domain knowledge.

Two ways of incorporating prior knowledge:

> Direct way: assume that the distribution P is not arbitrary (also known
as a modeling approach, generative approach, statistical modeling)

» Indirect way: redefine the goal to perform as well as a reference set F

of predictors: )
L(fn) - inf L(f)

This is known as a discriminative approach. F encapsulates our
inductive bias.
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Pros/Cons of the two approaches
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Pros of the discriminative approach: we never assume that P takes some
particular form, but we rather put our prior knowledge into “what are the
types of predictors that will do well”. Cons: cannot really interpret f.

Pros of the generative approach: can estimate the model / parameters of
the distribution (inference). Cons: it is not clear what the analysis says if
the assumption is actually violated.

Both approaches have their advantages. A machine learning researcher or
practitioner should ideally know both and should understand their
strengths and weaknesses.

In this tutorial we only focus on the discriminative approach.
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inant Analys

ISCTrim

Linear D1

Example

Consider the classification problem with ) = {0,1}. Suppose the

> =1:

class-conditional densities are multivariate Gaussian with the same
covariance

}
}

2

[x = 1ol

1
2

p(xly = 0) = (2m) "/ exp{—

1 2
S x|

.4q2exp{_

= (27)
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p(x|y

and
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=
Al

12UET ARG Sd

11x)>1/2} Which corresponds to the

The “best” (Bayes) classifier is f* = Ip(y,

1) >p(xly=0). This

half-space defined by the decision boundary p(x|y

boundary is linear.
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Example: Linear Discriminant Analysis
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The (linear) optimal decision boundary comes from our generative
assumption on the form of the underlying distribution.

Alternatively, we could have indirectly postulated that we will be looking
for a linear discriminant between the two classes, without making
distributional assumptions. Such linear discriminant (classification)
functions are

Litw,x)=b}

for a unit-norm w and some bias b € R.

Quadratic Discriminant Analysis: If unequal correlation matrices 2; and -
are assumed, the resulting boundary is quadratic. We can then define
classification function by

L{q(x)20)
where q(x) is a quadratic function.



Bias-Variance Tradeoff

How do we choose the inductive bias F7

L(fn) ~L(f") = L(fn) ~inf L(f) +  infL(f) - L(f")

- _/ - _/
V" —v

Estimation Error Approximation Error

Clearly, the two terms are at odds with each other:

» Making F larger means smaller approximation error but (as we will
see) larger estimation error

» Taking a larger sample n means smaller estimation error and has no
effect on the approximation error.

» Thus, it makes sense to trade off size of 7 and n. This is called
Structural Risk Minimization, or Method of Sieves, or Model Selection.
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Bias-Variance Tradeoft

We will only focus on the estimation error, yet the ideas we develop will
make it possible to read about model selection on your own.

Note: if we guessed correctly and f* € F, then

L(fn) —L(f") = L(fn) - inf L(f)

For a particular problem, one hopes that prior knowledge about the problem
can ensure that the approximation error infeer L(f) — L(f") is small.
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Occam’s Razor

Occam’s Razor is often quoted as a principle for choosing the simplest
theory or explanation out of the possible ones.

However, this is a rather philosophical argument since simplicity is not
uniquely defined. We will discuss this issue later.

What we will do is to try to understand “complexity” when it comes to

behavior of certain stochastic processes. Such a question will be
well-defined mathematically.
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Looking Ahead

So far: represented prior knowledge by means of the class F.

Looking forward, we can find an algorithm that, after looking at a dataset
of size n, produces f,, such that

L(fn) - 1perljf;L(f)

decreases (in a certain sense which we will make precise) at a non-trivial
rate which depends on “richness” of F.

This will give a sample complexity guarantee: how many samples are
needed to make the error smaller than a desired accuracy.
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Outline

Statistical Learning Theory

Tools from Probability, Empirical Processes
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Types of Bounds

In expectation vs in probability (control the mean vs control the tails):

]E{L(?n)—%er(f)}qp(n) Vs P(L(?n)—g_L(f)ze)<1|)(n,e)
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Types of Bounds

In expectation vs in probability (control the mean vs control the tails):

E{L(fn)—%?j{;L(f)}<1|)(n) Vs P(L(?n)—gL(f)ze)<1|)(n,e)

The in-probability bound can be inverted as
P (L(?n) - inf L(f) > cp(zs,n)) <5
by setting 6 :=1(€e,n) and solving for €.
In this lecture, we are after the function ¢(6,n). We will call it “the rate”.

“With high probability” typically means logarithmic dependence of ¢ (5, 1)
on 1/6. Very desirable: the bound grows only modestly even for high
confidence bounds.
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Sample Complexity
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Sample complexity is the sample size required by the algorithm fr to
guarantee L(fy) —infrer L(f) < € with probability at least 1 — 6. Of course,
we just need to invert a bound

P (L(?n) - inf L(f) > d)(é,n)) <5

by setting e := ¢(&,n) and solving for n. In other words, n(e, ) is sample
complexity of the algorithm f,, if

P (L(?n) —inf L(f) > e) <
feF
as soon as n >n(e,d).
Hence, “rate” can be translated into “sample complexity” and vice versa.

Easy to remember: rate O(1/\/n) means O(1/e”) sample complexity,
whereas rate O(1/n) is a smaller O(1/€e) sample complexity.



Types of Bounds

Other distinctions to keep in mind: We can ask for bounds (either in
expectation or in probability) on the following random variables:

L(fn) - L(f") (A)
L(fn) - inf L(f) (B)
L(fn) - L(fn) (C)
ig;{L(f) -L(N)} (D)
sup {L(f) - L(f) - pen,, (f)} (E)

feF

Let’s make sure we understand the differences between these random
quantities!
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Types of Bounds

Upper bounds on (D) and (E) are used as tools for achieving the other
bounds. Let’s see why.

A

Obviously, for any algorithm that outputs f,, € F,

L(fn) - L(fn) < sup {L(f) - L(f)}

and so a bound on (D) implies a bound on (C).

How about a bound on (B)? Is it implied by (C) or (D)? It depends on
what the algorithm does!

Denote fx = argminger L(f). Suppose (D) is small. It then makes sense to
ask the learning algorithm to minimize or (approximately minimize) the
empirical error (why?)
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Canonical Algorithms

Empirical Risk Minimization (ERM) algorithm:

2 -
f arg min (f)

Regularized Empirical Risk Minimization algorithm:

fn = arg rfmj]_g L(f) + pen,, (f)

We will deal with the regularized ERM a bit later. For now, let’s focus on
ERM.

Remark: to actually compute f ¢ F minimizing the above objectives, one
needs to employ some optimization methods. In practice, the objective
might be optimized only approximately.
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Performance of ERM
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If f, is an ERM,

L(fn) - L(fr) < {L(fn) ~L(fu)} + {L(fn) ~L(f£)} + {L(f7) - L(fx)}
<{L(fn) - L(fn)} + {L(f£) - L(f#)}
(C)
< sup {L(f) - L(f)} + {L(f#) - L(fx)}

. -

(D)

because the second term is negative. So, (C) also implies a bound on (B)
when f, is ERM (or “close” to ERM). Also, (D) also implies a bound on

(B).

What about this extra term L(f#) — L(f#)? Central Limit Theorem says
that for i.i.d. random variables with bounded second moment, the average
converges to the expectation. Let’s quantify this.



Hoeflding Inequality

Let W, W1,..., W, beii.d. such that P(a <W <b)=1. Then

P(EW— Lswis e) Sexp(—(b%_ui)Q)

i=1

1 & Ine’
(Eg EW>€)§eXp(—(b_a)2)

and

Let W = (Z(ff(xi),yi). Clearly, Wl, . e ,Wi are 1.1.d. Then,

P (|L(fz) - L(fz)| > €) < 2exp (— (bQT_“‘;)Q )

assuming a < {(fx(x),y) <b for all xe X,ye ).
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Wait, Are We Done”

Can’t we conclude directly that (C) is small? That is,

P (Ee(?n(x),y) _ % gﬂ(ﬁ(xi),yi) 8 e) < 2exp (- (bQT_"ea)Q) ?
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Wait, Are We Done”
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Can’t we conclude directly that (C) is small? That is,

P (Ee(?n(x),y) _ % iﬂ(fn(xi),yi) . e) < 2exp (— (bQT_"ea)Q) ?

No! The random variables £(f,(xi),yi) are not necessarily independent and
it 1s possible that

E(fn(x),y) = EW = El(fn(xi),yi) = EW;

The expected loss is “out of sample performance” while the second term is
“in sample”.

We say that £(fn(xi),yi) is a biased estimate of E¢(fn(x),y).

How bad can this bias be?”



