
Package ‘TDA’
September 18, 2015

Type Package

Title Statistical Tools for Topological Data Analysis

Version 1.4.1

Date 2015-08-20

Author Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clement Maria, Vincent Rouvreau. The in-
cluded GUDHI is authored by Clement Maria, Dionysus by Dmitriy Morozov, and PHAT by Ul-
rich Bauer, Michael Kerber, and Jan Reininghaus.

Maintainer Jisu Kim <jisuk1@andrew.cmu.edu>

Description Tools for the statistical analysis of persistent homology and for density cluster-
ing. For that, this package provides an R interface for the efficient algorithms of the C++ li-
braries GUDHI, Dionysus, and PHAT.

Depends R (>= 3.1.0)

Repository CRAN

License GPL-3

Imports FNN, igraph, parallel, scales, Rcpp (>= 0.11.0)

LinkingTo Rcpp, BH (>= 1.58.0-1)

NeedsCompilation yes

Date/Publication 2015-09-18 08:58:27

R topics documented:
TDA-package . 2
bootstrapBand . 3
bootstrapDiagram . 5
bottleneck . 7
circleUnif . 9
clusterTree . 10
distFct . 12
dtm . 13
gridDiag . 15
hausdInterval . 18

1

2 TDA-package

kde . 19
kernelDist . 20
knnDE . 22
landscape . 23
maxPersistence . 24
multipBootstrap . 27
plot.clusterTree . 28
plot.diagram . 30
plot.maxPersistence . 32
ripsDiag . 33
silhouette . 36
sphereUnif . 37
summary.diagram . 38
torusUnif . 39
wasserstein . 40

Index 42

TDA-package Statistical Tools for Topological Data Analysis

Description

Tools for Topological Data Analysis. In particular it provides functions for the statistical analysis
of persistent homology and for density clustering. For that, this package provides an R interface for
the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT.

Details

Package: TDA
Type: Package
Version: 1.4.1
Date: 2015-09-17
License: GPL-3

Author(s)

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clement Maria, Vincent Rouvreau

Maintainer: Jisu Kim <jisuk1@andrew.cmu.edu>

References

Herbert Edelsbrunner, and John Harer, (2010), "Computational topology: an introduction". Ameri-
can Mathematical Society.

bootstrapBand 3

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology: Confidence Sets for Per-
sistence Diagrams", (arXiv:1303.7117). To appear, Annals of Statistics.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

Frederic Chazal, Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman,
(2014), "Stochastic Convergence of Persistence Landscapes and Silhouettes", Proceedings of the
30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

Frederic Chazal, Brittany T. Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry
Wasserman, (2014), "Subsampling Methods for Persistent Homology". (arXiv:1406.1901)

Clement Maria, "GUDHI, Simplicial Complexes and Persistent Homology Packages". https://project.inria.fr/gudhi/software/.

Dmitriy Morozov, "Dionysus, a C++ library for computing persistent homology". http://www.mrzv.org/software/dionysus/

Ulrich Bauer, Michael Kerber, Jan Reininghaus, "PHAT, a software library for persistent homol-
ogy". https://code.google.com/p/phat/

bootstrapBand Bootstrap Confidence Band

Description

bootstrapBand computes a uniform symmetric confidence band around a function of the data X,
evaluated on a Grid, using the bootstrap algorithm. See Details and References.

Usage

bootstrapBand(X, FUN, Grid, B = 30, alpha = 0.05, parallel = FALSE,
printProgress = FALSE, weight = NULL, ...)

Arguments

X an n by d matrix of coordinates of points used by the function FUN, where n is
the number of points and d is the dimension.

FUN a function whose inputs are an n by d matrix of coordinates X, an m by d matrix
of coordinates Grid and returns a numeric vector of length m. For example see
distFct, kde, and dtm which compute the distance function, the kernel density
estimator and the distance to measure over a grid of points, using the input X.

Grid an m by d matrix of coordinates, where m is the number of points in the grid, at
which FUN is evaluated.

B the number of bootstrap iterations.

alpha bootstrapBand returns a (1-alpha) confidence band.

parallel logical: if TRUE the bootstrap iterations are parallelized, using the library parallel.

printProgress if TRUE a progress bar is printed. Default is FALSE.

4 bootstrapBand

weight either NULL, a number, or a vector of length n. If it is NULL, weight is not
used. If it is a number, then same weight is applied to each points of X. If it is a
vector, weight represents weights of each points of X.

... additional parameters for the function FUN.

Details

First, the input function FUN is evaluated on the Grid using the original data X. Then, for B times,
the bootstrap algorithm subsamples n points of X (with replacement), evaluates the function FUN
on the Grid using the subsample, and computes the `∞ distance between the original function and
the bootstrapped one. The result is a sequence of B values. The (1-alpha) confidence band is
constructed by taking the (1-alpha) quantile of these values.

Value

Returns a list with the following elements:

width number: (1-alpha) quantile of the values computed by the bootstrap algorithm.
It corresponds to half of the width of the unfiorm confidence band; that is, width
is the distance of the upper and lower limits of the band from the function eval-
uated using the original dataset X.

fun a numeric vector of length m, storing the values of the input function FUN, eval-
uated on the Grid using the original data X.

band an m by 2 matrix that stores the values of the lower limit of the confidence band
(first column) and upper limit of the confidence band (second column), evaluated
over the Grid.

Author(s)

Jisu Kim, Fabrizio Lecci

References

Larry Wasserman (2004), "All of statistics: a concise course in statistical inference", Springer.

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology: Confidence Sets for Per-
sistence Diagrams", (arXiv:1303.7117). To appear, Annals of Statistics.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

kde, dtm

bootstrapDiagram 5

Examples

Generate data from mixture of 2 normals.
n <- 2000
X <- c(rnorm(n / 2), rnorm(n / 2, mean = 3, sd = 1.2))

Construct a grid of points over which we evaluate the function
by <- 0.02
Grid <- seq(-3, 6, by = by)

bandwidth for kernel density estimator
h <- 0.3
Bootstrap confidence band
band <- bootstrapBand(X, kde, Grid, B = 80, parallel = FALSE, alpha = 0.05,

h = h)

plot(Grid, band[["fun"]], type = "l", lwd = 2,
ylim = c(0, max(band[["band"]])), main = "kde with 0.95 confidence band")

lines(Grid, pmax(band[["band"]][, 1], 0), col = 2, lwd = 2)
lines(Grid, band[["band"]][, 2], col = 2, lwd = 2)

bootstrapDiagram Bootstrapped Confidence Set for a Persistence Diagram, using the
Bottleneck Distance (or the Wasserstein distance).

Description

bootstrapDiagram computes a (1-alpha) confidence set for the Persistence Diagram of a filtra-
tion of sublevel sets (or superlevel sets) of a function evaluated over a grid of points. The function
returns the (1-alpha) quantile of B bottleneck distances (or Wasserstein distances), computed in B
iterations of the bootstrap algorithm. The method is discussed in the 1st reference.

Usage

bootstrapDiagram(X, FUN, lim, by, maxdimension = length(lim) / 2 - 1,
sublevel = TRUE, library = "Dionysus", B = 30, alpha = 0.05,
distance = "bottleneck", dimension = min(1, maxdimension),

p = 1, parallel = FALSE, printProgress = FALSE, weight = NULL, ...)

Arguments

X an n by dmatrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space.

FUN a function whose inputs are 1) an n by d matrix of coordinates X, 2) an m by
d matrix of coordinates Grid, 3) an optional smoothing parameter, and returns
a numeric vector of length m. For example see distFct, kde, and dtm which
compute the distance function, the kernel density estimator and the distance to
measure, over a grid of points using the input X. Note that Grid is not an input
of bootstrapDiagram, but is automatically computed by the function using lim
and by.

