\[\pi - \lambda \text{ Theorem} \]

- A class \(\mathcal{P} \) of subsets of \(\Omega (= X) \) is a \textbf{\(\pi \)-system} if it is closed under the formation of finite intersections: \([\mathcal{P}] \). \(A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P} \).
 - Examples:
 - \(\{\emptyset\} \)
 - \(\{\Omega\} \)
 - \(\{A\} \)
 - any algebra
 - any \(\sigma \)-field
 - \(\{(-\infty, x], x \in \mathbb{R}\} \)
 - \(\{(a_i, b_i] \times \cdots \times (a_n, b_n] : a_i, b_i \in \mathbb{R}\} \)
 - If \(\mathcal{P} \) is a \(\pi \)-system; so are \(\mathcal{P} \cup \{\Omega\}, \mathcal{P} \cup \{\emptyset\} \), \(\mathcal{P} \cup \{\emptyset, \Omega\} \).
 - For any class \(\mathcal{A} \) of subsets. Let \(\mathcal{P} \) be the class of all finite intersections of elements of \(\mathcal{A} \). Then, \(\mathcal{P} \) is a \(\pi \)-system.
 - Moreover, \(\sigma(\mathcal{P}) = \sigma(\mathcal{A}) \).

\textit{Proof.} We shall assume the trivial intersection is in \(\mathcal{P} \), i.e. \(A \subset \mathcal{P} \). Note that any finite intersection of elements in \(\mathcal{A} \) is in \(\sigma(\mathcal{A}) \). So, \(\mathcal{P} \subset \sigma(\mathcal{A}) \). From \(A \subset \mathcal{P} \subset \sigma(\mathcal{A}) \), we have \(\sigma(\mathcal{P}) = \sigma(\mathcal{A}) \).

- A class \(\mathcal{L} \) is a \textbf{\(\lambda \)-system} if it contains \(\Omega \) and is closed under the formation of complements and of finite and countable disjoint unions:
 - \(\Omega \in \mathcal{L} \)
 - \(A \in \mathcal{L} \Rightarrow A^c \in \mathcal{L} \)
 - \(\text{Disjoint } A_1, A_2, \ldots \in \mathcal{L} \Rightarrow \bigcup_n A_n \in \mathcal{L} \).
 - Because of the disjointness condition in L3, the definition of \(\lambda \)-system is weaker (more inclusive) than that of \(\sigma \)-field.
 - L1 + L2 \(\Rightarrow \emptyset \in \mathcal{L} \). Combine with L2, then the countably infinite case of L3 implies the finite one (take \(A_n = \emptyset \) \(\forall n > N \)).
 - Apply L2 to L3, disjoint \(A_1, A_2, \ldots \in \mathcal{L} \Rightarrow \bigcap_n A_n^c \in \mathcal{L} \).
 - Under L1 and L3, we have L2 \(\equiv \mathcal{L} \) is closed under the formation of \textit{proper} differences: \([L2'] A, B \in \mathcal{L} \) and \(A \subset B \Rightarrow B - A \in \mathcal{L} \).
 In fact, we have L2 + L3 \(\Rightarrow \) L2'. And, L2' + L1 \(\Rightarrow \) L2.
Proof. “⇒” Suppose \(A, B \in \mathcal{L}, A \subset B \). Then, \(B - A = \left(\bigcup_{\alpha \in \mathcal{L}} A^c \right) \in \mathcal{L} \).

In general, it is not true that it is closed under any difference.

- A \(\sigma \)-field is a \(\lambda \)-system.
 The reverse is not true

 - Example: Take \(\Omega = \{a_1, a_2, a_3, a_4\} \). Let \(\mathcal{L} = \{\emptyset, \Omega\} \cup \left(\frac{Q}{2} \right) \). Then, to be \(\sigma \)-algebra, it has to contain \(\{\{a_1, a_2\} \cup \{a_2, a_3\}\} \setminus \{a_1, a_3\} = \{a_i\} \).

