# cohomology and data

Lek-Heng Lim

June 2, 2016

thanks: Xiaoye Jiang, Yuan Yao, Ke Ye, Yinyu Ye, AFOSR, DARPA, NSF

# cohomology

## cohomology in a nutshell

• two matrices  $A \in \mathbb{R}^{m \times n}$ ,  $B \in \mathbb{R}^{n \times p}$  satisfying

AB = 0

equivalently

 $\operatorname{im}(B) \subseteq \operatorname{ker}(A)$ 

cohomology group with respect to A and B is quotient vector space

 $\ker(A)/\operatorname{im}(B)$ 

- cocycles: elements of ker(A)
- coboundaries: elements of im(B)
- cohomology classes: elements of ker(A) / im(B)

#### Hodge theory in a nutshell

• using basic linear algebra, may show

 $\ker(A)/\operatorname{im}(B)\cong \ker(A^*A+BB^*)$ 

• i.e., cohomology classes are harmonic forms, solutions of

 $(A^*A + BB^*)x = 0$ 

- Hodge Laplacian:  $A^*A + BB^* \in \mathbb{R}^{n \times n}$
- Hodge decomposition:

$$\mathbb{R}^{n} = \overbrace{\mathsf{im}(A^{*}) \oplus \underbrace{\mathsf{ker}(A^{*}A + BB^{*})}_{\mathsf{ker}(A)} \oplus \mathsf{im}(B)}^{\mathsf{ker}(B^{*})}$$

 $\oplus =$ orthogonal direct sum

#### most important example for us

$$A = \operatorname{curl}, \quad B = \operatorname{grad}, \quad B^* = -\operatorname{div}$$

 $A^*A + BB^* = \operatorname{curl}^* \operatorname{curl} - \operatorname{grad} \operatorname{div} =: \Delta_1$ 

note that

$$AB = \operatorname{curl}\operatorname{grad} = 0$$

and that

$$\mathsf{div} = -\operatorname{\mathsf{grad}}^*$$

formal definitions later

#### beautiful mind cohomology

 $V = \{F : \mathbb{R}^3 \setminus X \to \mathbb{R}^3 : \nabla \times F = 0\}; \quad W = \{F = \nabla g\};$ dim(V/W) = ?

#### two main uses of cohomology

obstruction: quantifies obstruction from local to global

- nonexistence of Penrose tribar
- local rankings to global rankings of movies
- moduli: describe a collection of mathematical objects
  - parameterize line bundles on algebraic variety
  - parameterize cryo-EM data sets: do two data sets give same reconstruction?

# rank aggregation

## global ranking

| Watch Instantly | Browse DVDs    | Your Queue            | 🖈 Suggestions For You  | Movies, TV sl    | nows, actors, directors, genres Q                               |
|-----------------|----------------|-----------------------|------------------------|------------------|-----------------------------------------------------------------|
| Genres 🗸 New    | Releases Netfl | ix Top 100 Critic     | s' Picks Award Winners |                  |                                                                 |
| Netflix To      | op 100         |                       |                        |                  | You have 217<br>Suggestions<br>from 105 ratings.                |
| Top 100         |                |                       |                        |                  | Helpful Tip                                                     |
| 1.              | Add            | he Blind Side         |                        | ⊗ <b>☆☆☆☆</b> ☆  | Seen any of<br>these movies?                                    |
| 2.              | Add            | Crash                 |                        | <b>⊘★★★☆</b> ☆   | ***                                                             |
| 3.              | Add            | The Bucket List       |                        | © <b>★★★☆</b> ☆  | Rate movies you've<br>seen before so we can<br>recommend movies |
| 4.              | Add            | The Curious Case of B | enjamin Button         | © <b>☆☆☆☆</b> ☆☆ | you haven e                                                     |
| 5.              | Add            | he Hurt Locker        |                        | <b>⊘★★★☆</b> ☆   | Give FREE<br>rentals!                                           |
| 6.              | Add            | he Departed           |                        | <b>⊘★★★☆</b> ☆   | Tell a friend                                                   |
| 7.              | Add            | Sherlock Holmes       |                        | <b>⊘★★★</b> ☆☆   | Add this page to<br>your favorite web                           |
| 8.              | Add            | nception              |                        | <b>⊘★★★</b> ★☆   | portal<br>or RSS reader.<br>Learn more about RSS                |
| 9.              | Add            | ron Man               |                        | <b>⊘★★★</b> ☆☆   |                                                                 |
| 10.             | Add            | to Country for Old Me | n                      | <b>⊘★★★</b> ☆☆   |                                                                 |
| 11.             | Add            | Date Night            |                        | ⊘✿★★☆☆           |                                                                 |
| 12.             | Add            | Jp in the Air         |                        | <b>⊘★★★</b> ☆☆   |                                                                 |
| 13.             | Add            | Gran Torino           |                        | <b>⊘★★★</b> ☆    |                                                                 |