6 bootstrapDiagram

lim a 2 by d matrix, where each column specifies the range of each dimension of the
grid, over which the function FUN is evaluated.

by either a number or a vector of length d specifying space between points of the
grid in each dimension. If a number is given, then same space is used in each
dimension.

maxdimension a number that indicates the maximum dimension to compute persistent homol-
ogy to. Default is d− 1, which is (dimension of embedding space - 1).

sublevel a logical variable indicating if the Persistence Diagram should be computed for
sublevel sets (TRUE) or superlevel sets (FALSE) of the function. Default is TRUE.

library The user can compute the persistence diagram using either the library ’Diony-
sus’, or ’PHAT’. Default is ’Dionysus’.

B the number of bootstrap iterations.

alpha bootstrapDiagram returns a (1-alpha) quantile.

distance a string specifying the distance to be used for persistence diagrams: either ’bot-
tleneck’ or ’wasserstein’

dimension dimension is an integer or a vector specifying the dimension of the features
used to compute the bottleneck distance. 0 for connected components, 1 for
loops, 2 for voids and so on.

p if distance == "wasserstein", then p is an integer specifying the power to
be used in the computation of the Wasserstein distance. Default is 1.

parallel logical: if TRUE the bootstrap iterations are parallelized, using the library parallel.

printProgress if TRUE a progress bar is printed. Default is FALSE.

weight either NULL, a number, or a vector of length n. If it is NULL, weight is not
used. If it is a number, then same weight is applied to each points of X. If it is a
vector, weight represents weights of each points of X.

... additional parameters for the function FUN.

Details

bootstrapDiagram uses gridDiag to compute the persistence diagram of the input function using
the entire sample. Then the bootstrap algorithm, for B times, computes the bottleneck distance
between the original persistence diagram and the one computed using a subsample. Finally the
(1-alpha) quantile of these B values is returned.

Value

Returns the (1-alpha) quantile of the values computed by the bootstrap algorithm.

Note

This function uses the C++ library Dionysus for the computation of bottleneck and Wasserstein
distances. See references.

Author(s)

Jisu Kim, Fabrizio Lecci

bottleneck 7

References

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

Larry Wasserman (2004), "All of statistics: a concise course in statistical inference", Springer.

Dmitriy Morozov, "Dionysus, a C++ library for computing persistent homology". http://www.mrzv.org/software/dionysus/

See Also

bottleneck, bootstrapBand, distFct, kde, kernelDist, dtm, summary.diagram, plot.diagram,

Examples

confidence set for the Kernel Density Diagram

input data
n <- 400
XX <- circleUnif(n)

Ranges of the grid
Xlim <- c(-1.8, 1.8)
Ylim <- c(-1.6, 1.6)
lim <- cbind(Xlim, Ylim)
by <- 0.05

h <- .3 #bandwidth for the function kde

#Kernel Density Diagram of the superlevel sets
Diag <- gridDiag(XX, kde, lim = lim, by = by, sublevel = FALSE,

printProgress = TRUE, h = h)

confidence set
B <- 10 ## the number of bootstrap iterations should be higher!

this is just an example
alpha <- 0.05

cc <- bootstrapDiagram(XX, kde, lim = lim, by = by, sublevel = FALSE, B = B,
alpha = alpha, dimension = 1, printProgress = TRUE, h = h)

plot(Diag[["diagram"]], band = 2 * cc)

bottleneck Bottleneck distance between two persistence diagrams

Description

This function computes the bottleneck distance between two persistence diagrams

8 bottleneck

Usage

bottleneck(Diag1, Diag2, dimension = 1)

Arguments

Diag1 an object of class diagram or a matrix (n by 3) that stores dimension, birth and
death of n topological features.

Diag2 an object of class diagram or a matrix (m by 3) that stores dimension, birth and
death of m topological features.

dimension an integer or a vector specifying the dimension of the features used to compute
the bottleneck distance. 0 for connected components, 1 for loops, 2 for voids
and so on. Default is 1 (loops).

Details

The bottleneck distance between two diagrams is the cost of the optimal matching between points
of the two diagrams. Note that all the diagonal points are included in the persistence diagrams when
computing the optimal matching. When a vector is given for dimension, then maximum among
bottleneck distances using each element in dimension is returned. This function is an R wrapper
of the function "bottleneck_distance" in the C++ library Dionysus. See references.

Value

Returns the value of the bottleneck distance between the two persistence diagrams.

Author(s)

Jisu Kim, Fabrizio Lecci

References

Dmitriy Morozov, "Dionysus, a C++ library for computing persistent homology". http://www.mrzv.org/software/dionysus/

Herbert Edelsbrunner and John Harer (2010), Computational topology: an introduction. American
Mathematical Society.

See Also

wasserstein, ripsDiag, gridDiag, plot.diagram

Examples

XX1 <- circleUnif(20)
XX2 <- circleUnif(20, r = 0.2)

DiagLim <- 5
maxdimension <- 1

Diag1 <- ripsDiag(XX1, maxdimension, DiagLim, printProgress = FALSE)
Diag2 <- ripsDiag(XX2, maxdimension, DiagLim, printProgress = FALSE)

circleUnif 9

bottleneckDist <- bottleneck(Diag1[["diagram"]], Diag2[["diagram"]],
dimension = 1)

print(bottleneckDist)

circleUnif Uniform Sample From The Circle

Description

This function samples n points from the circle of radius r, uniformly with respect to the circumfer-
ence length.

Usage

circleUnif(n, r = 1)

Arguments

n an integer specifying the number of points in the sample.

r a numeric variable specifying the radius of the circle. Default is 1.

Value

circleUnif returns an n by 2 matrix of coordinates.

Note

Uniform sample from sphere of arbitrary dimension can be generated using sphereUnif.

Author(s)

Fabrizio Lecci

See Also

sphereUnif, torusUnif

Examples

X <- circleUnif(100)
plot(X)

10 clusterTree

clusterTree Density clustering: the cluster tree

Description

Given a point cloud, or a matrix of distances, this function computes a density estimator and returns
the corresponding cluster tree of superlevel sets (lambda tree and kappa tree; see references).

Usage

clusterTree(X, k, h = NULL, density = "knn", dist = "euclidean", d = NULL,
Nlambda = 100, printProgress = FALSE)

Arguments

X If dist = "euclidean" then X is an n by d matrix of coordinates, where n
is the number of points stored in X and d is the dimension of the space. If
dist = "arbitrary" then X is an n by n matrix of distances. Default is
"euclidean"

k an integer value specifying the parameter of the underlying k-nearest neighbor
similarity graph, used to determine connected components. If density = "knn",
then k is also used to compute the k-nearest neighbor density estimator.

h real value: if density = "kde", then h is used to compute the kernel density
estimator with bandwidth h. Default is NULL.

density string: if "knn" then the k-nearest neighbor density estimator is used to compute
the cluster tree; if "kde" then the kernel density estimator is used to compute
the cluster tree. Default is "knn".

dist string: can be "euclidean", when X is a point cloud or "arbitrary", when X
is a matrix of distances. Default is ’euclidean’

d integer: if dist = "arbitrary", then d is the dimension of the underlying
space.

Nlambda integer: size of the grid of values of the density estimator, used to compute the
cluster tree. High Nlambda (i.e. a fine grid) means a more accurate cluster Tree.

printProgress logical: if TRUE a progress bar is printed. Default is FALSE.

Details

This function is an implementation of Algorithm 1 in the first reference.