- [Durrett’s Def] A class \(\mathcal{L} \) is a \(\lambda \)-system if \(L_1, L_2', L_3' \): \(A_n \in \mathcal{L} \) and \(A_n \not\supset A \) then \(A \in \mathcal{L} \).
 Proof. “⇒” \(L_2, L_3 \Rightarrow L_2' \). By \(L_2' \), because \(A_{i-1} \subset A_i \), we have \(B_i = A_i \setminus A_{i-1} \in \mathcal{L} \), \(i \geq 2 \). \(B_i = A_i \in \mathcal{L} \). Then, \(B_i \)’s are disjoint. So, by \(L_3' \),
 \[A = \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \in \mathcal{L} \] and so we have \(L_3' \).
 This is a weaker condition than the \(\lambda \)-system defined above.

- A class that is both a \(\pi \)-system and a \(\lambda \)-system is a \(\sigma \)-field
 Proof. We only need to show that it is closed under countable union. Suppose \(A_1, A_2, \ldots \in \mathcal{L} \). Let \(B_i = A_i, B_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i = A_n \cap \bigcap_{i=1}^{n-1} A_i^c \) for \(n > 1 \). Then, by
 \[[P] \text{ and } [L2], B_n \in \mathcal{L}. \]
 Note that \(\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i \). Because \(B_i \)'s are disjoint, by
 \[[L3], \bigcup_{i=1}^{\infty} B_i \in \mathcal{L}. \]
 So, \(\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i \in \mathcal{L} \).

- Dynkin’s \(\pi \)-\(\lambda \) theorem:
 If \(\mathcal{P} \) is a \(\pi \)-system and \(\mathcal{L} \) is a \(\lambda \)-system, then \(\mathcal{P} \subset \mathcal{L} \Rightarrow \sigma(\mathcal{P}) \subset \mathcal{L} \).
 Proof. [Bellingsley 42]
Let \mathcal{L}_0 be the λ-system generated by \mathcal{P}—that is, the intersection of all λ-systems containing \mathcal{P}. Then, \mathcal{L}_0 is also a λ-system which is contained in every λ-systems which contains \mathcal{P}. (same proof as the construction of generated σ-filed which based mainly on the facts that an element is in the intersection iff it is in every sets). In particular, $\mathcal{L}_0 \subset \mathcal{L}$ because \mathcal{L} is one of the set in the intersection. (So, we have $\mathcal{P} \subset \mathcal{L}_0 \subset \mathcal{L}$.)

Claim 1: \mathcal{L}_0 is a π-system.

Proof of the claim 1:

For each A (in \mathcal{L} or in $2^\mathcal{X}$), let $\mathcal{L}_A = \{B : A \cap B \in \mathcal{L}_0\}$.

Claim 1.1: If $A \in \mathcal{L}_0$, then \mathcal{L}_A is a λ-system. (*)

Proof of claim 1.1

To see this,

(1) $A \cap \Omega = A \in \mathcal{L}_0$ by assumption; so $\Omega \in \mathcal{L}_A$.

(2') If $B_1, B_2 \in \mathcal{L}_A$ and $B_1 \subset B_2$, then, by definition, $A \cap B_1, A \cap B_2 \in \mathcal{L}_0$. Now, because \mathcal{L}_0 is a λ-system, and $A \cap B_1 \subset A \cap B_2$, we have $A \cap B_2 - A \cap B_1 \in \mathcal{L}_0$ by [L2']. But $A \cap B_2 - A \cap B_1 = A \cap (B_2 - B_1)$. So, $B_2 - B_1 \in \mathcal{L}_A$.

(3) Finally, disjoint $B_n \in \mathcal{L}_A \Rightarrow$ disjoint $A \cap B_n \in \mathcal{L}_0 \Rightarrow
A \cap \bigcup_n B_n = \bigcup_n (A \cap B_n) \in \mathcal{L}_0$ (by [L3]) $\Rightarrow \bigcup_n B_n \in \mathcal{L}_A$.

We will only need this for $A \in \mathcal{P} \subset \mathcal{L}_0$.