Example

v

X =[0,1], Y ={0,1}
CF(X0), Yi) = Teeoxy=ve)
> distribution P = Py x Py, with Py = Unif[0, 1] and Py« = 0y-1

v

» function class

F = uneN{f =fs:ScA,|S|=n,fs(x) = I{xeS}}

ERM f,, memorizes (perfectly fits) the data, but has no ability to
generalize. Observe that

0=El(fn(xi),y1) # El(fn(x),y) =1
This phenomenon is called overfitting.
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Example

Not only is (C) large in this example. Also, uniform deviations (D) do not
converge to zero.

For any n € N and any (x1,y1),...,(Xn,Yyn) ~ P

sup (B (1)) - - 36k, y1) | =

feF

Where do we go from here? Two approaches:
1. understand how to upper bound uniform deviations (D)

2. find properties of algorithms that limit in some way the bias of
U(fn(xi),yi). Stability and compression are two such approaches.

51 / 130



Uniform Deviations

We first focus on understanding

feF

sup { . (1)) - % 30 w0) |

If F = {fo} consists of a single function, then clearly

sup {BH(1(0.9) - & 3010 w0) | = { B0, 9) = & 3 o) w0) |

feF

This quantity is Op(1/y/n) by Hoeffding’s inequality, assuming
a<{(fo(x),y)<b.

Moral: for “simple” classes F the uniform deviations (D) can be bounded
while for “rich” classes not. We will see how far we can push the size of F.
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A bit of notation to simplify things...

53 / 130

To ease the notation,
» Let zi = (x4,yi) so that the training data is {z1,...,2zn}
> 9(z) = {(f(x),y) for z = (x,y)
» Loss class G = {g:g(z) = {(f(x),y)} =loF
> gn = Q(f?n(°), ')7 dg = e(f}—(')v )
» g° =argming Eg(z) = £(f"(-),-) is Bayes optimal (loss) function

We can now work with the set G, but keep in mind that each ge G
corresponds to an f € F:

geg <«— felF

Once again, the quantity of interest is

sup {Bg(2) - 3 9(a0) |

geg

On the next slide, we visualize deviations Eg(z) — = Y1, g(zi) for all
possible functions g and discuss all the concepts introduces so far.



Empirical Process Viewpoint

r all functions
g
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Empirical Process Viewpoint

r all functions
g
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Empirical Process Viewpoint

1 m
EEQ(ZU O/EQ

r all functions
g
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Empirical Process Viewpoint

1 n
_ : K
n;mz) |/ Eo
/
O _____________________________________________________________________
én 9 * all functions
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Empirical Process Viewpoint
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Empirical Process Viewpoint

r all functions
g
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Empirical Process Viewpoint
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Empirical Process Viewpoint

" all functions
g
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Empirical Process Viewpoint

A stochastic process is a collection of random variables indexed by some set.

An empirical process is a stochastic process

ETOREPNTEN]

geg

indexed by a function class G.

Uniform Law of Large Numbers:

—- 0

1Tl
Eg - — i
g ni:Zlg(ffs)

sup
geg

in probability.
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Empirical Process Viewpoint

A stochastic process is a collection of random variables indexed by some set.

An empirical process is a stochastic process

ETOREPNTEN]

geg
indexed by a function class G.
Uniform Law of Large Numbers:
1 n
sup |Eg— — > g(zi)| >0
geg niz

in probability.

Key question: How “big” can G be for the supremum of the empirical
process to still be manageable?
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Union Bound (Boole’s inequality)

Boole’s inequality: for a finite or countable set of events,

P(uiA;) < ) P (A))

Let G={g1,...,gn}. Then

P(ngg : Eg—%ig(zi)>e)S;P(Egj—%igj(m)>e)

1=1 1=1

Assuming P (a < g(zi) <b) =1 for every g € G,

1 2ne’
P (Sglelg {Eg - E ; 9(21)} > 6) < Nexp (— (b B 0)2)
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Finite Class

2

Alternatively, we set o = N exp (—(12:_‘—2)2) and write
1 & log(N) +log(1/8
P(sup{Eg——Zg(zi)}>(b—a)\/Og( ) + log( /))Sé
geg n.; 2n

Another way to write it: with probability at least 1 — 9,

sup {EQ - % 29(21)} < (b - a)\/log(N) ;iog(l/@

geg

Hence, with probability at least 1 — 0, the ERM algorithm fn for a class F
of cardinality N satisfies

L(fn) - inf L(f) < 2(b - a)\/log(N) ;iog(l/é)

assuming a < {(f(x),y) <b forall feF,xe X, ye.

The constant 2 is due to the L(f r) —i(f]:) term. This is a loose upper bound.
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Once again...

A take-away message is that the following two statements are worlds apart:

1 n
with probability at least 1 -0, for any ge G, [Eg- m Z g(zi) <e
i=1

VS

1 n
for any g € G, with probability at least 1 -5, Eg- = > g(zi)<e
nix

The second statement follows from CLT, while the first statement is often
difficult to obtain and only holds for some §.
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Outline

Statistical Learning Theory

From Finite to Infinite Classes
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Plan
e Measuring the complexity of function spaces.
e Definitions of VC dimension and scale sensitive ver-

sions.
e Necessary and sufficient conditions for uniform conver-

gence.



Uniform convergence for classification

Our loss function is now V(f(x),y) = ©(—yf(x)) and our
RKHS is ||f||% < M.

Our goal is to bound the following

( )

P sup [ ILf] — Islf]| > €
FeR|IflIF <M

Vs
L]

/

For one function we could use the Chernoff bound

PA|I[f] = Is[f]| > €} < 2 exp(—2€20).



Uniform convergence for classification
(cont)

We then would want to use the union bound over the num-
ber of "essential’ functions in the class which we already
determined. We have seen how to relate the € in the bound
with the r» covering radius for square loss.

What about if V(f(x),y) = (—yf(x)) ?



Classification is scale insensitive

The key result in computing r(e) was showing that if

[ f1(z) — fo(@)]oc < 7r(e)
then

V(f1(z),y) —V(f2(2),y)| < e Va,y.

For the classification loss function ¢ = 1 and varying r(e)
has no effect.



Counting classification functions

Given ¢ points {(x1,y1), ..., (zp,yp)}, for every f € H(M) we

get different " labelings” {©(—y1f(x1)),...,©(—ypf(xp))} (or,
alternatively, different vertices of the [0, 1]¢ cube are spanned).

We define the random VC entropy as the number of la-
belings that can be implemented over f € H(M) written
as

N (21 y1), o (20, 10)).

An obvious property of NH*M)((z1,y1), ..., (zp, ys)) is:

NHOD (21 91), ..., (0, 50)) < 2°.



Counting classification functions

Notice that

depends on data so we need to take the expectation to
use It

N = Exl,yl,...,a}g,ygNH(M)((3317 yl)a ooy (wﬁa yf))

We can use the following bound

( )

P [ sup I[f] — Is[f]| > e} < 2N exp(—2¢€20).
FEH:flIF =M

/



A necessary and sufficient condition

Iff
log N

lim > 0,
{— 00

do we get uniform convergence in probability.

So the capacity can increase polynomially in ¢ but not ex-
ponentially.



Implementation of different labelings
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Implementation of different labelings
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The 8 possible labelings of 3 points in 2D
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How Many Labelings?
Sauer’s Lemma

If the hypothesis space can separate h points in all possible
(2" ways), then ¢ > h points can be labeled in

> ()< (%)

possible ways and

:il () <2t



VC-dimension

The VC-dimension of a set of binary functions is h if and
only if

e [ here is at least one set of h points that can be
labeled in all possible ways;

e there is no set of h 4+ 1 points that can be labeled in
all possible ways;



Classification

The finiteness of the VC-dimension of the set of functions
f e H(M) for the classification loss is a necessary and
sufficient for uniform convergence of Ivanov regularization
(empirical risk minimization in a bounded function class)
for arbitrary probability distributions with a fast rate of
convergence.



VC-bound

We can now bound the defect in the case of classification

( )

/ h
Pl sup  I[f]-Islf]] > e <2 (6—) exp(—2¢20).
fer:|fIF<M h

/

Which allows us to state that with probability 1 — ¢

hin(el/h) —In(6/2)

I[f] < Ig[f]H \/ ;



VC dimension of hyperplanes
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VC-dimension = 3



VC-dimension and free parameters

The VC-dimension is proportional, but not necessarily equal,
to the number of parameters.

e For Multilayer Perceptrons with hard thresholds h «
nlnn (Maass, 1994);

e For Multilayer perceptrons with standard sigmoid thresh-
olds h x n? (Koiran and Sontag, 1995):

e For classification functions of the form 6(—ysin(ax))
the VC-dimension is infinite;



Empirical covering numbers

Instead of using the sup norm as the metric of our cover
we can use

da,(f1, f2) = max|fi(zi) — fa(z)].

The empirical covering number N (H,r,dy,) is the mini-
mal m € N such that there exists m disks in H with radius
r covering function values at ¢ points.