Value

This function returns an object of class clusterTree, a list with the following components

density Vector of length n: the values of the density estimator evaluated at each of the
points stored in X

clusterTree 11

DataPoints A list whose elements are the points of X corresponding to each branch, in the
same order of id

n The number of points stored in the input matrix X

id Vector: the IDs associated to the branches of the cluster tree

sons A list whose elements are the IDs of the sons of each branch, in the same order
of id

parent Vector: the IDs of the parents of each branch, in the same order of id

silo A list whose elements are the horizontal coordinates of the silo of each branch,
in the same order of id

Xbase Vector: the horiontal coordinates of the branches of the cluster tree, in the same
order of id

lambdaBottom Vector: the vertical bottom coordinates of the branches of the lambda tree, in
the same order of id

lambdaTop Vector: the vertical top coordinates of the branches of the lambda tree, in the
same order of id

rBottom (only if density = "knn") Vector: the vertical bottom coordinates of the
branches of the r tree, in the same order of id

rTop (only if density = "knn") Vector: the vertical top coordinates of the branches
of the r tree, in the same order of id

alphaBottom Vector: the vertical bottom coordinates of the branches of the alpha tree, in the
same order of id

alphaTop Vector: the vertical top coordinates of the branches of the alpha tree, in the same
order of id

Kbottom Vector: the vertical bottom coordinates of the branches of the kappa tree, in the
same order of id

Ktop Vector: the vertical top coordinates of the branches of the kappa tree, in the same
order of id

Author(s)

Fabrizio Lecci

References

Brian P. Kent, Alessandro Rinaldo, and Timothy Verstynen, (2013), "DeBaCl: A Python Package
for Interactive DEnsity-BAsed CLustering."arXiv:1307.8136

Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman, (2014), "Metric Embeddings for Cluster
Trees"

See Also

plot.clusterTree

12 distFct

Examples

Generate data: 3 clusters
n <- 1200 #sample size
Neach <- floor(n / 4)
X1 <- cbind(rnorm(Neach, 1, .8), rnorm(Neach, 5, 0.8))
X2 <- cbind(rnorm(Neach, 3.5, .8), rnorm(Neach, 5, 0.8))
X3 <- cbind(rnorm(Neach, 6, 1), rnorm(Neach, 1, 1))
X <- rbind(X1, X2, X3)

k <- 100 #parameter of knn

Density clustering using knn and kde
Tree <- clusterTree(X, k, density = "knn")
TreeKDE <- clusterTree(X, k, h = 0.3, density = "kde")

par(mfrow = c(2, 3))
plot(X, pch = 19, cex = 0.6)
plot lambda trees
plot(Tree, type = "lambda", main = "lambda Tree (knn)")
plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")
plot clusters
plot(X, pch = 19, cex = 0.6, main = "cluster labels")
for (i in Tree[["id"]]){

points(matrix(X[Tree[["DataPoints"]][[i]],],ncol = 2), col = i, pch = 19,
cex = 0.6)

}
#plot kappa trees
plot(Tree, type = "kappa", main = "kappa Tree (knn)")
plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")

distFct Distance function

Description

This function computes the distance between each point of a set Grid and the corresponding closest
point of another set X.

Usage

distFct(X, Grid)

Arguments

X a numeric m by d matrix of coordinates in the space, where m is the number of
points in X and d is the dimension of the space.

Grid a numeric n by d matrix of coordinates in the space, where n is the number of
points in Grid and d is the dimension of the space.

dtm 13

Details

Given a set of points X, the distance function computed at g is defined as

d(g) = inf
x∈X
‖x− g‖2

Value

Returns a numeric vector of length n, where n is the number of points stored in Grid.

Author(s)

Fabrizio Lecci

See Also

kde,kernelDist, dtm

Examples

Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)
Grid <- expand.grid(Xseq, Yseq)

distance fct
distance <- distFct(X, Grid)

dtm Distance to Measure Function

Description

This function computes the "distance to measure function" on a set of points Grid, using the uniform
empirical measure on a set of points X. Given a probability measure P , The distance to measure
function, for each y ∈ Rd, is defined by

dm0
(y) =

√
1

m0

∫ m0

0

(G−1y (u))2du,

where Gy(t) = P (‖X − y‖ ≤ t) and 0 < m0 < 1 is a smoothing parameter. See Details and
References.

14 dtm

Given X = {x1, . . . , xn}, the empirical version of the distance to measure is

d̂m0(y) =

√√√√1

k

∑
xi∈Nk(y)

‖xi − y‖2,

where k = dm0ne and Nk(y) is the set containing the k nearest neighbors of y among x1, . . . , xn.

Usage

dtm(X, Grid, m0, weight = 1)

Arguments

X an n by dmatrix of coordinates of points used to construct the uniform empirical
measure for the distance to measure, where n is the number of points and d is
the dimension.

Grid an m by d matrix of coordinates, where m is the number of points in Grid.

m0 a numeric variable for the smoothing parameter of the distance to measure.
Roughly, m0 is the the percentage of points of X that are considered when the
distance to measure is computed for each point of Grid.

weight either a number, or a vector of length n. If it is a number, then same weight is
applied to each points of X. If it is a vector, weight represents weights of each
points of X.

Details

See Definition 3.2 of the reference for a formal definition of the "distance to measure" function.

Value

dtm returns a vector of length m (the number of points stored in Grid) containing the value of the
distance to measure function evaluated at each point of Grid.

Author(s)

Jisu Kim, Fabrizio Lecci

References

Frederic Chazal, David Cohen-Steiner, and Quentin Merigot. "Geometric inference for probability
measures." Foundations of Computational Mathematics 11.6 (2011): 733-751.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

kde, kernelDist, distFct

gridDiag 15

Examples

Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)
Grid <- expand.grid(Xseq, Yseq)

distance to measure
m0 <- 0.1
DTM <- dtm(X, Grid, m0)

gridDiag Persistence Diagram of a function over a Grid

Description

gridDiag computes the Persistence Diagram of a filtration of sublevel sets (or superlevel sets) of a
function evaluated over a grid of points in arbitrary dimension d.

Usage

gridDiag(X = NULL, FUN = NULL, lim = NULL, by = NULL, FUNvalues = NULL,
maxdimension = max(NCOL(X), length(dim(FUNvalues))) - 1,
sublevel = TRUE, library = "Dionysus", location = FALSE,
printProgress = FALSE, diagLimit = NULL, ...)

Arguments

X an n by dmatrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space. NULL if this option is
not used.

FUN a function whose inputs are 1) an n by d matrix of coordinates X, 2) an m by
d matrix of coordinates Grid, 3) an optional smoothing parameter, and returns
a numeric vector of length m. For example see distFct, kde, and dtm which
compute the distance function, the kernel density estimator and the distance to
measure, over a grid of points using the input X. Note that Grid is not an input
of gridDiag, but is automatically computed by the function using lim, and by.
NULL if this option is not used.

lim a 2 by d matrix, where each column specifying the range of each dimension of
the grid, over which the function FUN is evaluated. NULL if this option is not
used.

16 gridDiag

by either a number or a vector of length d specifying space between points of the
grid in each dimension. If a number is given, then same space is used in each
dimension. NULL if this option is not used.

FUNvalues an m1 ∗m2 ∗ ... ∗md array of function values over m1 ∗m2 ∗ ... ∗md grid,
where mi is the number of scales of grid on ith dimension. NULL if this option
is not used.

maxdimension a number that indicates the maximum dimension of the homological features
to compute: 0 for connected components, 1 for loops, 2 for voids and so on.
Default is d− 1, which is (dimension of embedding space - 1).

sublevel a logical variable indicating if the Persistence Diagram should be computed for
sublevel sets (TRUE) or superlevel sets (FALSE) of the function. Default is TRUE.

library The user can compute the persistence diagram using either the library ’Diony-
sus’, or ’PHAT’. Default is ’Dionysus’.

location if TRUE, location of birth point and death point of each homological feature is
returned. Additionaly if library="Dionysus", location of representative cycles
of each homological feature is also returned.

printProgress if TRUE a progress bar is printed. Default is FALSE.
diagLimit a number that replaces Inf (if sublevel is TRUE) or -Inf (if sublevel is FALSE)

in the Death value of the most persistent connected component. Deafult is NULL
and the max/min of the function is used.

... additional parameters for the function FUN.

Details

If the values of X, FUN, lim, and by are set, then FUNvalues should be NULL. In this case, gridDiag
evaluates the function FUN over a grid. If the value of FUNvalues is set, then X, FUN, lim, and by
should be NULL. In this case, FUNvalues is used as function values over the grid.

Once function values are either computed or given, gridDiag constructs a filtration by triangulating
the grid and considering the simplices determined by the values of the function of dimension up to
maxdimension+1.