## rank aggregation

- many voters, each rated a few items, want global ranking
- averaging over scores doesn't work: one movie receives single 5☆, another receives 10,000 5☆ and one 4☆
- should be invariant under monotone transformation:

 $1 \, \textcircled{a}, \ldots, 5 \, \textcircled{a} \longrightarrow 0 \, \textcircled{a}, \ldots, 4 \, \textcircled{a}$ 

- basic unit of ranking: pairwise ranking
- Netflix user-product rating matrix

 $z_{ij} = i$ th user's rating for *j*th movie,

 $Z \in \mathbb{R}^{480,189 \times 17,770}$  has 98.82% missing values

average over pairwise rankings instead

 $y_{ij}$  = how much *i*th movie is preferred over *j*th movie,

 $Y \in \mathbb{R}^{17,770 imes 17,770}$  has 0.22% missing values

## averaging over pairwise rankings

classical problem in statistics

linear model: average score difference between *i* and *j* 

$$y_{ij} = rac{\sum_{h}(z_{hj}-z_{hi})}{\#\{h:z_{hi},z_{hj} ext{ exist}\}}$$

invariant under translation

log-linear model: log average score ratio of positive scores

$$y_{ij} = \frac{\sum_{h} (\log z_{hj} - \log z_{hi})}{\#\{h : z_{hi}, z_{hj} \text{ exist}\}}$$

invariant up to a multiplicative constant

## averaging over pairwise rankings

linear probability model: probability *j* preferred to *i* in excess of purely random choice

$$y_{ij} = \mathsf{Pr}\{h: z_{hj} > z_{hi}\} - \frac{1}{2}$$

invariant under monotone transformation Bradley–Terry model: logarithmic odd ratio (logit)

$$y_{ij} = \log \frac{\Pr\{h : z_{hj} > z_{hi}\}}{\Pr\{h : z_{hj} < z_{hi}\}}$$

#### invariant under monotone transformation

H. A. David, *The Method of Paired Comparisons*, 2nd Ed., Griffin's Statistical Monographs and Courses, **41**, Oxford University Press, New York, NY, 1988.

## difficulties with rank aggregation

- Condorcet's paradox: majority vote intransitive
   *i* ≥ *j* ≥ *k* ≥ *i* [Condorcet, 1785]
- Arrow/Sen's impossibility: any sufficiently sophisticated preference aggregation must exhibit intransitivity [Arrow, 1950], [Sen, 1970]
- McKelvey/Saari's chaos: almost every possible ordering can be realized by a clever choice of the order in which decisions are taken [McKelvey, 1979], [Saari, 1989]
- Kemeny optimal is NP-hard: even with just 4 voters [Dwork–Kumar–Naor–Sivakumar, 2001], quadratic assignment problem [Cook–Kress, 1984]
- empirical evidence: lack of consensus common in group decision making (e.g. US congress)

## objectives

ordinal: intransitivity,  $i \succeq j \succeq k \succeq i$ cardinal: inconsistency,  $y_{ij} + y_{jk} + y_{kj} \neq 0$ 

- want global ranking of alternatives if a reasonable one exists
- want certificate of reliability to quantify validity of global ranking
- if no meaningful global ranking, analyze nature of inconsistencies

## graphs

- G = (V, E) undirected graph
- V vertices
- $E \subseteq \binom{V}{2}$  edges
- $T \subseteq \binom{V}{3}$  triangles or 3-cliques, i.e.,