Empirical covering numbers

Notice that
N(H7 T, dﬂ?g)

depends on data so we need to take the expectation to
use It

N —_ EsN(H, T, dxe).



A necessary and sufficient condition

Iff for any given r > 0
log N/

M 5 O7
{—00

do we get uniform convergence in probability.

So the capacity can increase polynomially in ¢ but not ex-
ponentially at any scale.

Is there a number like VC dimension for classification that
can be used to bound the empirical cover 7



V, dimension and shattering

The Vy-dimension of Fpy yy is defined as the the maximum
number h of vectors {(x1,y1),...,(xy,yy)} that can be sep-
arated into two classes in all 2" possible ways using rules:

class 1 if: V(y;, f(z3)) > s+
class O if: V(y;, f(x;)) <s—7~

for some s > 0. If, for any number N, it is possible to find
N points that can be separated in all possible ways, the
Vy-dimension is infinite.



Key result

(Alon et al. 93)

Finiteness of the V., dimension for every v > 0 is a neces-
sary and sufficient condition for distribution independent
uniform convergence of the ERM method for real-valued
functions.

(Mendelson and Vershynin 03)

Compactness of the L2 covering number for every scale € >
O is a necessary and sufficient condition for distribution
independent uniform convergence of the ERM method for
real-valued functions.



V, dimension

The expectation of the cover is bounded by the V, dimen-
sion

40N\ h1og(2el/(hr))
IEsN(H, r, dZUg) <2 (7‘_2> :

For the square loss bounded with the same constants as
we saw In last class we get

4/ hlog(2el/(h(e/8B")))
b <<6/83'>2>
exp(—e?l/B?).

P{sup 11f) — IsLf]] < } <
H

fe



Countable Class: Weighted Union Bound

Let G be countable and fix a distribution w on G such that > ,.cw(g) < 1.
For any 6 > 0, for any ge G

P(Eg—%ifm (b - a>\/ log”w(g)”og“/é))sé-w<9>

by Hoeffding’s inequality (easy to verify!). By the Union Bound,

( 1¢G- Eg——Zg(zl)z(b a)\/logl/W(g)+log(1/6))géZw(g)gé

2n ey

Therefore, with probability at least 1 — 0, for all f e F

L(F) — L(F) < (b a)\/log 1/w(f) +log(1/5)

2n

7

pen._(f)

60 / 130



Countable Class: Weighted Union Bound

If f, is a regularized ERM,

L(fn) - L(fr) < {L(fn) - L(fn) - pen, (fn)}
+ {I:(?n) +pen, (fn) —L(fx) - pen, (fr)}
+{L(fF) - L(f£)} + pen, (f7)

< sup {L(f) = L(f) - pen, (f)} + {L(fx) - L(f#)} + pen, (f=)

So, (E) implies a bound on (B) when f, is regularized ERM.
From the weighted union bound for a countable class:

L(fa) - L(f) < {L(f£) ~ L(f5)} + pen, (f)
<2(b - a)\/log 1/“’(“;) +log(1/0)

n
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Uncountable Class: Compression Bounds

Let us make the dependence of the algorithm fn on the training set
S - {(Xl,yl)’ c ooy (Xn,yn)} eXpliCIt: fn - fn[S].

Suppose F has the property that there exists a “compression function” Cy
which selects from any dataset S of any size n a subset of k labeled
examples Cy(S) ¢ S such that the algorithm can be written as

fu[S] = f[Ci(S)]

Then,
L(fn) - L(fn) = EL(fi[Cx(8)](x),y) - % iﬁ(ﬁ[Ck(S)](Xi)yyi)

< amex, {BEIS100) - S HRSI0.u0
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Uncountable Class: Compression Bounds

Since fk[SI] only depends on k out of n points, the empirical average is
“mostly out of sample”. Adding and subtracting

LS sy

T (xr yHew

for an additional set of i.i.d. random variables W = {(x1,y1),..., (X, yy)}
results in an upper bound

( )

max  AECRSI) W) -~ S ((f[S1](),y)

Ic{1,...,n},|I|<k \ n (x,y)eSNSuW

}+(b—a)k
n

y,

We appeal to the union bound over the (E) possibilities, with a Hoeflding’s
bound for each. Then with probability at least 1 — 9,

L(f) - inf L(F) < 2(b - a)\/klog(en/k) +log(1/8)  (b-a)k

2n n

assuming a < {(f(x),y) <bforall fe F,xe X, ye).
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Example: Classification with Thresholds in 1D

» X = [071], y:{071}
» F = {fe :fo(x) = Iixso0y,0 € [0, 1]}
> £(To(%),Y) = Lirg (x)2y}

0 oO—oo0o 1o

For any set of data (x1,Y1),...,(Xn,Yyn), the ERM solution fn has the
property that the first occurrence x; on the left of the threshold has label
Y1 = 0, while first occurrence x, on the right — label y, = 1.

Enough to take k = 2 and define f.[S] = f2[(x1,0), (xr,1)].
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Stability
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Yet another way to limit the bias of £(fn(xi),yi) as an estimate of L(fy) is
through a notion of stability.

An algorithm fn, is stable if a change (or removal) of a single data point
does not change (in a certain mathematical sense) the function f,, by much.

A

Of course, a dumb algorithm which outputs f,, = fo without even looking at
data is very stable and {(fn(xi),yi) are independent random variables...
But it is not a good algorithm! We would like to have an algorithm that
both approximately minimizes the empirical error and is stable.

Turns out, certain types of regularization methods are stable. Example:

s 1 & 2 2
fo = arganin L 33(1(x) - y0)* Al

where | - || is the norm induced by the kernel of a reproducing kernel
Hilbert space (RKHS) F.



Summary so far

We proved upper bounds on L(f,) - L(f#) for
» ERM over a finite class
» Regularized ERM over a countable class (weighted union bound)

» ERM over classes F with the compression property

» ERM or Regularized ERM that are stable (only sketched it)

What about a more general situation? Is there a way to measure complexity
of F that tells us whether ERM will succeed?
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Uniform Convergence and Symmetrization

Let z1,...,z,, be another set of n i.i.d. random variables from P.
Let €1,...,€n be i.i.d. Rademacher random variables:

P(€i=—1) =P(€i=+1) 21/2

Let’s get through a few manipulations:

ESUP{EQ(Z)——ZQ(A} Ezlnsup{ { Zg(z1 }—%

geg i=1 geg

||M3

<zi>}

By Jensen’s inequality, this is upper bounded by

Ezln zi.. SU-p{Tll ZQ(ZI) o ZQ(ZL }

geg i=1

which is equal to

BerBap g, 50 £ 32 ex(0(a0) - 9(20)

1n geg
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Uniform Convergence and Symmetrization
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Bt Ban g, 02| & 3 (0(a0) - () |

1I:n geg

1=1
<Esup{lie g(z }+E8up{li—€'9(z')}
 geg M T 19(z1) geg | TV i A
1 n
:2I[Ef4sup{—zjelg(z1 }
geg n1=1

The empirical Rademacher averages of G are defined as

B (G) = E[sup{ Zelg(zl} 1,...,zn]

geg
The Rademacher average (or Rademacher complexity) of G is

%n(g) = Ezlzn@n(g)




Classification: Loss Function Disappears

Let us focus on binary classification with indicator loss and let F be a class
of {0, 1}-valued functions. We have

E(f(x),y) = Lirpoeyy = (1= 2y)f(x) +y

and thus
_ I (1
7n(@) =B [sup{ £ 37 (t0x)(1 =200 50} | (etun) o (o)
| T€ LT i=1
- | R
=E|sup{— > eif(xi)} xl,...,xn] = I%n (F)
| feF \Tl i=1
because, given yi,...,Yn, the distribution of €;(1 — 2y;) is the same as €;.
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Vapnik-Chervonenkis Theory for Classification

We are now left examining

[ig}:){ z:e:u”(><l } 1,...,xn]

Given X1,...,Xn, define the projection of F onto sample:

Flxim = {(f(x1),...,f(xn)) €{0,1}" : fe F} c {0,1}"

Clearly, this is a finite set and

2log card(Flx,... )
n

@n(}") =E¢,.,, max Z €iV; < \/

vej:|X1:n 1=1
This is because a maximum of N (sub)Gaussian random variables ~ /log N.

The bound is nontrivial as long as log card(Flx,.,) = o(n).
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Vapnik-Chervonenkis Theory for Classification

The growth function is defined as
ITr(n) = max {catrd(j’-"|Xl ,,,,, xr ) SX1yeee,Xn € X}

The growth function measures expressiveness of F. In particular, if F can
produce all possible signs (that is, [Tx(n) =2"), the bound becomes useless.