Value

gridDiag returns a list with the following components:

diagram an object of class diagram, a P by 3 matrix, where P is the number of points
in the resulting persistence diagram. The first column stores the dimension of
each feature (0 for components, 1 for loops, 2 for voids, etc). Second and third
columns are Birth and Death of the features, in case of a filtration constructed
using sublevel sets (from -Inf to Inf), or Death and Birth of features, in case of a
filtration constructed using superlevel sets (from Inf to -Inf).

birthLocation only if location = TRUE: a P by d matrix, where P is the number of points in
the resulting persistence diagram. Each row represents the location of the grid
point completing the simplex that gives birth to an homological feature.

deathLocation only if location = TRUE: a P by d matrix, where P is the number of points in
the resulting persistence diagram. Each row represents the location of the grid
point completing the simplex that kills an homological feature.

gridDiag 17

cycleLocation only if location = TRUE and library = "Dionysus": a list of length P , where
P is the number of points in the resulting persistence diagram. Each element is
a Pi by d matrix and represents location of Pi grid points on a representative
cycle of each homological feature.

Note

The user can decide to use either the C++ library Dionysus or the C++ library PHAT. See references.

Since dimension of simplicial complex from grid points in Rd is up to d, homology of dimension
>= d is trivial. Hence setting maxdimension with values>= d is equivalent to maxdimension=d-1.

Author(s)

Brittany T. Fasy, Jisu Kim, and Fabrizio Lecci

References

Brittany Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology", (arXiv:1303.7117). To
appear, Annals of Statistics.

Dmitriy Morozov, "Dionysus, a C++ library for computing persistent homology". http://www.mrzv.org/software/dionysus/

Ulrich Bauer, Michael Kerber, Jan Reininghaus, "PHAT, a software library for persistent homol-
ogy". https://code.google.com/p/phat/

See Also

summary.diagram, plot.diagram, distFct, kde, kernelDist, dtm, ripsDiag

Examples

Distance Function Diagram and Kernel Density Diagram

input data
n <- 300
XX <- circleUnif(n)

Ranges of the grid
Xlim <- c(-1.8, 1.8)
Ylim <- c(-1.6, 1.6)
lim <- cbind(Xlim, Ylim)
by <- 0.05

h <- .3 #bandwidth for the function kde

#Distance Function Diagram of the sublevel sets
Diag1 <- gridDiag(XX, distFct, lim = lim, by = by, sublevel = TRUE,

printProgress = TRUE)

#Kernel Density Diagram of the superlevel sets
Diag2 <- gridDiag(XX, kde, lim = lim, by = by, sublevel = FALSE,

18 hausdInterval

location = TRUE, printProgress = TRUE, h = h)
#plot
par(mfrow = c(2, 2))
plot(XX, cex = 0.5, pch = 19)
title(main = "Data")
plot(Diag1[["diagram"]])
title(main = "Distance Function Diagram")
plot(Diag2[["diagram"]])
title(main = "Density Persistence Diagram")
one <- which(Diag2[["diagram"]][, 1] == 1)
plot(XX, col = 2, main = "Representative loop of grid points")
for (i in seq(along = one))
{

points(Diag2[["birthLocation"]][one[i],], pch = 15, cex = 3, col = i)
points(Diag2[["deathLocation"]][one[i],], pch = 17, cex = 3, col = i)
points(Diag2[["cycleLocation"]][[one[i]]], pch = 19, cex = 1, col = i)

}

hausdInterval Subsampling Confidence Interval for the Hausdorff Distance between
a Manifold and a Sample

Description

hausdInterval computes a confidence interval for the Hausdorff distance between a point cloud X
and the underlying manifold from which X was sampled. See Details. The validity of the method is
proved in the 1st Reference.

Usage

hausdInterval(X, m, B = 30, alpha = 0.05, parallel = FALSE,
printProgress = FALSE)

Arguments

X an n by d matrix of coordinates of sampled points.
m the size of the subsamples.
B the number of subsampling iterations.
alpha hausdInterval returns a (1-alpha) confidence interval.
parallel logical: if TRUE the iterations are parallelized, using the library parallel.
printProgress if TRUE a progress bar is printed. Default is FALSE.

Details

For B times, the subsampling algorithm subsamples m points of X (without replacement) and com-
putes the Hausdorff distance between the original sample X and the subsample. The result is a
sequence of B values. Let q be the (1-alpha) quantile of these values and let c = 2 ∗ q. The in-
terval [0, c] is a valid (1-alpha) confidence interval for the Hausdorff distance between X and the
underlying manifold, as proven in Theorem 3 of the first reference.

kde 19

Value

Returns a number c. The confidence interval is [0, c].

Author(s)

Fabrizio Lecci

References

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology: Confidence Sets for Per-
sistence Diagrams", (arXiv:1303.7117). To appear, Annals of Statistics.

See Also

bootstrapBand

Examples

X <- circleUnif(1000)
interval <- hausdInterval(X, m = 800)
print(interval)

kde Kernel Density Estimator over a Grid of Points

Description

Given a point cloud X (n points), this function computes the Kernel Density Estimator over a grid of
points. The kernel is a Gaussian Kernel with smoothing parameter h. For each x ∈ Rd, the Kernel
Density estimator is defined as

pX(x) =
1

n(
√
2πh)d

n∑
i=1

exp

(
−‖x−Xi‖22

2h2

)
.

Usage

kde(X, Grid, h, weight = 1, printProgress = FALSE)

Arguments

X an n by d matrix of coordinates of points used in the kernel density estimation
process, where n is the number of points and d is the dimension.

Grid an m by d matrix of coordinates, where m is the number of points in the grid.
h number: the smoothing paramter of the Gaussian Kernel.
weight either a number, or a vector of length n. If it is a number, then same weight is

applied to each points of X. If it is a vector, weight represents weights of each
points of X.

printProgress if TRUE a progress bar is printed. Default is FALSE.

20 kernelDist

Value

kde returns a vector of lengthm (the number of points in the grid) containing the value of the kernel
density estimator for each point in the grid.

Author(s)

Jisu Kim, Fabrizio Lecci

References

Larry Wasserman (2004), "All of statistics: a concise course in statistical inference", Springer.
Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology: Confidence Sets for Per-
sistence Diagrams", (arXiv:1303.7117). To appear, Annals of Statistics.

See Also

kernelDist, distFct, dtm

Examples

Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by=by)
Yseq <- seq(-1.7, 1.7, by=by)
Grid <- expand.grid(Xseq,Yseq)

kernel density estimator
h <- 0.3
KDE <- kde(X, Grid, h)

kernelDist Kernel distance over a Grid of Points

Description

Given a point cloud X, this function computes the kernel distance over a grid of points. The kernel
is a Gaussian Kernel with smoothing parameter h:

Kh(x, y) = exp

(
−‖x− y‖22

2h2

)
.

For each x ∈ Rd the Kernel distance is defined by

κX(x) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

Kh(Xi, Xj) +Kh(x, x)− 2
1

n

n∑
i=1

Kh(x,Xi).

kernelDist 21

Usage

kernelDist(X, Grid, h, weight = 1, printProgress = FALSE)

Arguments

X an n by d matrix of coordinates of points, where n is the number of points and
d is the dimension.

Grid an m by d matrix of coordinates, where m is the number of points in the grid.
h number: the smoothing paramter of the Gaussian Kernel.
weight either a number, or a vector of length n. If it is a number, then same weight is

applied to each points of X. If it is a vector, weight represents weights of each
points of X.

printProgress if TRUE a progress bar is printed. Default is FALSE.

Value

kernelDist returns a vector of lenght m (the number of points in the grid) containing the value of
the Kernel distance for each point in the grid.

Author(s)

Jisu Kim, Fabrizio Lecci

References

Jeff M. Phillips, Bei Wang, and Yan Zheng (2013), "Geometric Inference on Kernel Density Esti-
mates," arXiv:1307.7760.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

kde, dtm, distFct

Examples

Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

Construct a grid of points over which we evaluate the functions
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)
Grid <- expand.grid(Xseq, Yseq)

kernel distance estimator
h <- 0.3
Kdist <- kernelDist(X, Grid, h)

22 knnDE

knnDE k Nearest Neighbors Density Estimator over a Grid of Points

Description

Given a point cloud X (n points), this function computes the k Nearest Neighbors Density Estimator
over a grid of points. For each x ∈ Rd, the knn Density Estimator is defined by

pX(x) =
k

n vd rdk(x)
,

where vn is the volume of the Euclidean d dimensional unit ball and rdk(x) is the Euclidean distance
form point x to its k’th closest neighbor.