Claim 1.2: $A \in \mathcal{P} \Rightarrow \mathcal{L}_0 \subset \mathcal{L}_A$

Proof of claim 1.2

If $A \in \mathcal{P} \subset \mathcal{L}_0$, then for any $B \in \mathcal{P}$, we have $A \cap B \in \mathcal{P} \subset \mathcal{L}_0$ by definition of \mathcal{P} being a π-system. So, $B \in \mathcal{L}_A$. Hence, $\mathcal{P} \subset \mathcal{L}_A$. So, \mathcal{L}_A is a λ-system (by (*)) which contains \mathcal{P}. By construction of \mathcal{L}_0, $\mathcal{L}_0 \subset \mathcal{L}_A$.

\[A\]
\[B_1\]
\[B_2\]
Note that by symmetry of the definition,
\[A \in \mathcal{L}_C \iff C \in \mathcal{L}_A \iff A \cap C \in \mathcal{L}_0. \]

Claim 1.3: \(C \in \mathcal{L}_0 \Rightarrow \mathcal{L}_0 \subset \mathcal{L}_C \)

Proof of claim 1.3

Now, consider \(C \in \mathcal{L}_0 \). We know (from claim 1.2) that \(\forall A \in \mathcal{P} \), \(\mathcal{L}_0 \subset \mathcal{L}_A \). Combining \(\mathcal{L}_0 \subset \mathcal{L}_A \) with \(C \in \mathcal{L}_0 \) gives \(C \in \mathcal{L}_A \) which, as noted above, also implies \(A \in \mathcal{L}_C \). But this is true for any \(A \in \mathcal{P} \). So, \(\mathcal{P} \subset \mathcal{L}_C \). From (\(^*\)), we already know that \(\mathcal{L}_C \) is a \(\lambda \)-system. Hence, \(\mathcal{L}_C \) is a \(\lambda \)-system which contains \(\mathcal{P} \). By construction of \(\mathcal{L}_0 \), \(\mathcal{L}_0 \subset \mathcal{L}_C \).

This is true for any \(C \in \mathcal{L}_0 \). Hence,
\[\forall C \in \mathcal{L}_0 \mathcal{L}_0 \subset \mathcal{L}_C \ (**) \]

Finally, let \(D_1, D_2 \in \mathcal{L}_0 \). Then, by (\(** \)), \(D_1 \in \mathcal{L}_0 \subset \mathcal{L}_{D_1} \) (and vice versa). By definition of \(\mathcal{L}_{D_1} \), we then have \(D_1 \cap D_2 \in \mathcal{L}_0 \). So, \(\mathcal{L}_0 \) is a \(\pi \)-system.

Because \(\mathcal{L}_0 \) is both a \(\pi \)-system and \(\lambda \)-system, it is a \(\sigma \)-field. Because it is a \(\sigma \)-field which contains \(\mathcal{P} \), we have \(\sigma(\mathcal{P}) \subset \mathcal{L}_0 \) by the minimality of \(\sigma(\mathcal{P}) \).

Because we also have \(\mathcal{L}_0 \subset \mathcal{L} \), we conclude that \(\sigma(\mathcal{P}) \subset \mathcal{L} \).

- Useful for many uniqueness arguments.

Monotone Class Theorem

- **Definition:** A class \(\mathcal{C} \) of subsets of \(\Omega \) \((\mathcal{C} \subset 2^\Omega)\) is **closed** if
 - Under **finite intersections** if for when \(A_1, \ldots, A_n \in \mathcal{C} \), then \(\bigcap_{i=1}^n A_i \in \mathcal{C} \) as well (\(n \) arbitrary but finite).
 - Under **increasing limits** if whenever \(A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \) is a sequence of sets in \(\mathcal{C} \), then \(\bigcup_{n=1}^\infty A_n \in \mathcal{C} \) as well.
 - Under **differences** if whenever \(A, B \in \mathcal{C} \) with \(A \subset B \), then \(B \setminus A = B \cap A^c \in \mathcal{C} \).

- A \(\sigma \)-algebra is closed under finite intersections, increasing limits, and differences.

- Intersection of classes of sets closed under differences is again a class of that type. Intersection of classes of sets closed under finite intersection is again a class of that type.

- Intersection of classes of sets closed under increasing limits is again a class of that type.