We say that F shatters some set x1,...,xn if Flxn ={0,1}™.
The Vapnik-Chervonenkis (VC) dimension of the class F is defined as

ve(F) =max {d: TTx(t) =2}

Vapnik-Chervonenkis-Sauer-Shelah Lemma: If d = ve(F) < oo, then

e $ (32

1=0
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Vapnik-Chervonenkis Theory for Classification
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Conclusion: for any F with vc(F) < oo, the ERM algorithm satisfies

E{L(?n) _}gL(f)} ) 2\/2d10g(en/d)

n

While we proved the result in expectation, the same type of bound holds
with high probability.

VC dimension is a combinatorial dimension of a binary-valued function
class. Its finiteness is necessary and sufficient for learnability if we place no
assumptions on the distribution P.

Remark: the bound is similar to that obtained through compression. In
fact, the exact relationship between compression and VC dimension is still
an open question.



Vapnik-Chervonenkis Theory for Classification

Examples of VC classes:
» Half-spaces F = {I{y x)+bs0} : W € R [w| =1,be R} has ve(F)=d+1
» For a vector space H of dimension d, VC dimension of

F ={I{h(x)20y : h e H} is at most d

» The set of Euclidean balls F = {I {Z-d

- Ixi-ai[2<b}

caeRY Db ER} has
VC dimension at most d + 2.

» Functions that can be computed using a finite number of arithmetic
operations (see (Goldberg and Jerrum, 1995))

However: F = {f(x(x) = Lgin(ax)201 + X € ]R} has infinite VC dimension, so it
is not correct to think of VC dimension as the number of parameters!
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Vapnik-Chervonenkis Theory for Classification

Examples of VC classes:
» Half-spaces F = {I{y x)+bs0} : W € R [w| =1,be R} has ve(F)=d+1
» For a vector space H of dimension d, VC dimension of

F ={I{h(x)20y : h e H} is at most d

» The set of Euclidean balls F = {I {Z a
1=1

- Ixi-ai[2<b}

caeRY Db ER} has
VC dimension at most d + 2.

» Functions that can be computed using a finite number of arithmetic
operations (see (Goldberg and Jerrum, 1995))

However: F = {f(x(x) = Ltgin(ox)20} * X € R} has infinite VC dimension, so it
is not correct to think of VC dimension as the number of parameters!

Unfortunately, the VC theory is unable to explain the good performance of
neural networks and Support Vector Machines! This prompted the
development of a margin-based theory.
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Classification with Real-Valued Functions

Many methods use
I(F) = {Ijs0y : f e F}

for classification. The VC dimension can be very large, yet in practice the
methods work well.

Example: f(x) = fw(x) = (w,{(x)) where 1 is a mapping to a high-
dimensional feature space (see Kernel Methods). The VC dimension of the

set is typically huge (equal to the dimensionality of {(x)) or infinite, yet
the methods perform well!

Is there an explanation beyond VC theory?
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Margins

Hard margin:

IfeF: Vi, yif(xi) >y

More generally, we hope to have

card({i:yif(xi) <v})

1s small

4f e F .
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Surrogate Loss

Define
1 if s<0
$(s)=41-s/y ifO0<s<y
0 it s>y

Then: T _sign ()} = Lureosoy < PUF(X)) < (yf(x)) = Liyreoeyy

The function ¢ is an example of a surrogate loss function.

$(yf(x))
Lyroco N bUfK)
\ .
N e
Ty yf(x)
Let | n
Ly (f) =Ed(yf(x)) and Le(f)= - >, bYif(xi))
i=1
Then

L(f) <Lg(f), Le(f) <Ly (f)
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Surrogate Loss
Now consider uniform deviations for the surrogate loss:
B sup {Lo(f) - Lo ()}

We had shown that this quantity is at most 2%n (b (F)) for

O(F) ={g(z) = d(yf(x)) : f e F}

A useful property of Rademacher averages:

Fn(D(F)) < LA (F) if ¢ is L-Lipschitz.

Observe that in our example ¢ is 1/y-Lipschitz. Hence,

Eig}g {Lq)(f) — i¢(f)} < %%n(}—)
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Margin Bound

Same result in high probability: with probability at least 1 — 9,

log(1/6)
2n

sup {L¢(f) — E¢(f)} < %%n(f) + \/

feF

With probability at least 1 -9, for all f e F

A 2 log(1/9)
L(f) <Ly(f) + ;%n(}") —- \/ o

If f;, is minimizing margin loss

~ . 1
fn = arg min — ; d(yif(xi))

then with probability at least 1 -0

log(1/6)
2n

" . 4
L(fn) < }:Igljf;Llp (f) + ;%n(]:) + 2\/

Note: ¢ assumes knowledge of v, but this assumption can be removed.
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Useful Properties

If 7 g, then g?n(f> < égn(g)
B (F) = Pn(conv(F))
For any c € R, @n(c}") = |c|@n(.7:)

If ¢ : R~ R is L-Lipschitz (that is, ¢(a) — ¢(b) < L|a - b| for all
a,b € R), then

= w b =

B (b 0 F) < L% (F)
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Rademacher Complexity of Kernel Classes

» Feature map ¢ : X — {3 and p.d. kernel K(x1,x2) = (d(x1), d(x2))
» The set Fg = {f(x) = (w,d(x)): |[w| <B} is a ball in H
» Reproducing property f(x) = (f, K(x,-))

An easy calculation shows that empirical Rademacher averages are upper
bounded as

%n(Fs) = Esup 1 > eif(xi) = E sup L D e {f, K(xi,))

feF; TV i feFg TV i1
1 & 1 &
T S I T S
fEfB n . 1=1 n 1=1

i . ~1/2
= —E( Z €i€; <K(Xi,‘)7K(Xj7°)>)

N \ij=1

B [n ~1/2
< — K 19 A1
<= (; (xi, X ))

A data-independent bound of O(Bk/y/n) can be obtained if
sup,..» K(x,%) < k. Then k and B are the effective “dimensions”.
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Other Examples

Using properties of Rademacher averages, we may establish guarantees for
learning with neural networks, decision trees, and so on.

Powertul technique, typically requires only a few lines of algebra.

Occasionally, covering numbers and scale-sensitive dimensions can be easier
to deal with.
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Real-Valued Functions: Covering Numbers

Consider

» a class F of [-1,1]-valued functions

> let YV =[-1,1], £(f(x),y) = |f(x) —y|

We have

EsupL(f) - L(f) < 2Ey,.. %n(F)
feF

For real-valued functions the cardinality of F|,.. is infinite. However,
similar functions f and " with

(f(x1),...,f(xn)) ~ (f' (x1),...,f (xn))

should be treated as the same.
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Real-Valued Functions: Covering Numbers

Given « > 0, suppose we can find V c [-1,1]" of finite cardinality such that

1 mn
VE, v eV, st = > [f(xi) - vi| < «
n o

Then

Rn(F) =K., sup— Ze f(xi)

feF Tl

=Ec,. sup— Zel(f(xl) vi)+Ec.  sup— 261\)

feF ML i feF T
1
< (X,+IE€1 IMax — Z 61\)1
veV TL1 1

Now we are back to the set of finite cardinality:

Bu(F) <t \/QIOg c;a;rd(V)
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Real-Valued Functions: Covering Numbers

Such a set V is called an «-cover (or a-net). More precisely, a set V is an
o-cover with respect to {p, norm if

1 n
Vi, eV, st = > [f(xi) —vilf <of
iz

The size of the smallest «-cover is denoted by Ny (Flx,..., ).

Above : Two sets of levels provide an «-cover for the four functions. Only
the values of functions on x1,...,Xx7 are relevant.
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Real-Valued Functions: Covering Numbers

We have proved that for any x1,...,Xn,

Fu() < inf | PR (NG (Pl )|

A better bound (called Dudley entropy integral):

D (F) < mf {4oc+ o f V2 logcard(./\/'z(]:|x1n,6))d6}
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Example: Nondecreasing functions.

Consider the set F of nondecreasing functions R — [-1,1].

While F is a very large set, F|x,.,, is not that large:

N (‘?|X1=n ; (X) <N (F|X1:n , “) < nZ/OC-

The first bound on the previous slide yields

o s - 00

while the second bound (the Dudley entropy integral)

x>0

inf {4oc+ % /: \/4/6log(n)d6} = (~)(n‘1/2)

where the O notation hides logarithmic factors.
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Scale-Sensitive Dimensions

We say that F ¢ R o-shatters a set (x1,...,x7) if there exist
(Y1,...,yt) € R" (called a witness to shattering) with the following

property:
V(by,...,br)€{0,1}', Ife F s.t.

f(Xt)>yt+% if btzl and f(Xt)<yt—% if bt:O

The fat-shattering dimension of F at scale «, denoted by fat(F, «), is the
size of the largest o-shattered set.
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We say that F ¢ R o-shatters a set (x1,...,x7) if there exist
(Y1,...,yt) € R" (called a witness to shattering) with the following

property:
V(bi,...,br)e{0,1}", Ife F s.t.

f(Xt)>yt+% if btzl and f(Xt)<yt—% if bt:O

The fat-shattering dimension of F at scale «, denoted by fat(F, «), is the

size of the largest o-shattered set.