Usage

knnDE(X, Grid, k)

Arguments

X an n by d matrix of coordinates of points used in the density estimation process,
where n is the number of points and d is the dimension.

Grid an m by d matrix of coordinates, where m is the number of points in the grid.

k number: the smoothing paramter of the k Nearest Neighbors Density Estimator.

Value

knnDE returns a vector of length m (the number of points in the grid) containing the value of the
knn Density Estimator for each point in the grid.

Author(s)

Fabrizio Lecci

See Also

kde,kernelDist, distFct, dtm

Examples

Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)

landscape 23

Grid <- expand.grid(Xseq, Yseq)

kernel density estimator
k <- 50
KNN <- knnDE(X, Grid, k)

landscape The Persistence Landscape Function

Description

This function computes the landscape function corresponding to a given persistence diagram.

Usage

landscape(Diag, dimension = 1, KK = 1,
tseq = seq(min(Diag[,2:3]), max(Diag[,2:3]), length=500))

Arguments

Diag an object of class diagram or a P by 3 matrix, storing a persistence diagram
with colnames: "dimension", "Birth", "Death".

dimension the dimension of the topological features under consideration. Default is 1
(loops).

KK a vector: the order of the landscape function. Default is 1. (First Landscape
function).

tseq a vector of values at which the landscape function is evaluated.

Value

Returns a numeric matrix with the number of row as the length of tseq and the number of column as
the length of KK. The value at ith row and jth column represents the value of the KK[j]-th landscape
function evaluated at tseq[i].

Author(s)

Fabrizio Lecci

References

Peter Bubenik, (2012), "Statistical topology using persistence landscapes", arXiv1207.6437.

Frederic Chazal, Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman,
(2014), "Stochastic Convergence of Persistence Landscapes and Silhouettes", Proceedings of the
30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

See Also

silhouette

24 maxPersistence

Examples

Diag <- matrix(c(0, 0, 10, 1, 0, 3, 1, 3, 8), ncol = 3, byrow = TRUE)
DiagLim <- 10
colnames(Diag) <- c("dimension", "Birth", "Death")

#persistence landscape
tseq <- seq(0,DiagLim, length = 1000)
Land <- landscape(Diag, dimension = 1, KK = 1, tseq)

par(mfrow = c(1,2))
plot.diagram(Diag)
plot(tseq, Land, type = "l", xlab = "t", ylab = "landscape", asp = 1)

maxPersistence Maximal Persistence Method

Description

Given a point cloud and a function built on top of the data, we are interested in studying the evolution
of the sublevel sets (or superlevel sets) of the function, using persistent homology. The Maximal
Persistence Method selects the optimal smoothing parameter of the function, by maximizing the
number of significant topological features, or by maximizing the total significant persistence of the
features. For each value of the smoothing parameter, this function computes a persistence diagram
using gridDiag and returns the values of the two criteria, the dimension of detected features, their
persistence, and a bootstrapped confidence band. The features that fall outside of the band are
statistically significant. See References.

Usage

maxPersistence(FUN, parameters, X, lim, by, maxdimension = length(lim) / 2 - 1,
sublevel = TRUE, library = "Dionysus", B = 30, alpha = 0.05,
bandFUN = "bootstrapBand", distance = "bottleneck",
dimension = min(1, maxdimension), p = 1, parallel = FALSE,
printProgress = FALSE, weight = NULL)

Arguments

FUN the name of a function whose inputs are: 1) X, a n by d matrix of coordinates
of the input point cloud, where d is the dimension of the space; 2) a matrix
of coordinates of points forming a grid at which the function can be evaluated
(note that this grid is not passed as an input, but is automatically computed by
maxPersistence); 3) a real valued smoothing parameter. For example, see kde,
dtm, kernelDist.

parameters a numerical vector, storing a sequence of values for the smoothing paramter of
FUN among which maxPersistence will select the optimal ones.

X a n by dmatrix of coordinates of the input point cloud, where d is the dimension
of the space.

maxPersistence 25

lim a 2 by d matrix, where each column specifying the range of each dimension of
the grid, over which the function FUN is evaluated.

by either a number or a vector of length d specifying space between points of the
grid in each dimension. If a number is given, then same space is used in each
dimension.

maxdimension a number that indicates the maximum dimension to compute persistent homol-
ogy to. Default is d− 1, which is (dimension of embedding space - 1).

sublevel a logical variable indicating if the persistent homology should be computed for
sublevel sets of FUN (TRUE) or superlevel sets (FALSE). Default is TRUE.

library User can compute the persistence diagram using either the library ’Dionysus’,
or ’phat’. Default is ’Dionysus’.

bandFUN the function to be used in the computation of the confidence band. Either ’boot-
strapDiagram’ or ’bootstrapBand’.

B the number of bootstrap iterations.

alpha for each value store in parameters, maxPersistence computes a (1-alpha)
confidence band.

distance optional (if bandFUN == bootstrapDiagram): a string specifying the distance to
be used for persistence diagrams: either ’bottleneck’ or ’wasserstein’

dimension optional (if bandFUN == bootstrapDiagram): an integer or a vector specifying
the dimension of the features used to compute the bottleneck distance. 0 for
connected components, 1 for loops, 2 for voids. Deafault is 1.

p optional (if bandFUN == bootstrapDiagram AND distance == ’wasserstein’):
integer specifying the power to be used in the computation of the Wasserstein
distance. Default is 1.

parallel logical: if TRUE, the bootstrap iterations are parallelized, using the library parallel.

printProgress if TRUE, a progress bar is printed. Default is FALSE.

weight either NULL, a number, or a vector of length n. If it is NULL, weight is not
used. If it is a number, then same weight is applied to each points of X. If it is a
vector, weight represents weights of each points of X.

Details

maxPersistence calls the gridDiag function, which computes the persistence diagram of sublevel
(or superlevel) sets of a function, evaluated over a grid of points.

Value

The function returns an object of the class "maxPersistence", a list with the following components

parameters the same vector parameters given in input

sigNumber a numeric vector storing the number of significant features in the persistence
diagrams computed using each value in parameters

sigPersistence a numeric vector storing the sum of significant persistence of the features in the
persistence diagrams, computed using each value in parameters

26 maxPersistence

bands a numeric vector storing the bootstrap band’s width, for each value in parameters

Persistence a list of the same lenght of parameters. Each element of the list is a Pi by
2 matrix, where Pi is the number of features found using the parameter i: the
first column stores the dimension of each feature and the second column the
persistence abs(death-birth|).

Author(s)

Jisu Kim, Fabrizio Lecci

References

Frederic Chazal, Jessi Cisewski, Brittany T. Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro
Rinaldo, and Larry Wasserman, (2014), "Robust Topological Inference: distance-to-a-measure and
kernel distance"

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology", (arXiv:1303.7117). To
appear, Annals of Statistics.

See Also

gridDiag, kde, kernelDist, dtm, bootstrapBand

Examples

input data: circle with clutter noise
n <- 600
percNoise <- 0.1
XX1 <- circleUnif(n)
noise <- cbind(runif(percNoise * n, -2, 2), runif(percNoise * n, -2, 2))
X <- rbind(XX1, noise)

limits of the Gird at which the density estimator is evaluated
Xlim <- c(-2, 2)
Ylim <- c(-2, 2)
lim <- cbind(Xlim, Ylim)
by <- 0.2

B <- 80
alpha <- 0.05

candidates
parametersKDE <- seq(0.1, 0.5, by = 0.2)

maxKDE <- maxPersistence(kde, parametersKDE, X, lim = lim, by = by,
bandFUN = "bootstrapBand", B = B, alpha = alpha,
parallel = FALSE, printProgress = TRUE)

print(summary(maxKDE))

par(mfrow = c(1,2))
plot(X, pch = 16, cex = 0.5, main = "Circle")

multipBootstrap 27

plot(maxKDE)

multipBootstrap Multiplier Bootstrap for Persistence Landscapes and Silhouettes

Description

This function computes a confidence band for the average landscape (or the average silhouette)
using the multiplier bootstrap.