Proof. Let \(\mathcal{C}_i, i \in I \) be classes which are closed under (1) differences, (2) finite differences, and (3) increasing limits.
(1) \(A, B \in \bigcap_{i \in I} C_i \Rightarrow A, B \in C_i \forall i \in I \Rightarrow B \setminus A \subseteq C_i \forall i \in I \Rightarrow B \setminus A \subseteq \bigcap_{i \in I} C_i \). (2)

\[
A_1, \ldots, A_n \in \bigcap_{i \in I} C_i \Rightarrow A_1, \ldots, A_n \in C_i \forall i \in I \Rightarrow \bigcap_{i = 1}^n A_n \in C_i \forall i \in I \Rightarrow \bigcap_{i = 1}^n A_n \in \bigcap_{i \in I} C_i .
\]

(3) \(A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots \in \bigcap_{i \in I} C_i \Rightarrow A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots \in C_i \forall i \in I \Rightarrow \bigcup_{n=1}^\infty A_n \in C_i \forall i \in I \Rightarrow \bigcup_{n=1}^\infty A_n \in \bigcap_{i \in I} C_i .
\]

- Let (*) be a property of the class \(C_i \), \(i \in I \). If \(\bigcap_{i \in I} C_i \) also has property (*), then if \(C \) satisfies (*) then there exists the smallest class \(B \) containing \(C \) which also satisfies (*).

\[
B = \bigcap_{\substack{C \subseteq A \text{ satisfies } (*)}} A .
\]

- A **monotone class** \(\mathcal{M} \) is a collection of sets (subsets of \(X \)) with the properties:

1. If \(A_i \in \mathcal{M} \), and \(A_1 \subseteq A_2 \subseteq \cdots \), then \(\bigcup_{i=1}^\infty A_i \in \mathcal{M} \).
 - closed under countable increasing unions
 - closed under the formation of monotone unions
 - \(A_n \uparrow A \Rightarrow A \in \mathcal{M} \)

2. If \(B_i \in \mathcal{M} \), and \(B_1 \supseteq B_2 \supseteq \cdots \), then \(\bigcap_{i=1}^\infty B_i \in \mathcal{M} \).
 - closed under countable decreasing intersections
 - closed under the formation of monotone intersections
 - \(A_n \downarrow A \Rightarrow A \in \mathcal{M} \)

- (1) + [\(\mathcal{M} \) is closed under complement] \(\Rightarrow \) (2)

Proof. If \(B_i \in \mathcal{M} \), and \(B_1 \supseteq B_2 \supseteq \cdots \), then by (3) \(A_i = B_i^c \in \mathcal{M} \) and increasing.

Hence, \(\bigcup_{i=1}^\infty A_i \in \mathcal{M} \). Apply (3) again, and we have \(\left(\bigcup_{i=1}^\infty A_i \right)^c = \bigcap_{i=1}^\infty B_i \in \mathcal{M} \).

- **\(\mathcal{F} \) is a \(\sigma \)-field** iff **\(\mathcal{F} \) is a monotone field.**

Proof. [See the \(\sigma \)-field section].

- A **\(\sigma \)**-algebra is a monotone class.

- Monotonicity is preserved under arbitrary intersection.
Proof. Let I be an index set possibly uncountable. Suppose $\forall \alpha \in I$, \mathcal{M}_α is monotone. Consider $\bigcap_{\alpha \in I} \mathcal{M}_\alpha \subseteq \mathcal{M} = \bigcap_{\alpha \in I} \mathcal{M}_\alpha$. Suppose $A_i \in \mathcal{M}_\alpha$. Then, $\forall \alpha \in I$ $A_i \in \mathcal{M}_\alpha$.

(1) Suppose $A_i \supseteq A$. Because \mathcal{M}_α is monotone, we know that $A \in \mathcal{M}_\alpha$. This is true $\forall \alpha \in I$. Hence, $A \in \mathcal{M}$.

(2) Same as (1), but change the assumption to $A_i \subseteq A$.

- Suppose \mathcal{B} is a monotone class.
 - $\mathcal{D} = \{B \in 2^X : B^c \in \mathcal{B}\}$ and $\tilde{\mathcal{D}} = \{B \in \mathcal{B} : B^c \in \mathcal{B}\}$ are also monotone.

 Proof. Suppose $D_i \supseteq D$. By definition of \mathcal{D}, we have $D_i^c \in \mathcal{B}$.