Wait, another measure of complexity of 77 How is it related to covering
numbers?

Theorem (Mendelson & Vershynin): For F ¢ [-1,1]" and any 0 < « < 1,

9 K-fat(F,c«x)
Ne(Flpns ) < (5]

X

where K, ¢ are positive absolute constants.



Quick Summary

We are after uniform deviations in order to understand performance of
ERM. Rademacher averages is a nice measure with useful properties. They
can be further upper bounded by covering numbers through the Dudley
entropy integral. In turn, covering numbers can be controlled via the
fat-shattering combinatorial dimension. Whew!
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Faster Rates

Are there situations when

EL(fr) - inf L(f)
approaches 0 faster than O(1/\/n)?
Yes! We can beat the Central Limit Theorem!
How is this possible??

Recall that the CLT tells us about convergence of average to the
expectation for random variables with bounded second moment. What if
this variance is small?
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Faster Rates: Classification
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Consider the problem of binary classification with the indicator loss and a
class F of {0, 1}-valued functions. For any f € F,

1
n

> () o)

is an average of n Bernoulli random variables with bias p = E{(f(x),y).
Exact expression for the binomial tails:

[n(p—e)]

P(L(f)-L(f)>e)= > (?)]:9(1—19)“—i

1=0

Further upper bounds:

ne’ ,
exp — Bernstein
{ 2p(1-p)+ 26/3}

exp {—2n€2 } Hoeflding




Faster Rates: Classification

Inverting

o Tl€2 < ex n€2 5
XP A4 — - =
Pl72pa-p)+2¢/3[ 7P 2p 1 2¢/3

yields that for any f € F, with probability at least 1 — 0

L(f) < L(f) + \/QL(f) log(1/8) | 2log(1/5)

n 3n

For non-negative numbers A, B, C
A<B+CVA implies A<B+C?+vVBC

Therefore for any f € F, with probability at least 1 — 0,

L(f) < L() 4 \/zi(f) log(1/8) _ 4log(1/5)

n n
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Faster Rates: Classification
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By the Union Bound, for F with finite N = card(F), with probability at
least 1 — 9,

2L(f)log(N/d) , Alog(N/s)

VfeF: L(f)gi(f)+\/

For an empirical minimizer fn, with probability at least 1 — 0, a zero
empirical loss L(fn) = 0 implies

This happens, for instance, in the so-called noiseless case: L(fx) = 0.
Indeed, then L(f£) =0 and thus L(f,,) = 0.



Summary: Minimax Viewpoint
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Value of a game where we choose an algorithm, Nature chooses a
distribution P € P, and our payoft is the expected loss of our algorithm
relative to the best in F:

Vud(}—7 P,n) =infsup {L(?n) - ]icﬂjf-L(f)}

fn PeP

If we make no assumption on the distribution P, then P is the set of all
distributions. Many of the results we obtained in this lecture are for this
distribution-free case. However, one may view margin-based results and the
above fast rates for the noiseless case as studying V"'¢(F,P,n) when P is
“nicer” .
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Model Selection

For a given class F, we have proved statements of the type
P (Sup{L(f) ~L(f)} > d)(f),n,}")) <d
feF

Now, take a countable nested sieve of models
Fi1cFsCc...

such that H = U2, F; is a very large set that will surely capture the Bayes
function.

For a function f € H, let k(f) be the smallest index of F that contains f.
Let us write ¢ (0,1) for ¢ (6,1, Fi).

Let us put a distribution w(i) on the models, with Y72, w(i) = 1. Then for
every 1,

P (Sup{L(f) ~L(f)} > (I)n(éw(i),i)) <d-w(i)

fEfi

simply by replacing & with dw(1).
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Now, taking a union bound:

g (Sup (L(f) -L(f)} > ¢n(6w(k(f)),k(f))) <D ow(i) <8

feH

Consider the penalized method
fn = argmin {L(f) + dn (5w (k(f)), k(f)) }

= arg min {I:(f) + Cl)n(éw(i)? 1)}

1,feF;

This balances fit to data and the complexity of the model. Of course, this
is exactly a regularized ERM form analyzed earlier.

Let k™ = k(f") be the (smallest) model F; that contains the optimal
function.
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Exactly as on the slide “Countable Class: Weighted Union Bound”,

L(fn) - L(f") < {L(fn) - L(fn) - pen, (fn)}
+{L(fn) + pen, (fn) - L(fx) - pen, (f)}
+ {E(f}“) — L(f}“)} + penn(f}-)
<L(f") -L(f") + pen, (f*)
=L(f*) = L(f°) + dn (dw(k*), k)
The first part of this bound is Op(1/y/n) by the CLT, just as before.
If the dependence of ¢ on 1/5 is logarithmic, then taking w(i) = 27" simply

implies an additional additive i*, a penalty for not knowing the model in
advance.

Conclusion: given uniform deviation bounds for a single class F, as
developed earlier, we can perform model selection by penalizing model
complexity!
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Looking back: Statistical Learning

» future looks like the past
» modeled as i1.i.d. data
» evaluated on a random sample from the same distribution

» developed various measures of complexity of F
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Example #1: Bit Prediction

Predict a binary sequence yi,ys,... € {0,1}, which is revealed one by one.
At step t, make a prediction z¢ of the t-th bit, then y¢ is revealed.

Let ¢t = I, —y,1. Goal: make Cn, = % > -1 Ct large.

Suppose we are told that the sequence presented is Bernoulli with an
unknown bias p. How should we choose predictions?
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Example #1: Bit Prediction

Of course, we should do majority vote over the past outcomes

ze = Lig_y51/2)

where y_1 = t—% '1ys. This algorithm guarantees ¢; - max{p,1-p} and

liminf (¢t — max{z¢,1-2z¢+})>0  almost surely (%)

t—o0
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where y_1 = t—% '1ys. This algorithm guarantees ¢; - max{p,1-p} and
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Claim: there is an algorithm that ensures (*) for an arbitrary sequence.
Any idea how to do it?
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Claim: there is an algorithm that ensures (*) for an arbitrary sequence.
Any idea how to do it?

Another way to formulate (*): number of mistakes should be not much
more than made by the best of the two “experts”, one predicting “1” all the
time, the other constantly predicting “0”.
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Example #1: Bit Prediction

Of course, we should do majority vote over the past outcomes

ze = g, 2172

1

— '~1ys. This algorithm guarantees ¢; - max{p,1-p} and

where yi_1 =

liminf (¢t — max{z¢,1-2z¢})>0  almost surely (%)

t—o0

Claim: there is an algorithm that ensures (*) for an arbitrary sequence.
Any idea how to do it?

Another way to formulate (*): number of mistakes should be not much
more than made by the best of the two “experts”, one predicting “1” all the
time, the other constantly predicting “0”.

Note the difference: estimating a hypothesized model vs
competing against a reference set. We had seen this distinction in
the previous lecture.
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Example #2: Email Spam Detection

We are tasked with developing a spam detection program that
needs to be adaptive to malicious attacks.

> X1,...,Xn are email messages, revealed one-by-one

> upon observing the message x¢, the learner (spam detector) needs to
decide whether it is spam or not spam (§: € {0,1})

> the actual label y¢ € {0, 1} is revealed (e.g. by the user)

Do it seem plausible that (x1,Y1),..., (Xn,yn) are i.i.d. from some
distribution P?

Probably not... In fact, the sequence might even be adversarially chosen. In
fact, spammers adapt and try to improve their strategies.
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Online Learning (Supervised)

» No assumption that there is a single distribution P

» Data not given all at once, but rather in the online fashion
» As before, X is the space of inputs, ) the space of outputs
» Loss function £(y1,y2)

Online protocol (supervised learning):

Fort=1,...,n
Observe x¢, predict y¢, observe Yy

Goal: keep regret small:

1 & R , 1 X
Reg, = m ;e(ytayt) - ]lcgljf_ ~ t;ﬁ(f(xt),yt)

A bound on Reg, should hold for any sequence (x1,Y1),...,(Xn,Yn)!
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Pros/Cons of Online Learning

The good:

» An upper bound on regret implies good performance relative to the set
F no matter how adversarial the sequence 1s.

» Online methods are typically computationally attractive as they
process one data point at a time. Used when data sets are huge.

» Interesting research connections to Game Theory, Information Theory,
Statistics, Computer Science.

The bad:

» A regret bound implies good performance only if one of the elements
of F has good performance (just as in Statistical Learning). However,
for non-iid sequences a single f € 7 might not be good at alll To
alleviate this problem, the comparator set F can be made into a set of
more complex strategies.