Usage

multipBootstrap(Y, B = 30, alpha = 0.05, parallel = FALSE, printProgress = FALSE)

Arguments

Y an N by m matrix of values of N persistence landscapes (or silhouettes) evalu-
ated over a 1 dimensional grid of length m.

B the number of bootstrap iterations.

alpha multipBootstrap returns a 1-alpha confidence band for the mean landscape
(or silhouette).

parallel logical: if TRUE the bootstrap iterations are parallelized, using the library parallel.

printProgress logical: if TRUE a progress bar is printed. Default is FALSE.

Details

See Algorithm 1 in the reference.

Value

Returns a list with the following elements:

width number: half of the width of the unfiorm confidence band; that is, the distance
of the upper and lower limits of the band from the empirical average landscape
(or silhouette).

mean a numeric vector of length m, storing the values of the empirical average land-
scape (or silhouette) over a 1 dimensional grid of length m.

band an m by 2 matrix that stores the values of the lower limit of the confidence band
(first column) and upper limit of the confidence band (second column), evaluated
over a 1 dimensional grid of length m.

Author(s)

Fabrizio Lecci

28 plot.clusterTree

References

Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., and Wasserman, L., (2014), "Stochastic Convergence
of Persistence Landscapes and Silhouettes", Proceedings of the 30th Symposium of Computational
Geometry (SoCG). (arXiv:1312.0308)

See Also

landscape, silhouette

Examples

nn <- 3000 #large sample size
mm <- 50 #small subsample size
NN <- 5 #we will compute NN diagrams using subsamples of size mm

XX <- circleUnif(nn) ## large sample from the unit circle

DiagLim <- 2
maxdimension <- 1
tseq <- seq(0, DiagLim, length = 1000)

Diags <- list() #here we will store the NN rips diagrams
#constructed using different subsamples of mm points

#here we'll store the landscapes
Lands <- matrix(0, nrow = NN, ncol = length(tseq))

for (i in seq_len(NN)){
subXX <- XX[sample(seq_len(nn), mm),]
Diags[[i]] <- ripsDiag(subXX, maxdimension, DiagLim)
Lands[i,] <- landscape(Diags[[i]][["diagram"]], dimension = 1, KK = 1, tseq)

}

now we use the NN landscapes to construct a confidence band
B <- 50
alpha <- 0.05
boot <- multipBootstrap(Lands, B, alpha)

LOWband <- boot[["band"]][, 1]
UPband <- boot[["band"]][, 2]
MeanLand <- boot[["mean"]]

plot(tseq, MeanLand, type = "l", lwd = 2, xlab = "", ylab = "",
main = "Mean Landscape with band", ylim = c(0, 1.2))

polygon(c(tseq, rev(tseq)), c(LOWband, rev(UPband)), col = "pink")
lines(tseq, MeanLand, lwd = 1, col = 2)

plot.clusterTree Plots the Cluster Tree

plot.clusterTree 29

Description

This function plots the Cluster Tree stored in an object of class clusterTree.

Usage

S3 method for class 'clusterTree'
plot(x, type = "lambda", color = NULL, add = FALSE, ...)

Arguments

x an object of class clusterTree. (see clusterTree)

type string: if "lambda", then the lambda Tree is plotted. if "r", then the r Tree is
plotted. if "alpha", then the alpha Tree is plotted. if "kappa", then the kappa
Tree is plotted.

color number: the color of the branches of the Cluster Tree. Default is NULL and a
different color is assigned to each branch.

add logical: if TRUE, the Tree is added to an existing plot.

... additional graphical parameters.

Author(s)

Fabrizio Lecci

References

Brian P. Kent, Alessandro Rinaldo, and Timothy Verstynen, (2013), "DeBaCl: A Python Package
for Interactive DEnsity-BAsed CLustering."arXiv:1307.8136

Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman, (2014), "Metric Embeddings for Cluster
Trees"

See Also

clusterTree, print.clusterTree

Examples

Generate data: 3 clusters
n <- 1200 #sample size
Neach <- floor(n / 4)
X1 <- cbind(rnorm(Neach, 1, .8), rnorm(Neach, 5, 0.8))
X2 <- cbind(rnorm(Neach, 3.5, .8), rnorm(Neach, 5, 0.8))
X3 <- cbind(rnorm(Neach, 6, 1), rnorm(Neach, 1, 1))
XX <- rbind(X1, X2, X3)

k <- 100 #parameter of knn

Density clustering using knn and kde
Tree <- clusterTree(XX, k, density = "knn")
TreeKDE <- clusterTree(XX,k, h = 0.3, density = "kde")

30 plot.diagram

par(mfrow = c(2, 3))
plot(XX, pch = 19, cex = 0.6)
plot lambda trees
plot(Tree, type = "lambda", main = "lambda Tree (knn)")
plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")
plot clusters
plot(XX, pch = 19, cex = 0.6, main = "cluster labels")
for (i in Tree[["id"]]){

points(matrix(XX[Tree[["DataPoints"]][[i]],], ncol = 2), col = i, pch = 19,
cex = 0.6)

}
#plot kappa trees
plot(Tree, type = "kappa", main = "kappa Tree (knn)")
plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")

plot.diagram Plot the Persistence Diagram

Description

This function plots the Persistence Diagram stored in an object of class diagram. Optionally, it can
also represent the diagram as a persistence barcode.

Usage

S3 method for class 'diagram'
plot(x, diagLim = NULL, dimension = NULL, col = NULL, rotated = FALSE,

barcode = FALSE, band = NULL, lab.line = 2.2, colorBand = "pink",
colorBorder = NA, add = FALSE, ...)

Arguments

x an object of class diagram (as returned by the functions gridDiag and ripsDiag)
or an n by 3 matrix, where n is the number of features to be plotted.

diagLim numeric vector of length 2, specifying the limits of the plot. If NULL then it is
automatically computed using the lifetimes of the features.

dimension number specifying the dimension of the features to be plotted. If NULL all the
features are plotted.

col an optional vector of length P that stores the colors of the topological features
to be plotted, where P is the number of topological features stored in x.

rotated logical: if FALSE the plotted diagram has axes (birth, death), if TRUE the plotted
diagram has axes ((birth+death)/2,(death-birth)/2). Default is FALSE.

barcode logical: if TRUE the persistence barcode is plotted, in place of the diagram.

band numeric: if band!=NULL, a pink band of size band is added around the diagonal.
If also barcode is TRUE, then bars shorter than band are dotted. Default is NULL.

plot.diagram 31

lab.line number of lines from the plot edge, where the labels will be placed. Default is
2.2.

colorBand the color for filling the confidence band. The default is "pink". (NA leaves the
band unfilled)

colorBorder the color to draw the border of the confidence band. The default is NA and omits
the border.

add logical: if TRUE, the points of x are added to an existing plot.

... additional graphical parameters.

Author(s)

Fabrizio Lecci

References

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology", (arXiv:1303.7117). To
appear, Annals of Statistics.

Frederic Chazal, Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman,
(2014), "Stochastic Convergence of Persistence Landscapes and Silhouettes", Proceedings of the
30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

See Also

gridDiag, ripsDiag

Examples

XX1 <- circleUnif(30)
XX2 <- circleUnif(30, r = 2) + 3
XX <- rbind(XX1, XX2)

DiagLim <- 5
maxdimension <- 1

rips diagram
Diag <- ripsDiag(XX, maxdimension, DiagLim, printProgress = TRUE)

#plot
par(mfrow = c(1, 3))
plot(Diag[["diagram"]])
plot(Diag[["diagram"]], rotated = TRUE)
plot(Diag[["diagram"]], barcode = TRUE)

32 plot.maxPersistence

plot.maxPersistence Summary plot for the maxPersistence function

Description

This function plots an object of class maxPersistence, for the selection of the optimal smoothing
parameter for persistent homology. For each value of the smoothing parameter, the plot shows the
number of detected features, their persistence, and a bootstrap confidence band.