 Note that

 $$
 D_i^c \supseteq D^c \left(\bigcap_{i=1}^n D_i^c = \left(\bigcup_{i=1}^n D_i \right)^c \right).$$

 Because \mathcal{B} is monotone, $D^c \in \mathcal{B}$. Hence, $D \in \mathcal{D}$.

 For $\tilde{\mathcal{D}}$, we need to prove also that $D \in \mathcal{B}$. This is trivial because $\tilde{\mathcal{D}} \subseteq \mathcal{B}$.

 So, $D_i \in \tilde{\mathcal{D}} \Rightarrow D_i \in \mathcal{B}$. \mathcal{B} is monotone, so, $D_i \supseteq D \Rightarrow D \in \mathcal{B}$.

 Similar argument for $D_i \supseteq D$. Switch \supseteq and \supseteq in the above argument.

- Let $A \subset X$. Then, $\mathcal{G}_A = \{C \in 2^X : A \cup C \in \mathcal{B}\}$ and $\tilde{\mathcal{G}}_A = \{C \in \mathcal{B} : A \cup C \in \mathcal{B}\}$ are monotone.

 Note that no requirement is imposed on A.

 Proof. Suppose $G_i \supseteq G$. Then, $A \cup G_i \in \mathcal{B}$.

 Note that $(A \cup G_i) \supseteq (A \cup G)$.

 Because \mathcal{B} is monotone, $A \cup G \in \mathcal{B}$. So, $G \in \mathcal{G}_A$.

 For $\tilde{\mathcal{G}}_A$, same proof as above but need to show further that $G \in \mathcal{B}$. This is easy because $\tilde{\mathcal{G}}_A \subseteq \mathcal{B}$. So, $G_i \supseteq G \Rightarrow G_i \supseteq G$. Because \mathcal{B} is monotone, $G \in \mathcal{B}$.

 Similar proof for $G_i \supseteq G$. Switch \supseteq and \supseteq in the above argument.

- Let \mathcal{A} be a collection of subsets of X. Then, $\mathcal{G}_A = \{C \in 2^X : \forall A \in \mathcal{A}, A \cup C \in \mathcal{B}\}$ and $\tilde{\mathcal{G}}_A = \{C \in \mathcal{B} : \forall A \in \mathcal{A}, A \cup C \in \mathcal{B}\}$ are monotone.

 Note that no requirement is imposed on \mathcal{A}.
Proof. Same proof as above. Instead of working with one A; now, we have
$\forall A \in A \ A \cup G \in B$. Fix A, the above argument gives $A \cup G \in B$. This is
true $\forall A \in A$; so, $G \in G_A$.

Alternative Proof

$G_A = \bigcap_{A \in A} G_A$? Monotonicity is preserved under intersection.

- Let A be a class of subsets of Ω. Define

$$\mathcal{M}(A) = \bigcap \{ \mathcal{M} : A \subset \mathcal{M}, \text{\mathcal{M} is monotone} \}$$

i.e. the intersection of all monotone classes containing A.

Then, $\mathcal{M}(A)$ is the smallest monotone class which contains A, in the sense that
$\mathcal{M}(A)$ is the subset of all monotone class that contains A.

Proof. Monotonicity is preserved under arbitrary intersection. Also, any x in A is in
every classes that are intersected. Hence, it is also in the intersection.

- $A \subset \mathcal{M}(A) \subset \sigma(A)$

Proof. By definition $\mathcal{M}(A) = \bigcap \{ \mathcal{M} : A \subset \mathcal{M}, \text{\mathcal{M} is monotone} \}$. Note that $\sigma(A)$ is
a monotone class which contains A. Therefore, It is one of those \mathcal{M} being
intersected. Thus, $\mathcal{M}(A) \subset \sigma(A)$.

- Let A be an algebra of subsets of Ω. Then,

- $\mathcal{M}(A)$ is a σ-algebra.

Proof. Let $B = \mathcal{M}(A)$. Then, B is the smallest monotone class which contains
A.

To show that B is a σ-algebra, it suffices to show that B is a field.

1) $\emptyset \in A \subset B$.