> There might be some (non-i.i.d.) structure of sequences that we are
not exploiting (this is an interesting area of research!)
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Setting Up the Minimax Value

First, it turns out that y: has to be a randomized prediction: we need to
decide on a distribution g € A()) and then draw U from q.

The minimax best that both the learner and the adversary (or, Nature) can
do is

V(f,n):«sup inf sup E >> {l iﬁ(gt,yt)—infliﬂ(f(xt),yt)}

xpeX €Ay e yi~qt t=1 N 7 feF N 3

This is an awkward and long expression, so no need to be worried. All you
need to know right now is:

> An upper bound on V(JF,n) guarantees existence of a strategy
(learning algorithm) that will suffer at most that much regret.

> A lower bound on V(F,n) means the adversary can inflict at least
that much damage, no matter what the learning algorithm does.

It is interesting to study V(F,n)! It turns out, many of the tools we used
in Statistical Learning can be extended to study Online Learning!
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Sequential Rademacher Complexity

A (complete binary) X-valued tree x of depth n is a collection of functions

X1,...,Xn such that x;: {£1}'"" » X and x; is a constant function.
A sequence € = (€1,...,€n ) defines a path in x:
X1, X2(€1), X3(€1,€2),..., Xn(el,...,en_l)

Define sequential Rademacher complexity as

se 1 =
By (F,n) =supEe,. sup {E > etf(xt(elztl))}
X t=1

feF

where the supremum is over all X'-valued trees of depth n.

Theorem
Let Y ={0,1} and F s a class of binary-valued functions. Let { be the
indicator loss. Then

V(F,n) <2Z: ' (F,n)
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Finite Class

Suppose F is finite, N = card(F). Then for any tree x,

2log N
n

Ee,.. sup {% ; etf(xt(elzt_l))} < \/

feF

because, again, this is a maximum of N (sub)Gaussian Random variables!

V(F,n) < 2\/210gN

n

Hence,

This bound is basically the same as that for Statistical Learning with a
finite number of functions!

Therefore, there must exist an algorithm for predicting y+ given xt such

that regret scales as O (\/ 1ng1 A ) What is it?
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Exponential Weights, or the Experts Algorithm

We think of each element {fi,...,fn} = F as an expert who gives a
prediction fi(x¢) given side information x¢. We keep distribution wy over
experts, according to their performance.

Let wi = (1/N,...,1/N), n=/(8logN)/T.
To predict at round t, observe x¢, pick it ~ wt and set §¢ = fi, (xt).

Update
Wi1 (1) o< we (1) exp {_T]I{fi(xt)iyt}}

Claim: for any sequence (x1,Y1),..., (Xn,Yn), with probability at least 1 -0

/logN log(l/é)
— > 1 f—>1
n; {Ut#yt} — %Ilj_-ntz; {f(x¢)#ye)} S
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Usetul Properties of Sequential Rademacher Complexity

Sequential Rademacher complexity enjoys the same nice properties as its iid
cousin, except for the Lipschitz contraction (4). At the moment we can
only prove

B (b o F) < LZE(F) x O(log®? 1)

It is an open question whether this logarithmic factor can be removed...
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Theory for Online Learning

There is now a theory with combinatorial parameters, covering numbers,
and even a recipe for developing online algorithms!

Many of the relevant concepts (e.g. sequential Rademacher complexity) are
generalizations of the i.i.d. analogues to the case of dependent data.

Coupled with the online-to-batch conversion we introduce in a few slides,
there is now an interesting possibility of developing new computationally
attractive algorithms for statistical learning. One such example will be
presented.

117 / 130



Theory for Online Learning

Statistical Learning

Online Learning

1.1.d. data

arbitrary sequences

tuples of data

binary trees

Rademacher averages

sequential Rademacher complexity

covering / packing numbers

tree cover

Dudley entropy integral

analogous result with tree cover

VC dimension

Littlestone’s dimension

Scale-sensitive dimension

analogue for trees

Vapnik-Chervonenkis-Sauer-Shelah
Lemma

analogous combinatorial result for trees

ERM and regularized ERM

many interesting algorithms
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Outline

Sequential Prediction / Online Learning

Online Convex and Linear Optimization
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Online Convex and Linear Optimization

For many problems, {(f, (x,y)) is convex in f and F is a convex set. Let us
simply write {(f,z), where the move z need not be of the form (x,y).

> e.g. square loss £(f, (x,y)) = ({f,x) —y)? for linear regression.

> e.g. hinge loss £(f, (x,y)) = max{0,1 -y (f,x)}, a surrogate loss for
classification.

We may then use optimization algorithms for updating our hypothesis after
seeing each additional data point.
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Online Convex and Linear Optimization

Online protocol (Online Convex Optimization):

Fort=1,....,n
Predict fy € F, observe z¢

Goal: keep regret small:

1 & 1 &
Reg, = — > U(ft,z¢)—inf — > £(f,
€8n Tlf; (fe,ze) %?fnt;( Zt

N

Online Linear Optimization is a particular case when {(f,z) = (f, z).
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Gradient Descent

At time t =1,...,n, predict fy € F, observe z¢, update
fio1 =t —MVL(fe, zt)
and project fi,; to the set F, yielding fi,1.

> 1) is a learning rate (step size)

» gradient is with respect to the first coordinate

This simple algorithm guarantees that for any f € F

— Zﬁ(ft,zt) — — Z@(f Zy) < — Z (fr, VE(fi,zt)) — l i f, VI(ft,zt))

n. n.; n.s n.;

<O(n?)

as long as |V{(ft,zt)| < ¢ for some constant ¢, for all t, and F has a
bounded diameter.
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Gradient Descent for Strongly Convex Functions

Assume that for any z, {(-,z) is strongly convex in the first argument. That
is, {(f,z) — 2|/f|? is a convex function.

The same gradient descent algorithm with a different step size n guarantees
that for any f* € F

n.4 n.4

a faster rate.
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Outline

Sequential Prediction / Online Learning

Online-to-Batch Conversion, SVM optimization
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How to use regret bounds for i.i.d. data

Suppose we have a regret bound

1 mn

— fi,z f— > €(f,z¢) <Rn

ng (fe,z¢) - }an; (f,z¢)
that holds for all sequences z1,...,z,, for some R,, — 0.
Assume z1,...,zn are i.i.d. with distribution P. Run the regret

minimization algorithm on these data and let f = % > i1 ft. Then

E.. . .. Znﬁ(?z)<IE{ Z(f,(ft,z)} { Z(ﬁ(ft,zt)}

n.4 n.3

where the last step holds because f; only depends on z1,...,z¢-1. Also,

n.4

E{}snjf;a > A, zt)} < me{ Zﬁ(f Zt)} =E (fr,z)

Combining,
EL(f) - me(f) < Rn
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How to use regret bounds for i.i.d. data

This gives an alternative way of proving bounds on

EL(fn) — 11:1€rlj;f_L(f)

by using fn = f, the average of the trajectory of an online learning
algorithm.

Next, we present an interesting application of this idea.
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Pegasos

Support Vector Machine is a fancy name for the algorithm

A

1 & A, o
fTL = 1 —_ O’ 1 - 1 f, Xl + — f
arg min ;:1: max{0,1-yi (f,xi)} + S [f]

in the linear case.

The objective can be “kernelized” for representing linear separators in
higher-dimensional feature space. The hinge loss is convex in f.

Write \
((f,2) = max{0,1 -y (£, x)} + S [[°

for z = (x,y). Then the objective of SVM can be written as

mfinE(),(f, z)

The expectation is with respect to the empirical distribution % >t O(xiyy) -

Then an i.i.d. sample z1,...,z, from the empirical distribution is simply a
draw with replacement from the dataset {(x1,y1),..., (Xm,Ym)}-
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Pegasos

A gradient descent fi11 = fy —MVE(f¢,z¢) with

Vf(ft,zt) = _thtI{yt(ft,xt)<1} + Afy
then gives a guarantee

El(f,z) - ]gljf;Eﬂ(f, z) < Rn

Since {(f,z) is A-strongly convex, the rate R, = O(log(n)/n).

Pegasos (Shalev-Shwartz et al, 2010)

Fort=1,...,n
Choose a random example (xi,,yi, ) from the dataset. Set 1 =1/(At)
If Ui <ft,Xit> < 1, update ft+1 = (1 —T]t}\)ft +T]txityit
else, update fii1 = (1 —1eA)fy
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Pegasos

We conclude that f= + 3", f, computed using the gradient descent
n ~t=1 g

algorithm is an O(n~')-approximate minimizer of the SVM objective after
n steps.