Usage

S3 method for class 'maxPersistence'
plot(x, features = "dimension", colorBand = "pink", colorBorder = NA, ...)

Arguments

x an object of class maxPersistence, as returned by the functions maxPersistence

features string: if "all" then all the features are plotted; if "dimension" then only the
features of the dimension used to compute the confidence band are plotted.

colorBand the color for filling the confidence band. The default is "pink". (NA leaves the
band unfilled)

colorBorder the color to draw the border of the confidence band. The default is NA and omits
the border.

... additional graphical parameters.

Author(s)

Fabrizio Lecci

References

Frederic Chazal, Jessi Cisewski, Brittany T. Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro
Rinaldo, and Larry Wasserman, (2014), "Robust Topological Inference: distance-to-a-measure and
kernel distance"

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology", (arXiv:1303.7117). To
appear, Annals of Statistics.

See Also

maxPersistence

ripsDiag 33

Examples

input data: circle with clutter noise
n <- 600
percNoise <- 0.1
XX1 <- circleUnif(n)
noise <- cbind(runif(percNoise * n, -2, 2), runif(percNoise * n, -2, 2))
X <- rbind(XX1, noise)

limits of the Gird at which the density estimator is evaluated
Xlim <- c(-2, 2)
Ylim <- c(-2, 2)
lim <- cbind(Xlim, Ylim)
by <- 0.2

B <- 80
alpha <- 0.05

candidates
parametersKDE <- seq(0.1, 0.5, by = 0.2)

maxKDE <- maxPersistence(kde, parametersKDE, X, lim = lim, by = by,
bandFUN = "bootstrapBand", B = B, alpha = alpha,
parallel = FALSE, printProgress = TRUE)

print(summary(maxKDE))

par(mfrow = c(1, 2))
plot(X, pch = 16, cex = 0.5, main = "Circle")
plot(maxKDE)

ripsDiag Rips Persistence Diagram

Description

This function computes the persistence diagram of the Rips filtration built on top of a point cloud.

Usage

ripsDiag(X, maxdimension, maxscale, dist = "euclidean", library = "GUDHI",
location = FALSE, printProgress = FALSE)

Arguments

X If dist = "euclidean", X is an n by d matrix of coordinates, where n is the
number of points in the d-dimensional euclidean space. If dist = "arbitrary",
X is an n by n matrix of distances of n points.

maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for
connected components, 1 for connected components and loops, 2 for connected
components, loops, voids, etc.)

34 ripsDiag

maxscale number: maximum value of the rips filtration.

dist "euclidean" for Euclidean distance, "arbitrary" for an arbitrary distance
given in input as a distance matrix.

library If dist = 'euclidean', the user can compute the Rips persistence diagram us-
ing either the library ’GUDHI’, ’Dionysus’, or ’PHAT’. If dist = 'arbitrary',
the user can compute the Rips persistence diagram using either the library ’Diony-
sus’ or ’PHAT’. Default is ’GUDHI’ if dist = 'euclidean', and ’Dionysus’
if dist == 'arbitrary'. When ’GUDHI’ is used for dist = 'arbitrary',
’Dionysus’ is implicitly used.

location if TRUE, location of birth point and death point of each homological feature is
returned. Additionaly if library = "Dionysus", location of representative
cycles of each homological feature is also returned.

printProgress logical: if TRUE, a progress bar is printed. Default is FALSE.

Details

For Rips Diagrams based on Euclidean distance of the input point cloud, the user can decide to
use either the C++ library GUDHI, the C++ library Dionysus, or the C++ library PHAT. For Rips
Diagrams based on arbitrary distance, the user can decide to use either the C++ library Dionysus,
or the C++ library PHAT. See refereneces.

Value

ripsDiag returns a list with the following elements:

diagram an object of class diagram, a P by 3 matrix, where P is the number of points
in the resulting persistence diagram. The first column contains the dimension of
each feature (0 for components, 1 for loops, 2 for voids, etc.). Second and third
columns are Birth and Death of the features.

birthLocation only if location = TRUE and library = 'Dionysus', or location = TRUE
and library = 'PHAT': if dist = 'euclidean', then birthLocation is a
P by d matrix, where P is the number of points in the resulting persistence
diagram. Each row represents the location of the data point completing the
simplex that gives birth to an homological feature. If dist = 'arbitrary',
then birthLocation is a vector of length P . Each row represents the index of
the data point completing the simplex that gives birth to an homological feature.

deathLocation only if location = TRUE and library = 'Dionysus', or location = TRUE
and library = 'PHAT': if dist = 'euclidean', then deathLocation is a P
by d matrix, where P is the number of points in the resulting persistence dia-
gram. Each row represents the location of the data point completing the simplex
that kills an homological feature. If dist = 'arbitrary', then deathLocation
is a vector of length P . Each row represents the index of the data point complet-
ing the simplex that kills an homological feature.

cycleLocation only if location = TRUE and library = "Dionysus": if dist = 'euclidean',
then cycleLocation is a list of length P , where P is the number of points in
the resulting persistence diagram. Each element is a Pi by d matrix and repre-
sents location of Pi data points on a representative cycle of each homological

ripsDiag 35

feature. If dist = 'arbitrary', then each element is a vector of length Pi and
represents index of Pi data points on a representative cycle of each homological
feature.

Author(s)

Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, and Clement Maria

References

Jean-Daniel Boissonnat, Marc Glisse, Clement Maria, Vincent Rouvreau, "GUDHI, Simplicial
Complexes and Persistent Homology Packages". https://project.inria.fr/gudhi/software/.

Dmitriy Morozov, "Dionysus, a C++ library for computing persistent homology". http://www.mrzv.org/software/dionysus/

Herbert Edelsbrunner and John Harer (2010), Computational topology: an introduction. American
Mathematical Society.

Brittany Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology", (arXiv:1303.7117). To
appear, Annals of Statistics.

See Also

summary.diagram, plot.diagram, gridDiag

Examples

EXAMPLE 1: rips diagram for circles (euclidean distance)
XX <- circleUnif(30)
maxscale <- 5
maxdimension <- 1
note that the input XX is a point cloud
Diag <- ripsDiag(XX, maxdimension, maxscale, printProgress = TRUE)

EXAMPLE 2: rips diagram with arbitrary distance
distance matrix for triangle with edges of length: 1,2,4
distX <- matrix(c(0, 1, 2, 1, 0, 4, 2, 4, 0), ncol = 3)
maxscale <- 5
maxdimension <- 1
note that the input distXX is a distance matrix
DiagTri <- ripsDiag(distX, maxdimension, maxscale, dist = "arbitrary",

printProgress = TRUE)
#points with lifetime = 0 are not shown. e.g. the loop of the triangle.
print(DiagTri[["diagram"]])

36 silhouette

silhouette The Persistence Silhouette Function

Description

This function computes the silhouette function corresponding to a given persistence diagram.

Usage

silhouette(Diag, p = 1, dimension = 1,
tseq = seq(min(Diag[, 2:3]), max(Diag[, 2:3]), length = 500))

Arguments

Diag an object of class diagram or a P by 3 matrix, storing a persistence diagram
with colnames: "dimension", "Birth", "Death".

p a vector: the power of the weights of the silhouette function. See the definition
of silhouette function, Section 5 in the reference.

dimension the dimension of the topological features under consideration. Default is 1
(loops).

tseq a vector of values at which the silhouette function is evaluated.

Value

Returns a numeric matrix of with the number of row as the length of tseq and the number of column
as the length of p. The value at ith row and jth column represents the value of the p[j]-th power
silhouette function evaluated at tseq[i].