2) Let $\mathcal{D} = \{ B \in B : B^c \in B \}$. First, note that $\mathcal{D} \subset B$. Also, B monotone
$\Rightarrow \mathcal{D}$ monotone. Furthermore, because A is an algebra, $\forall A \in A$ we
know that $A^c \in A \subset B$. Hence, $A \subset \mathcal{D}$. Therefore, \mathcal{D} is a monotone
class that contain A. B is the smallest monotone class containing A; so, $B \subset \mathcal{D}$. We then conclude that $\mathcal{D} = B$.

3) Let $\mathcal{G}_A = \{ C \in 2^A : \forall A \in A, A \cup C \in B \}$. Then, \mathcal{G}_A is monotone. Note
that for $\tilde{A} \in A$, we have $\forall A \in A \ A \cup \tilde{A} \in A \subset B$ because A is a
field. Hence, $A \subset \tilde{G}_A$. By minimality of B, we have $B \subset \mathcal{G}_A$. Hence,
$\forall B \in B \ \forall A \in A, A \cup B \in B \ \text{(**)}$

Let $\mathcal{G}_B = \{ C \in 2^A : \forall A \in B, A \cup C \in B \}$. Then, \mathcal{G}_B is monotone. Note
that (***) also tells $\forall A \in A \ \forall B \in B, A \cup B \in B$ (; we just switch the
two \forall’s). Therefore, $A \subset \tilde{G}_B$. By minimality of B, we have $B \subset \mathcal{G}_B$.
Hence, by definition, $\forall B \in \mathcal{B}$ because $B \in \mathcal{G}_B$, we have $\forall A \in \mathcal{B}$ $A \cup B \in \mathcal{B}$. So, \mathcal{B} is closed under finite union. So, \mathcal{B} is a σ-algebra which contains \mathcal{A}.

Alternative Proof

2) We can define $\hat{\mathcal{D}} = \{B \in 2^X : B^c \in \mathcal{B}\}$, then we still have $\hat{\mathcal{D}}$ is a monotone class containing \mathcal{A}. The conclusion changes to $\mathcal{B} \subset \hat{\mathcal{D}}$. So, \mathcal{B} is closed under complement.

3) Fix $A_0 \in \mathcal{A}$. Consider $C_{A_0} = \{B \in \mathcal{B} : B \cup A_0 \in \mathcal{B}\}$. Then,

- $C_{A_0} \subset \mathcal{B}$ and C_{A_0} is a monotone class.
- For any $A \in \mathcal{A}$, because \mathcal{A} is an algebra, $A \cup A_0 \in \mathcal{A}$. Now, because $\mathcal{A} \subset \mathcal{B}$, we have both A and $A \cup A_0$ are in \mathcal{B}. This is true for any $A \in \mathcal{A}$; so, $A \subset C_{A_0}$.

So, C_{A_0} is a monotone class containing \mathcal{A}.

We know that \mathcal{B} is the smallest monotone class containing \mathcal{A}; hence, $\mathcal{B} \subset C_{A_0}$. We conclude that $C_{A_0} = \mathcal{B}$.

So, for any $A \in \mathcal{A}$, $C_A = \mathcal{B}$.

Next, fix $B_0 \in \mathcal{B}$, and consider $C_{B_0} = \{B \in \mathcal{B} : B \cup B_0 \in \mathcal{B}\}$. Then,

- $C_{B_0} \subset \mathcal{B}$ and C_{B_0} is a monotone class.
- For any $A \in \mathcal{A}$, we have just shown that $C_A = \mathcal{B}$. Hence, $B_0 \in \mathcal{B} \Rightarrow B_0 \in C_A \Rightarrow B_0 \cup A \in \mathcal{B}$. Also, $A \in \mathcal{B}$ because $\mathcal{A} \subset \mathcal{B}$. So, $A \in C_{B_0}$. This is true for any $A \in \mathcal{A}$; hence, $\mathcal{A} \subset C_{B_0}$.

From $\mathcal{A} \subset C_{B_0} \subset \mathcal{B}$ and that \mathcal{B} is the smallest monotone class containing \mathcal{A}, we conclude that $C_{B_0} = \mathcal{B}$.

Now, for any $B_1, B_2 \in \mathcal{B}$, we have $B_{i} \in \mathcal{B}$ which contains B_2, and hence $B_1 \cup B_2 \in \mathcal{B}$. So, \mathcal{B} is closed under finite union.