 $\{i, j, k\} \in T$  iff  $\{i, j\}, \{j, k\}, \{k, i\} \in E$ 

• more generally  $K_k \subseteq \binom{V}{k}$  *k*-cliques, i.e.,

 $\{i_1, \ldots, i_k\} \in K_k$  iff it is a complete subgraph of G

• *K*(*G*) clique complex of a graph *G* is an abstract simplicial complex

## functions on graphs

- vertex functions:  $f: V \to \mathbb{R}$
- edge flows:  $X : V \times V \to \mathbb{R}$

$$X(i,j) = -X(j,i)$$

for  $\{i, j\} \in E$ , zero otherwise

• triangular flows:  $\Phi: V \times V \times V \to \mathbb{R}$ 

$$\Phi(i, j, k) = \Phi(j, k, i) = \Phi(k, i, j)$$
  
=  $-\Phi(j, i, k) = -\Phi(i, k, j) = -\Phi(k, j, i)$ 

for  $\{i, j, k\} \in T$ , zero otherwise

• introduce inner products:  $L^2(V)$ ,  $L^2_{\wedge}(E)$ ,  $L^2_{\wedge}(T)$ 

$$\langle f, g \rangle_V = \sum_{i=1}^n w_i f(i) g(i), \quad \langle X, Y \rangle_E = \sum_{i < j} w_{ij} X(i, j) Y(i, j),$$
  
 $\langle \Phi, \Psi \rangle_T = \sum_{i < j < k} w_{ijk} \Phi(i, j, k) \Psi(i, j, k)$ 

operators on functions on graphs gradient: grad :  $L^2(V) \rightarrow L^2_{\wedge}(E)$ ,  $(\operatorname{qrad} f)(i, j) = f(j) - f(i)$ curl: curl:  $L^2_{\wedge}(E) \rightarrow L^2_{\wedge}(T)$ ,  $(\operatorname{curl} X)(i, j, k) = X(i, j) + X(j, k) + X(k, i)$ divergence: div :  $L^2_{\wedge}(E) \rightarrow L^2(V)$ ,  $(\operatorname{div} X)(i) = \sum_{i=1}^{n} w_{ij} X(i,j)$ graph Laplacian:  $\Delta_0: L^2(V) \to L^2(V)$ ,  $\Delta_0 = \operatorname{div} \operatorname{grad}$ graph Helmholtzian:  $\Delta_1 : L^2_{\Lambda}(E) \to L^2_{\Lambda}(E)$ ,  $\Delta_1 = - \operatorname{grad} \operatorname{div} + \operatorname{curl}^* \operatorname{curl}^*$ 

## Hodge decomposition of rankings

- pairwise comparison graph G = (V, E); V: set of alternatives, E: pairs of alternatives compared
- space of pairwise rankings, L<sup>2</sup><sub>∧</sub>(E), admits an orthogonal decomposition into three components

$$L^{2}_{\wedge}(E) = \overbrace{\mathsf{im}(\mathsf{curl}^{*}) \oplus \underbrace{\mathsf{ker}(\Delta_{1}) \oplus \mathsf{im}(\mathsf{grad})}_{\mathsf{ker}(\mathsf{curl})}$$

cohomology group is

 $ker(\Delta_1) = ker(curl) \cap ker(div)$ 

## Hodge decomposition



Figure: cartoon courtesy of Pablo Parrilo

## HodgeRank

Hodge decomposition of ranking:

aggregate pairwise ranking = consistent ⊕ locally inconsistent ⊕ globally inconsistent

- consistent component gives global ranking
- total size of inconsistent components gives certificate of reliability
- local and global inconsistent components tell us about nature of inconsistencies
- quantifies Condorcet paradox, Arrow's impossibility, McKelvey chaos, etc
- numerical, not combinatorial, so not NP-hard

## analyzing inconsistencies

- locally inconsistent rankings should be acceptable
  - inconsistencies in items ranked closed together but not in items ranked far apart
  - ordering of 4th, 5th, 6th ranked items cannot be trusted but ordering of 4th, 50th, 600th ranked items can
  - e.g. no consensus for hamburgers, hot dogs, pizzas, and no consensus for caviar, foie gras, truffle, but clear preference for latter group
- globally inconsistent rankings might be rare