Author(s)

Fabrizio Lecci

References

Frederic Chazal, Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman,
(2014), "Stochastic Convergence of Persistence Landscapes and Silhouettes", Proceedings of the
30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

See Also

landscape

sphereUnif 37

Examples

Diag <- matrix(c(0, 0, 10, 1, 0, 3, 1, 3, 8), ncol = 3, byrow = TRUE)
DiagLim <- 10
colnames(Diag) <- c("dimension", "Birth", "Death")

#persistence silhouette
tseq <- seq(0, DiagLim, length = 1000)
Sil <- silhouette(Diag, p = 1, dimension = 1, tseq)

par(mfrow = c(1, 2))
plot.diagram(Diag)
plot(tseq, Sil, type = "l", xlab = "t", ylab = "silhouette", asp = 1)

sphereUnif Uniform Sample From The Sphere Sˆd

Description

This function samples n points from the sphere Sd of radius r embedded in Rd+1, uniformly with
respect to the volume measure of the sphere.

Usage

sphereUnif(n, d, r = 1)

Arguments

n an integer specifying the number of points in the sample.

d an integer specifying the dimension of the sphere Sd

r a numeric variable specifying the radius of the sphere. Default is 1.

Value

sphereUnif returns an n by 2 matrix of coordinates.

Note

When d = 1, this function is same as using circleUnif.

Author(s)

Jisu Kim

See Also

circleUnif, torusUnif

38 summary.diagram

Examples

X <- sphereUnif(n = 100, d = 1, r = 1)
plot(X)

summary.diagram print and summary for diagram

Description

print.diagram prints a persistence diagram, a P by 3 matrix, where P is the number of points
in the diagram. The first column contains the dimension of each feature (0 for components, 1 for
loops, 2 for voids, etc.). Second and third columns are Birth and Death of the features.

summary.diagram produces basic summaries of a persistence diagrams.

Usage

S3 method for class 'diagram'
print(x, ...)
S3 method for class 'diagram'
summary(object, ...)

Arguments

x an object of class diagram
object an object of class diagram
... additional arguments affecting the summary produced.

Author(s)

Fabrizio Lecci

See Also

plot.diagram, gridDiag, ripsDiag,

Examples

Generate data from 2 circles
XX1 <- circleUnif(30)
XX2 <- circleUnif(30, r = 2) + 3
XX <- rbind(XX1, XX2)

DiagLim <- 5 # limit of the filtration
maxdimension <- 1 # computes betti0 and betti1

Diag <- ripsDiag(XX, maxdimension, DiagLim, printProgress = TRUE)

print(Diag[["diagram"]])
print(summary(Diag[["diagram"]]))

torusUnif 39

torusUnif Uniform Sample From The 3D Torus

Description

This function samples n points from the 3D torus, uniformly with respect to its surface.

Usage

torusUnif(n, a, c)

Arguments

n an integer specifying the number of points in the sample.

a the radius of the torus tube.

c the radius from the center of the hole to the center of the torus tube.

Details

This function is an implementation of Algorithm 1 in the reference.

Value

torusUnif returns an n by 3 matrix of coordinates.

Author(s)

Fabrizio Lecci

References

Persi Diaconis, Susan Holmes, and Mehrdad Shahshahani, (2013), "Sampling from a manifold."
Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton.
Institute of Mathematical Statistics, 102-125.

See Also

circleUnif,sphereUnif

Examples

X <- torusUnif(300, a = 1.8, c = 5)
plot(X)

40 wasserstein

wasserstein Wasserstein distance between two persistence diagrams

Description

This function computes the Wasserstein distance between two persistence diagrams.

Usage

wasserstein(Diag1, Diag2, p = 1, dimension = 1)

Arguments

Diag1 an object of class diagram or a matrix (n by 3) that stores dimension, birth and
death of n topological features.

Diag2 an object of class diagram or a matrix (m by 3) that stores dimension, birth and
death of m topological features.

p integer specifying the power to be used in the computation of the Wasserstein
distance. Default is 1.

dimension an integer or a vector specifying the dimension of the features used to compute
the wasserstein distance. 0 for connected components, 1 for loops, 2 for voids
and so on. Default is 1 (loops).

Details

The Wasserstein distance between two diagrams is the cost of the optimal matching between points
of the two diagrams. When a vector is given for dimension, then maximum among bottleneck dis-
tances using each element in dimension is returned. This function is an R wrapper of the function
"wasserstein_distance" in the C++ library Dionysus. See references.

Value

Returns the value of the Wasserstein distance between the two persistence diagrams.

Author(s)

Jisu Kim, Fabrizio Lecci

References

Dmitriy Morozov, "Dionysus, a C++ library for computing persistent homology". http://www.mrzv.org/software/dionysus/

Herbert Edelsbrunner and John Harer (2010), Computational topology: an introduction. American
Mathematical Society.

See Also

bottleneck, ripsDiag, gridDiag, plot.diagram

wasserstein 41

Examples

XX1 <- circleUnif(20)
XX2 <- circleUnif(20, r = 0.2)

DiagLim <- 5
maxdimension <- 1

Diag1 <- ripsDiag(XX1, maxdimension, DiagLim, printProgress = FALSE)
Diag2 <- ripsDiag(XX2, maxdimension, DiagLim, printProgress = FALSE)

wassersteinDist <- wasserstein(Diag1[["diagram"]], Diag2[["diagram"]], p = 1,
dimension = 1)

print(wassersteinDist)

Index

∗Topic datagen
circleUnif, 9
sphereUnif, 37
torusUnif, 39

∗Topic hplot
plot.clusterTree, 28
plot.diagram, 30
plot.maxPersistence, 32

∗Topic htest
bootstrapBand, 3
bootstrapDiagram, 5
hausdInterval, 18
multipBootstrap, 27

∗Topic methods
bottleneck, 7
gridDiag, 15
landscape, 23
maxPersistence, 24
ripsDiag, 33
silhouette, 36
wasserstein, 40

∗Topic nonparametric
bootstrapBand, 3
bootstrapDiagram, 5
clusterTree, 10
distFct, 12
dtm, 13
hausdInterval, 18
kde, 19
kernelDist, 20
knnDE, 22
multipBootstrap, 27

∗Topic optimize
bottleneck, 7
wasserstein, 40

∗Topic package
TDA-package, 2

bootstrapBand, 3, 7, 19, 26
bootstrapDiagram, 5

bottleneck, 7, 7, 40

circleUnif, 9, 37, 39
clusterTree, 10, 29

distFct, 3, 5, 7, 12, 14, 15, 17, 20–22
dtm, 3–5, 7, 13, 13, 15, 17, 20–22, 24, 26

gridDiag, 8, 15, 25, 26, 30, 31, 35, 38, 40

hausdInterval, 18

kde, 3–5, 7, 13–15, 17, 19, 21, 22, 24, 26
kernelDist, 7, 13, 14, 17, 20, 20, 22, 24, 26
knnDE, 22

landscape, 23, 28, 36

maxPersistence, 24, 32
multipBootstrap, 27

plot.clusterTree, 11, 28
plot.diagram, 7, 8, 17, 30, 35, 38, 40
plot.maxPersistence, 32
print.clusterTree, 29
print.clusterTree (clusterTree), 10
print.diagram (summary.diagram), 38
print.maxPersistence (maxPersistence),

24
print.summary.diagram

(summary.diagram), 38
print.summary.maxPersistence

(maxPersistence), 24

ripsDiag, 8, 17, 30, 31, 33, 38, 40

silhouette, 23, 28, 36
sphereUnif, 9, 37, 39
summary.diagram, 7, 17, 35, 38
summary.maxPersistence

(maxPersistence), 24

42

INDEX 43

TDA (TDA-package), 2
TDA-package, 2
torusUnif, 9, 37, 39

wasserstein, 8, 40

	TDA-package
	bootstrapBand
	bootstrapDiagram
	bottleneck
	circleUnif
	clusterTree
	distFct
	dtm
	gridDiag
	hausdInterval
	kde
	kernelDist
	knnDE
	landscape
	maxPersistence
	multipBootstrap
	plot.clusterTree
	plot.diagram
	plot.maxPersistence
	ripsDiag
	silhouette
	sphereUnif
	summary.diagram
	torusUnif
	wasserstein
	Index