- **Monotone Class Lemma** [Bartle p 116]: $\mathcal{M}(\mathcal{A}) = \sigma(\mathcal{A})$ (if \mathcal{A} is an algebra).

It is the smallest σ-algebra containing \mathcal{A} and the smallest monotone class containing \mathcal{A}.

Proof. Note that any σ-algebra is monotone. Suppose \mathcal{B} is another σ-algebra which contains \mathcal{A}; then, \mathcal{B} is monotone and contain \mathcal{A}. Because $\mathcal{M}(\mathcal{A})$ is the smallest monotone class containing \mathcal{A}, $\mathcal{M}(\mathcal{A}) \subset \mathcal{B}$. Therefore, $\mathcal{M}(\mathcal{A})$ is also the smallest σ-algebra containing \mathcal{A}.
• **Halmos’s monotone class theorem:**
 If \mathcal{M} is a monotone class containing the field \mathcal{A}, then $\sigma(\mathcal{A}) \subset \mathcal{M}$.

 In fact, $\sigma(\mathcal{A}) \subset \mathcal{M}(\mathcal{A}) \subset \mathcal{M}$.

 Proof. $\mathcal{M}(\mathcal{A})$ is the smallest monotone class containing \mathcal{A}. So, $\mathcal{M}(\mathcal{A}) \subset \mathcal{M}$.

 $\mathcal{M}(\mathcal{A})$ is a σ-algebra containing \mathcal{A}. $\sigma(\mathcal{A})$ is the smallest σ-algebra containing \mathcal{A}. Hence, $\sigma(\mathcal{A}) \subset \mathcal{M}(\mathcal{A})$.

• **Monotone Class Theorem**

 Let \mathcal{C} be a class of subsets of $\Omega \ (\mathcal{C} \subset 2^\Omega)$, closed under finite intersections and containing Ω. Let \mathcal{B} be the smallest class containing \mathcal{C} which is closed under increasing limits and by difference. Then, $\mathcal{B} = \sigma(\mathcal{C})$.

 Proof. The intersection of classes of sets closed under increasing limits and differences is again a class of that type. So, by taking the intersection of all such classes, there always exists a smallest class containing \mathcal{C} which is closed under increasing limits and by differences. Let this smallest class be \mathcal{B}.

 Define, for each B, $\mathcal{B}_B = \{ A : A \in \mathcal{B}, A \cap B \in \mathcal{B} \}$. Then, \mathcal{B}_B is closed under increasing limits and by difference.

 Let $A_1, A_2 \in \mathcal{B}_B$. Then $A_1 \in \mathcal{B}$, $A_1 \cap B \in \mathcal{B}$, $A_2 \in \mathcal{B}$, $A_2 \cap B \in \mathcal{B}$.

 To prove $A_1 \backslash A_2 \in \mathcal{B}_B$, we need (1) $A_1 \cap A_2^c \in \mathcal{B}$ which is obvious because $A_1 \in \mathcal{B}$, $A_2 \in \mathcal{B}$, and \mathcal{B} is closed under differences, (2) $A_1 \cap A_2^c \cap B \in \mathcal{B}$, which is obvious because $A_1 \cap A_2^c \cap B = (A_1 \cap B) \backslash A_2$ because $A_1 \cap B \in \mathcal{B}$, $A_2 \in \mathcal{B}$, and \mathcal{B} is closed under differences.

 Let $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \in \mathcal{B}_B$. Then, $A_1 \in \mathcal{B}$, $A_i \cap B \in \mathcal{B}$ $\forall i \in \mathbb{N}$. To prove $\bigcup_{n=1}^\infty A_n \in \mathcal{B}_B$, we need (1) $\bigcup_{n=1}^\infty A_n \in \mathcal{B}$ which is obvious because \mathcal{B} is closed under increasing limits, (2) $\left(\bigcup_{n=1}^\infty A_n \right) \cap B \in \mathcal{B}$ which is also obvious because $\left(\bigcup_{n=1}^\infty A_n \right) \cap B = \bigcup_{n=1}^\infty (A_n \cap B)$ and all $A_i \cap B \in \mathcal{B}$.