Theorem (Kahle, 2007)

Erdős-Rényi G(n, p), n alternatives, comparisons occur with probability p, clique complex K(G) almost always have zero 1-homology, unless

$$\frac{1}{n^2} \ll p \ll \frac{1}{n}.$$

### relates to Kemeny optimum

- ranking data lives on pairwise comparison graph G = (V, E); V: set of alternatives, E: pairs compared
- optimize over model class  $\ensuremath{\mathcal{M}}$

$$\min_{X \in \mathcal{M}} \sum_{\alpha, i, j} w_{ij}^{\alpha} (x_{ij} - y_{ij}^{\alpha})^2$$

- $Y_{ii}^{\alpha}$  measures preference of *i* over *j* of voter  $\alpha$
- $w_{ii}^{\alpha}$  metric; 1 if  $\alpha$  made comparison for  $\{i, j\}$ , 0 otherwise
- Kemeny optimization:

$$\mathcal{M}_{\mathcal{K}} = \{ X \in \mathbb{R}^{n \times n} : x_{ij} = \operatorname{sign}(f_j - f_i), \ f : V \to \mathbb{R} \}$$

relaxed version

$$\mathcal{M}_{G} = \{ X \in \mathbb{R}^{n \times n} : x_{ij} = f_j - f_i, \ f : V \to \mathbb{R} \}$$

- rank-constrained regression on skew-symmetric matrices
- solution is precisely consistent component in HodgeRank

## top Netflix movies by HodgeRank

| Linear Full          | Linear 30                | Bradley–Terry Full       |
|----------------------|--------------------------|--------------------------|
| Greatest Story Ever  | LOTR III: Return         | LOTR III: Return         |
| Terminator 3         | LOTR I: The Fellowship   | LOTR II: The Two         |
| Michael Flatley      | LOTR II: The Two         | LOTR I: The Fellowship   |
| Hannibal [Bonus]     | Star Wars VI: Return     | Star Wars V: Empire      |
| Donnie Darko [Bonus] | Star Wars V: Empire      | Raiders of the Lost Arc  |
| Timothy Leary's      | Star Wars IV: A New Hope | Star Wars IV: A New Hope |
| In Country           | LOTR III: Return         | Shawshank Redemption     |
| Bad Boys II [Bonus]  | Raiders of the Lost Arc  | Star Wars VI: Return     |
| Cast Away [Bonus]    | The Godfather            | LOTR III: Return         |
| Star Wars: Ewok      | Saving Private Ryan      | The Godfather            |

- LOTR III shows up twice because of the two DVD editions
- full model has many "bonus" discs that Netflix rents; these are items enjoyed by only a few people

# cryo-electron microscopy

## group-valued cohomology

#### $\mathbb{R}$ -valued

•  $x_{ij} + x_{ji} = 0$ 

• 
$$\varphi_{ijk} + \varphi_{ikj} = \varphi_{ijk} + \varphi_{kji}$$
  
=  $\varphi_{ijk} + \varphi_{jik} = \mathbf{0}$ 

• 
$$(\operatorname{grad} f)_{ij} = f_j - f_i$$

• 
$$(\operatorname{curl} X)_{ijk} = x_{ij} + x_{jk} + x_{ki}$$

• 
$$x_{ij} + x_{jk} + x_{ki} = 0$$

#### G-valued

- $g_{ij}g_{ji} = 1$
- $g_{ijk}g_{ikj}=g_{ijk}g_{kji}$  $=g_{ijk}g_{jik}=1$

• 
$$\left(\delta_0(g_\alpha)_{\alpha\in I})\right)_{ij}=g_jg_i^{-1}$$

• 
$$\left(\delta_1(g_{lphaeta})_{lpha,eta\in I}
ight)_{ijk}=g_{ij}g_{jk}g_{ki}$$

•  $g_{ij}g_{jk}g_{ki}=1$ 

cryo-EM application: G = SO(2) and  $G = SO(2)_d$ , i.e., SO(2) with discrete topology

full story: Čech cohomology with G coefficients  $\check{H}^1(K,G)$ 







- M. C. Escher's optical illusions
- all based on L. S. Penrose and R. Penrose's tribar