This gives an O(d/(Ae)) time to converge to an e-minimizer. Very fast
SVM solver, attractive for large datasets!
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Sumimary

Key points for both statistical and online learning:
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>

>

>

obtained performance guarantees with minimal assumptions
prior knowledge is captured by the comparator term
understanding the inherent complexity of the comparator set
key techniques: empirical processes for iid and non-iid data
interesting relationships between statistical and online learning

computation and statistics — a basis of machine learning



From Classical Statistics to Modern ML:
the Lessons of Deep Learning

Mikhail Belkin

Ohio State University,
Department of Computer Science and Engineering,
Department of Statistics

[IAS Workshop on Theory of Deep Learning:
Where next?




Enpirical Risk Mnim zation

Mbst theoretical analyses for M. are based on ERM

9irical risk>

oy = argmin —2 L(f(x;),v;)
fERM gfe}[ n Litraining data f(x), yi

Mnimze enpirical risk over a class of functions H.



The ERM SRM theory of learning

Goal of M.. f* = a‘rgmfin Eynseen data L(f(x),y)

. .1
Goal of ERM fgpy = arg min, ~ Ltraining data Lw (X)), yi)

1. The theory of induction is based on the|uniform law of large numbers.
2. Effective methods of inference must include|capacity control.

V. Vapnik, Statistical Learning Theory, 1998

l.Enpirical loss of any f €H approximates expected loss of f.

2. H contains functions that approximate f[".

(D+(2) = Eunseen data L(ngM(x)» :V) ~ Eunseen data L(f*(X), y)



Uniformlaws of large numbers

WYST WYG bounds VC-dim, fat shattering, Rademmcher,

covering nunbers, margin...

Model or function complexity, e.g.,VC,
margin or ||f||7¢

Expected risk: Empirical risk: Xl—
what you get 1 what you see C
E(L(fgrmyY)) < - L (ferm(x:), yi) + 0" N

Mirgin and other “a posteriori” bounds allow H to be data-dependent.



Capacity control

6.1 THE SCHEME OF THE STRUCTURAL RISK MINIMIZATION INDUCTION PRINCIPLE 223

A

Bound on the risk

17 Confidence interval

Empirical risk
o

h

FIGURE 6.2. The bound on the risk is the sum of the empirical risk and of the confidence
interval. The empirical risk is decreased with the index of element of the structure, while
the confidence interval is increased. The smallest bound of the risk is achieved on some
appropriate element of the structure.

V.Vapnik, Statistical Learning Theory, 1998



U-shaped generalization curve

High Bias Low Bias
Low Variance High Variance
- - -——--- o -

Overfitting
Underfitting
/ Test Sample

Goal: “Sweet
spot”

Low High
Model Complexity

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Prediction Error

The Elements of
_Stat_ist' I I.ear_n;_in__g

/

Training Sample

However, a model with [zero training error|is overfit to the training

data and will typically generalize poorly. ‘%
Interpolation
Page 194




Does 1nterpolation overfit?

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 0 yes 100.0 26.03
no no 100.0 85.75

[CIFAR 10, from Understanding deep learning requires rethinking generalization, Zhang, et al, 2017]

Suggestive, but does not on its own invalidate the ERM
t heory/uniform bounds.



Interpolation does not overfit even for
very noilsy data

All nethods (except Bayes optimml) have zero training square loss.

100

90

%

80

< Neural net
Gauss kernel

70 A

60

50 H

Laplace kernel

40

30

Best p055|ble >
(Bayes optimal)
/

Test classification error,

20 H

10

0 10 20 30 40 50 60 70 80 90 100
Label noise, %

[ B., M, Mwndal, TCM. 18]



Uniform bounds:

VC-dim fat shattering, Rademacher, covering numbers, PAC-Bayes,
mar gin...

Model or function complexity, e.g.,VC or ||f || 3¢

Test loss Training loss

1
E(L(f"y)) = — xi),yi) +0°

2
S | a

Can uniform bounds account for generalization under
interpolation?



Bounds ?

Wiat kind of generalization bound could work here?

07 <0 ™) <09

n

B <::: Randogl\;;EF> \\A ///////////‘

\

Q) (== == == e e - Em Em o o Em AR Em EE S AR Em Em Em o Em =

%

80

70

60 +

50

40

Laplace ki@

30

Test classification error,

20

10

T T T T T T T T T
o) 10 20 30 40 50 60 70 80 a0 100

Label noise, %



Way bounds fail

correct nontrivial
c(n)
O.7<0*( —><0.9 n — oo
V n

1. The constant in O "needs to be exact. There are
no known bounds like that.

2. Conceptually, how would the quantity c(n)
“know"” about the Bayes risk?



Interpolation 1s best practice for deep learning

From Ruslan Salakhutdinov’s tutorial (Sinmons Institute, 2017):

The best way to solve the problem from
practical standpoint 1s you build a very big
system ...basically you want to nmke sure you
hit the zero training error.



Historical recognition

Yann Lecun (IPAMtalk, 2018):

Deep learning breaks sone basic rules of statistics.

Leo Breiman
Stalistics Department, University of California, Berkeley, CA 94305;

e-mail: leo @stat.berkeley.edu

Reflections After Refereeing Papers for NIP

Written in 1995

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:
m Why don’t heavily parameterized neural networks overfit the data?




Wiere we are now. the key lesson

The new theory of 1nduction cannot be
based on uniformlaws of large
numbers with capacity control.

Waere next ?



Generali1zation theory for 1nterpolation?

Wiat theoretical analyses do we have?

VC-dinension/ Rademacher conplexity/covering/ B#C-Bayes/ margin bounds.

Cannot deal with interpolated classifiers en Bayes risk i1s non-zero.

Generalization gap cannot be bound enpirical risk is zero.

Al gorithmc stability.

—

Does not apply when e

1cal risk 1s zero, expected risk nonzero. ___—

Regul arization-

e analyses (Tikhonov, early stopping/SGD, etc.) —

Di verge a -0 for fixed n.
—_—
T
Classical smoothing nmethods (nearest neighbors, Nadaraya—Witson).
Myst classical analyses do not support interpolation. —
But I-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98])

Uniform

bounds:
Q
<
training loss

X
expected loss

Typically
Di ver ge

Oracle bounds

expected loss

~
~

optimal loss



A way forward?

l-nearest neighbor classifier 1s very suggestive.

Interpolating classifier with a non-trivial (sharp!)
performance guarantee.

Twice the Bayes risk [Cover, Hart, 67].

» Analysis not based on conplexity bounds.

» Estimating expected loss, not the generalization gap.



Interpolated k-NN schenes

wiNN (log weights) N=50, k=20, y=x+n, n~N(0,0.2)
27 T ; . )

@

1

f(X) _ > Vik(xi,x) 1

2k (xi,x) .9_3: "§

0.6
1
k(x;,x) = = k(x;, x) = —log||x — x|
||2¢—2; ]| o4
(cf. Shepard’s interpolation) 02| $
o Data
0 _y=x
—wiNN (log weights)
0z D 0:1 0.2 0.3 0:4 0.5 0.6 Cli? 0.8 09 1
Theoren

Wighted (interpolated) k-nn schenes wth certain singular kernels
are consistent (converge to Bayes optimal) for classification in
any dinension.

Mbreover, statistically (mnimax) optimal for regression i1n any
di mensi1on.

[B., Hsu, Mtra, NeuriPS 18] [B., Rakhlin, Tsybakov, AlStats 19]



Interpolation and adversarial exanples

From Szegedy, at al, ICLR 2014

Theorem adversarial exanples for i1nterpolated
classifiers are asynptotically dense (assumng the
labels are not determnistic).

[B., Hsu, Mtra, NeuriPS 18]



This talk so far:

A Effectiveness of interpolation.
B. Theory of i1nterpolation cannot be based on uniform bounds.

c. Statistical validity of interpolating nearest neighbor nethods.

Yet, there 1s a msmtch between A and C. Methods we considered
theoretically seem quite different from those used 1n practice.

Key questions:
> How do classical analyses relate to 1nterpolation?

» Dependence of generalization on nodel conplexity?

> Waat 1s the role of optimzation?