 Fix $C_0 \in \mathcal{C}$. Then, for each $C \in \mathcal{C}$, one also has $C \cap C_0 \in \mathcal{C} \subset \mathcal{B}$ because \mathcal{C} is closed under finite intersection. So, $C \in \mathcal{B}_{C_0}$. Since this is true for all $C \in \mathcal{C}$, we have $C \subset \mathcal{B}_{C_0}$. By definition, we also have $\mathcal{B}_{C_0} \subset \mathcal{B}$. Hence, $C \subset \mathcal{B}_{C_0} \subset \mathcal{B}$. Now, both \mathcal{B} and \mathcal{B}_{C_0} contain \mathcal{C} and are closed under increasing limits and by differences. Because \mathcal{B} should be the smallest class which has these properties, so $\mathcal{B}_{C_0} \subset \mathcal{B} \Rightarrow \mathcal{B}_{C_0} = \mathcal{B}$.
Now, consider a fix $B \in \mathcal{B}$. Note that we have just shown that for all $C \in \mathcal{C}$, $B_C = B$, and hence $B \in B_C$, which implies, by definition of $B \in B_C$, $B \cap C \in \mathcal{B}$. Next, note that $C \in \mathcal{C} \subset \mathcal{B}$, so $C \in \mathcal{B}$. Because $C \in \mathcal{B}$, and $B \cap C \in \mathcal{B}$, then $C \in B_B$. So, we have $C \subset B_B \subset \mathcal{B}$, and hence (same argument as above where B being the smallest) $B_B = \mathcal{B}$. This is true for any $B \in \mathcal{B}$.

Let $B_1, B_2 \in \mathcal{B}$, then $B_1 \setminus B_2 \in \mathcal{B}$ which contains B_2, and hence $B_1 \cap B_2 \in \mathcal{B}$. So, \mathcal{B} is closed under finite intersection. Because $\Omega \subset \mathcal{C} \subset \mathcal{B}$, $\Omega \in \mathcal{B}$ and for any $B \in \mathcal{B}$, $B^c = \Omega \setminus B \in \mathcal{B}$ because \mathcal{B} is closed under differences. Because \mathcal{B} is closed under finite intersection and complementation, it is also closed under finite union by De Morgan’s law. Now, for $B_1, B_2, \ldots \in \mathcal{B}$, define $A_n = \bigcup_{i=1}^n B_i$.

Then, whenever $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$ is a sequence of sets in \mathcal{B}. Because \mathcal{B} is closed under increasing limits, we have $\bigcup_{n=1}^\infty B_n = \bigcup_{n=1}^\infty A_n \in \mathcal{B}$. These properties show that \mathcal{B} is a σ-algebra.

Note that any σ-algebra is closed under increasing limits and differences. So, if there exists a σ-algebra smaller than \mathcal{B} and containing \mathcal{C}, then \mathcal{B} would not be the smallest one closed under increasing limits and differences and containing \mathcal{C}. This contradicts the construction of \mathcal{B}. Hence, $\mathcal{B} = \sigma(\mathcal{C})$.

- **Monotone Class Theorem for function** [Jacod & Protter p. 37]:

 Let \mathcal{M} be a class of functions mapping a given space Ω into \mathbb{R}.

 Let $\sigma(\mathcal{M})$ denote that smallest σ-algebra on Ω that makes all of the functions in \mathcal{M} measurable: $\sigma(\mathcal{M}) = \{ f^{-1}(\Lambda) \}; \Lambda \in \mathcal{B}(\mathbb{R})$.

 Suppose \mathcal{M} is closed under multiplication: $f, g \in \mathcal{M} \Rightarrow fg \in \mathcal{M}$.

 Let $\mathcal{H} = \sigma(\mathcal{M})$. Let \mathcal{H} be a vector space of functions with $\mathcal{M} \subset \mathcal{H}$.

 Suppose \mathcal{H} contains the constant functions and is such that whenever $(f_n)_{n \geq 1}$ is a sequence in \mathcal{H} such that $0 \leq f_1 \leq f_2 \leq f_3 \leq \cdots$

 then if $f = \lim_{n \to \infty} f_n$ is bounded, then $f \in \mathcal{H}$.

 Then, \mathcal{H} contains all bounded, \mathcal{A}-measurable functions.