#### inspiration: Penrose tribar



- $\Delta = 2D$  figure on left, embedded in Q = annulus in  $\mathbb{R}^2$
- appears to be a projection of a (nonexistent) 3D tribar

R. Penrose, "On the cohomology of impossible figures," *Structural Topology*, **17** (1991), pp. 11–16.

## technique: perspective



### Penrose's example



- *E* and  $L_1, L_2, L_3$  on opposite sides of hyperplane  $H \subseteq \mathbb{R}^3$ •  $d_1 \in \mathbb{R}^3$  distance from *E* to contor of *L*.
- $d_{ij} \in \mathbb{R}_+$  distance from *E* to center of  $L_{ij}$

$$g_{ij} = rac{d_{ij}}{d_{ji}}, \qquad g = egin{bmatrix} g_{11} & g_{12} & g_{13} \ g_{21} & g_{22} & g_{23} \ g_{31} & g_{32} & g_{33} \end{bmatrix} \in \mathbb{R}^{3 imes 3}_+$$

• 
$$g_{ij}^{-1} = g_{ji}, \, g_{ii} = 1$$

## picture



#### $\mathbb{R}^+$ -valued cohomology

- may move L<sub>1</sub>, L<sub>2</sub>, L<sub>3</sub> independently along viewing direction so that projection onto H always give Δ
- results in scaling by a factor  $g_i \in \mathbb{R}_+$ :  $d'_{ij} = d_{ij}/g_i$

$$g_{ij}^\prime = rac{d_{ij}^\prime}{d_{ji}^\prime} = rac{d_{ij}/g_i}{d_{ji}/g_j} = g_{ij}rac{g_j}{g_i}$$

 if L<sub>1</sub>, L<sub>2</sub>, L<sub>3</sub> can be moved to form tribar, then centers of L<sub>ij</sub> and L<sub>ji</sub> coincide and so

$$d_{ij}^\prime = d_{ji}^\prime, \qquad g_{ij}^\prime = 1$$

• i.e., g is coboundary,

$$g_{ij} = rac{g_i}{g_j}$$

### contradiction



- if tribar exists, then g is coboundary, i.e.,  $g_{ij} = g_i/g_j$  for some  $g_i, g_j \in \mathbb{R}^+$
- so  $g_1 = g_2 = g_3$  and so  $g_{23} = 1$
- contradiction:  $L_{23}$  does not intersect  $L_{32}$  and so  $g_{23} \neq 1$

## other embeddings

- tribar does not exist as a 3D object, i.e., cannot be embedded in  $\mathbb{R}^3$
- embeddable in 3-manifold  $\mathbb{R}^3/\mathbb{Z}\cong\mathbb{S}^1\times\mathbb{R}^2$  [Francis, 1987]



#### notes

- depends on cohomology of H<sup>1</sup>(Q, ℝ<sub>+</sub>) being non-trivial
- not homotopy invariant, unlike embedding Klein bottle in  $\mathbb{R}^3$
- tribar homotopy equivalent to torus and trivially embeddable in  $\mathbb{R}^3$
- like cryo-EM: construct 3D structure of molecule exactly, not up to homotopy

## cryo-electron microscopy

- immobilize many identical copies of molecule in ice
- each copy of molecule frozen in some unknown orientation
- electron microscope produces 2D images
- each 2D image is projection of molecule from an unknown viewing direction
- 2D image shows (i) shape of molecule in plane of viewing direction, (ii) density of molecule, captured in intensity of pixel
- goal: construct 3D structure of molecule from set of 2D projected images



#### mathematical model

- molecule described by potential function  $\varphi : \mathbb{R}^3 \to \mathbb{R}$
- viewing direction described by a point on S<sup>2</sup>
- orientation of image is described by  $3 \times 3$  matrix  $A = [a, b, c] \in SO(3)$
- orthonormal column vectors a, b, c such that span{a, b} is projection plane and c viewing direction
- projected image ψ of molecule φ by A given by function
   ψ : ℝ<sup>2</sup> → ℝ

$$\psi(\mathbf{x},\mathbf{y}) = \int_{\mathbf{z}\in\mathbb{R}} \varphi(\mathbf{x}\mathbf{a} + \mathbf{y}\mathbf{b} + \mathbf{z}\mathbf{c}) \, d\mathbf{z}$$

•  $\psi$  describes density of molecule along viewing direction

R. Hadani, A. Singer, "Representation theoretic patterns in three-dimensional cryo-electron microscopy I," *Ann. Math.*, **174** (2011), no. 2, pp. 1219–1241.