Risk

“Double descent” risk curve

Classical risk curve

New “double descent” risk curve

under-fitting : over-fitting

' Test risk

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

Risk

~ ‘'Training risk -~ Training risk:
sweet spot_ » — -

« _interpolation threshold
‘\ _— —

Complexity of 5—[ ———————————

[ B., Hsu, M, Mwndal, PNAS 2019]



Test (%)

86
50

Fully connected network

MNIST (n=4-10% d=784,K=10)

Random Forest

SVHN (n = 10%, 10 classes)

Squared loss

Zero-one loss (%)

mean squared error

18]

0.15

0.05 =

0.00 =

80 S
60

40 =

L2-boost

SVHN (n = 10%, 10 classes)

—— Test
I 1 I ]
D =
| 1 1 1
10/1 18001 3800/1 3600/10 3600 /20
Model parameters: NT2F / Niree
1[]2 T T T T T T T
1D simulated dat
102 L L 1 L 1
200 400 600 800 1000 1200 1400
number of parameters

60 0.15
. : —= Tost - Test
g ] —— Trah 3 010 - —— Train
fn 40= : E
ﬁ ! o
c I 5 0.05 =
o 20 u?}-
g -
rl 0.00 =
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2 5 20
3 | S 1
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g ] g -
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:!| 110 4'[: 160 360 360 i1 S0 1001 10010 100/20
NMumber of parameters/weights (% 10%) Model parameters: Niree / MNrorest
MMNIST, Zero-one loss TIMIT, Zero-one loss
—= RFF
= ___ Min, norm solution hy, .
Random RelLU orgos e
g 7
network - RFF network
P_
i 52 .
v : _#_
T T T | T T T 47 | T | . T : T
0 10 20 30 40 50 60
[B., Hsu, M, Mndal,
C__ = Test Early [ _
? 1 == Train Early :
4 T Test Late :
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24 | -
I
, T —_—
i 1 —t—
I
\ |
01 |

— P =10k
— P =20k
— P = 50k

1° 10t 10° 10#
N (# hidden units)

"Advani, Saxe, 2017 @ w0 Spigler, et al, 2018



Mbre paraneters are better:

- 30 RelLU features

an exanple




Random Fourier net works

Random Fourier Features networks [Rahim, Recht, NIPS 2007]

N .
hn,N (x) = 2 a; eln(wj,x)

j=1

Neural network with one hidden layer, cos non-linearity, fi1xed
first layer weights. Hidden layer of size N. Data size n.

Key property:

Al,im h,n(x) = kernel machine



What

Test (%)

97

75

TIMIT, Zero-one loss

RFF Test loss

52 Kernel machine
_‘
47
T T T T T T
10 20 30 40 50 60
1516
ﬁ Norm
: 177 |
o) I Kernel machine (RKHS) norm
=
l
jInterpolation
3 | threshold
10 20 30 40 50 60

Number of features (x1000)

1S the nechani sm?

N — oo --infinite neural net

kernel machine

minimum norm solution

argminhe}[, h(x;)=y; | |h| |7‘[

More features =

better approximation
to minimum norm solution



Smmller normensures snoot hness

- 30 RelLU features, Norm=1642.1




Is 1infinite width optiml?

Infinite net (kernel machine) h,, 1s near-optinnl
enpirically.

Suppose V; y; =h"(x;) for some h*€H (Gaussian RKHS).

Theorem (noiseless case):

h* (%) = Ry oo(x)| < Ae™B@/logmVe | 1p=| |

1

for classical bias-variance
Jn

Conpare to 0(

anal yses.

[B., Hsu, M, Mmndal, PNAS 19]



Smoot hness by averaging

SVHN (n = 104, 10 classes)

0.15
— Test

‘_E 0.10 — —Train
ks
5 005 7 An average of
N 0.00 — — interpolating trees 1s

50 — ' y ! " interpolating and better
S | than any individual tree.
E 40 = _EK —
i Cf. PERT [Cutler, Zhao 01]
é 20 =
S

| | ; I I
11 50/1 100M1 100/10 100/20

Model parameters: Niree / Nfgrest




Double Descent 1n Random Feature settings

Choosing maximum number of features is provably optimal
under the “weak random feature” model.

10
[B., Hsu, Xu, 19].

0 20 40 60 80 100

Rel ated work: [Bartlett, Long, Lugosi, Tsigler 19],

[ Hhstie, Mntanari, Rosset, Tibshirani 19] [Mtra, 19],
[ Mit hukumar, Vodrahalli, Sahai, 19] [Mi, Mntanari, 19]
[Liang, Rakhlin, 19], [Liang, Rakhlin, Zhai, 19]

Significant evidence that deep neural networks exhibit simlar
properties.



Franework for modern ML

Occams razor based on 1nductive bias:

Mixim ze snoothness subject to 1nterpolating
t he data.

Three ways to i1ncrease snoothness:

Explicit: mnimum functional norm solutions

Exact: kernel machines.
Approximate: RFF, ReLU features.

Inplicit: SGDY optimzation (Neural networks)
Averaging (Bagging, L2-boost).

All coincide for kernel machines.



The landscape of generalization

LOSS

4 Classical
WYSIWYG
bounds apply.

Train loss

Overfitting

™~

Modern ML. Interpolation
regime. Based on
inductive biases/functional
smoothness. First analyses
starting to appear.

Test loss

Here be dragons.

B =N,

Interpolation
threshold

# parameters



This talk

»Statistical theory of interpolation.

= Way classical bounds do not apply.
= Statistical validity of interpolation.

»The generalization landscape of Michine Learning.

" Double Descent: reconciling interpolation and the classical U curve.
*" Occanms razor: nore features 1s better.

»Interpolation and optim zation
»" Easy optimzation + fast SGD (+ good generalization).
" [earning from deep learning for efficient kernel mmchines.



Optim zation: classical

Classical (under-paranetrized):

> Miny local mnim.

»SGD (fi1xed step size) does not converge.



Mbdern Optim zation

Mbdern (1nterpolation/over-paranetrized).

1. Every local mnimumis global (for networks w de enough)
[Li, Ding, Sun, 18], [Yu, Chen, 95]

2. Local nethods converge to global optimm

| Kawaguchi, 16] [Soheil, et al, 16] [Bartlett, et al, 17]
| Solt anol kotabi1i, et al, 17, 18] [Du, et al, 19]

3. Small batch SGD (fixed step size) converges as fast as GD
per 1teration,

[ Mi, Bassily, B., TCM. 18] [Bassily, M, B., 18]



Wy SGD?

1
w* = argmin L(w) = argmin — z L;(w)
w w I

SGD Idea: optimze YL;(w), m at a tine.

Error after t steps GD: et
SGD: 1/t .
/ What is the
reason for

practical success!?

Key point: SGD 1s not sinply GD with noisy gradient
estinmates.



SGD under 1nterpolation

Key observation:
Interpolation

fw(x) =y; = Vi Li(w") =0
inmplies exponential convergence
w. fixed step size

fw(x1) =¥

Initialization

Target w”

fw(xz) = Y2



SGD 1s (much) faster than GD

“Theorem’: one SGD iteration with m ni-
tr H

A1(H)
iteration (=epoch) of full GD.

batch size m" = is equivalent to an

E S

Savings per epoch: n/m’".

Real data example.

107!

One step of SGD with mini-batch
m* =~ 8

One step of GD.

mean squared error (train)

epochs (proportional to computations)

[ My, Bassily, B., ICM. 18]



The power of 1nterpolation

Optim zation 1n nodern deep learning:

overparanetrization
interpolation

fast SGD
GPU

SGD conputational gain over GD O(n?)
* GPU ~100x over CPU.

n =10°m* = 8:
SGD on GPU ~107x faster than GD on CPU!



Learning from deep learning:
fast and effective kernel machines

EigenPro 2.0 \
Dataset Sive Dimension Our method ThunderSVM LibSVM
(GPU) (GPU) [WSL*18] | (CPU)
TIMIT | 1-10° 440 15s 480 s 1.6 h
SVHN | 7-10% 1024 135 142 s 3.8h
MNIST | 6-10% 784 6s 31s 9m
CIFAR-10 | 5-10% 1024 8s 121s 3.4 h

EigenPro: preconditioned SGD for kernel

machines. Batch size/preconditioner optimized

to take full advantage of GPU.

Code: https://github.com/EigenPro

[My, B.,

NIPS 17,

SysM. 19]




Points and lessons

ERM cannot a sole foundation for modern ML.

Instead of uniform laws of large numbers, need to study inductive biases. Still early but
analyses are starting to appear.

Key concept is interpolation, not over-parametrization. Over-parametrization enables
interpolation but is not sufficient. Classical methods, kernels machines/splines are
infinitely over-parametrized.

Empirical loss is a useful optimization target, not a meaningful statistic for
the expected loss.

Optimization is qualitatively different under interpolation.
Every local minimum is global.

SGD is overwhelmingly faster than GD.



From classical statistics to mopdern M

A
Loss

Classical. Modern ML (interpolation regime).

Classical bounds apply. |
Many local minima. |
SGD converges slowly.

Generalization based on
inductive bias. Optimization is
“easy”: every local minimum is
global. SGD converges faster
than GD.

easy/efficient optimization

\

# parameters

Classical model.
Careful parameter
selection required.

>

A “modern” model: good generalization +



Collaborators:

St yuan M, Ohio State University
Soumi k Mandal, Ohio State University

Daniel Hsu, Colunbia University
Raef Bassily, Ohio State University
Partha Mtra, Spring Harbor Labs.
Sasha Rakhlin, MT

Sasha Tsybakov, ENSAE

Thank you