## cryo-EM data

- $\psi_1, \ldots, \psi_n$  projected images of molecule
- SO(2) action

$$(\boldsymbol{g}\cdot\psi)(\boldsymbol{x},\boldsymbol{y})=\psi(\boldsymbol{g}^{-1}(\boldsymbol{x},\boldsymbol{y}))$$

distance between images

$$d(\psi_i, \psi_j) = \min_{g \in SO(2)} \|g \cdot \psi_i - \psi_j\|$$

get

$$g_{ij} = \operatorname*{argmin}_{g \in SO(2)} \|g \cdot \psi_i - \psi_j\|$$

- clearly  $g_{ii} = 1$  and  $g_{ij}g_{ji} = 1$
- discrete cryo-EM data set

$$D = \{g_{ij} \in SO(2) : i, j = 1, \dots, n\}$$

## cryo-EM complex

•  $G_{\varepsilon} = (V, E)$ :  $V = \{1, ..., n\}$  corresponds to images

 $\{i, j\} \in E$  if and only if  $d(\psi_i, \psi_j) \leq \varepsilon$ 

- let  $K_{\varepsilon}$  be 2-clique complex of  $G_{\varepsilon}$ 
  - 0-simplices are vertices in V
  - 1-simplices are edges in E
  - 2-simplices are triangles  $\{i, j, k\}$  with  $\{i, j\}, \{i, j\}, \{k, i\} \in E$
- for ε > 0 small enough [Singer et al, 2011]

 $g_{ij}g_{jk}g_{ki}=1$ 

• for  $\varepsilon > 0$  small enough, get cocycle

$$z_arepsilon^{d} = \{ g_{ij} \in SO(2) : \{i,j\} \in K_arepsilon \}$$

## classification

- every discrete cryo-EM data set on  $K_{\varepsilon}$  is a Čech 1-cocycle  $z_{\varepsilon}^{d}$  on  $K_{\varepsilon}$
- each  $z_{\varepsilon}^{d}$  determines a flat oriented circle bundle on  $K_{\varepsilon}$
- z<sup>d</sup><sub>ε</sub> and z'<sup>d</sup><sub>ε</sub> determine isomorphic flat oriented circle bundles if and only if

$$g_{ij}' = g_{ij}g_ig_j^{-1}$$

for some  $g_i, g_j \in SO(2), \{i, j\} \in K_{\varepsilon}$ 

$$\begin{split} \check{H}^1(K_{\varepsilon}, SO(2)_d) &= \{ \text{cohomologically equivalent} \\ &\quad \text{discrete cryo-EM data sets on } K_{\varepsilon} \} \\ &= \{ \text{isomorphism classes of} \\ &\quad \text{flat oriented circle bundles on } K_{\varepsilon} \} \end{split}$$

#### references

- simple introduction to cohomology
  - L.-H. Lim, "Hodge Laplacians on graphs," S. Mukherjee (Ed.), Geometry and Topology in Statistical Inference, Proc. Sympos. Appl. Math., **73**, AMS, Providence, RI, 2015.
- ranking
  - X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye, "Statistical ranking and combinatorial Hodge theory," *Math. Program.*, **127** (2011), no. 1, pp. 203–244.
  - D. Gleich and L.-H. Lim, "Rank aggregation via nuclear norm minimization," *Proc. ACM SIGKDD Conf. Knowledge Discovery* and Data Mining (KDD), **17** (2011), pp. 60–68.
  - A. Rajkumar, S. Ghoshal, L.-H. Lim, and S. Agarwal, "Ranking from stochastic pairwise preferences: recovering Condorcet winners and tournament solution sets at the top," *Proc. Int. Conf. Mach. Learn.* (ICML), **37** (2015), pp. 665–673.
- cryo-EM microscopy
  - K. Ye and L.-H. Lim, "Cohomology of cyro-electron microscopy," arXiv:1604.01319, (2016).