
Noise in Data: A geometric perspective

Yusu Wang

Compuer Science Dept.,
The Ohio State University

NSF-CBMS Conf. 2016

Yusu Wang Noise in data NSF-CBMS Conf. 2016 1 / 64



Introduction

Noise in data prevalent in various applications

Noise present in diverse forms
Effective handling of noise depends on how they are generated
and what the target uses of data are

This talk:

Focus on noise in metric of input data
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Motivation

Many geometric / topological data analysis algorithms often
assume that the input is a (discrete) metric space.
What are natural ways to model noise in input metric, and
how to process such noise with theoretical guarantees.
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Talk Outline

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to
process such noise effeciently with theoretical guarantees.

Quest 1: towards parameter-free denoising for embedded
point cloud data (PCD)
Quest 2: metric embedding with outliers
Quest 3: recovering shortest path metrics from perturbed
graphs
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First Quest

Towards parameter-free denoising for PCD via decluttering and
resampling

Joint work with Mickaël Buchet, Tamal Dey and Jiayuan Wang
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Problem Setup

Input: A set of points P embedded in a metric space, which is a
“noisy” sample of a hidden ground truth
Output: A “denoised” set of points Q ⊂ P
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Some Existing Denoising Approaches

Thresholding
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Some Existing Denoising Approaches

Thresholding
choice of a density estimator, which involves parameter(s)
choice of a threshold

Mean-shift type
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Some Existing Denoising Approaches

Thresholding
choice of a density estimator, which involves parameter(s)
choice of a threshold

Mean-shift type
needs additional parameters: such as step size, stopping
criteria.

“Deconvolution”

assuming the noise generative model, aiming to cancel it out.
requires a knowledge of the generative model
typically asymptotic guarantees

Require parameters and / or assumptions of noise models.
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Parameters perhaps unavoidable
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Goal of Quest-1

Minimize the use of parameter in denoising embedded PCD data,
yet still provide theoretical guarantees and understanding

Decluttering algorithm (works for any input, use one
parameter)

Parameter-free? Require stronger assumptions on noise model
Declutter+Resample algorithm
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k-distance

Definition (CCM’11)

Given a point set P from a metric space (X , dX ), and an integer
k, the k-distance is defined by:

dP,k(x) =

√√√√1
k

k∑
i=1

dX (x , pi (x))2

where pi (x) is the i th nearest neighbor of x .
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k-distance

dP,k(x) =
√

1
k
∑k

i=1 dX (x , pi (x))2

Intuitively, k-distance (average distance to k nearest
neighbors) can be considered as inverse to a density estimator

[Biau, Chazal, Cohen-Steiner, Devroye and Rodrigues, 2011]

Parameter k specifies level of noise
For any p ∈ P, we can consider rp = 2dP,k(p) as the radius of
uncertainty for point p.
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Algorithm Declutter

Input: A set of points P in a metric space
Output: A denoised and sparsified set of points Q ⊂ P

1 Q0 = ∅
2 Sort P according to increasing k-distance.
3 For i from 1 to n = |P|, if B(pi , 2dP,k(pi )) ∩ Qi−1 = ∅:

then Qi = Qi−1 ∪ pi
else Qi = Qi−1.
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Example

Process points in increasing order of their k-distance
(intuitively, in descreasing density).
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Illustration I

Input k = 9 k = 30
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Illustration II

Input k = 4 k = 47
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Algorithm Declutter

Input: A set of points P in a metric space
Output: A denoised and sparsified set of points Q ⊂ P

1 Q0 = ∅
2 Sort P according to increasing k-distance.
3 For i from 1 to n = |P|, if B(pi , 2dP,k(pi )) ∩ Qi−1 = ∅:

then Qi = Qi−1 ∪ pi
else Qi = Qi−1.

Properties:
Requires only one parameter
Output is also sparsified (good? bad?)
Have theoretical guarantee (shortly)

sampling conditions
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Sampling conditions

We assume that we have a point cloud P describing an underlying
compact set K in a metric space X and we choose an integer k.

P is an εk noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk .
2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk .

Very general, can be used to model classical noise models such as
Hausdorff, Gaussian noise etc.

[Buchet, Topological Inference from Measures, PhD Thesis 2014]

Yusu Wang Noise in data NSF-CBMS Conf. 2016 19 / 64



Sampling conditions

We assume that we have a point cloud P describing an underlying
compact set K in a metric space X and we choose an integer k.

P is an εk noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk .
2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk .

Very general, can be used to model classical noise models such as
Hausdorff, Gaussian noise etc.

[Buchet, Topological Inference from Measures, PhD Thesis 2014]

Yusu Wang Noise in data NSF-CBMS Conf. 2016 19 / 64



Sampling conditions

We assume that we have a point cloud P describing an underlying
compact set K in a metric space X and we choose an integer k.

P is an εk noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk .

2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk .

Very general, can be used to model classical noise models such as
Hausdorff, Gaussian noise etc.

[Buchet, Topological Inference from Measures, PhD Thesis 2014]

Yusu Wang Noise in data NSF-CBMS Conf. 2016 19 / 64



Sampling conditions

We assume that we have a point cloud P describing an underlying
compact set K in a metric space X and we choose an integer k.

P is an εk noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk .

2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk .

Very general, can be used to model classical noise models such as
Hausdorff, Gaussian noise etc.

[Buchet, Topological Inference from Measures, PhD Thesis 2014]

Yusu Wang Noise in data NSF-CBMS Conf. 2016 19 / 64



Sampling conditions

We assume that we have a point cloud P describing an underlying
compact set K in a metric space X and we choose an integer k.

P is an εk noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk .
2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk .

Very general, can be used to model classical noise models such as
Hausdorff, Gaussian noise etc.

[Buchet, Topological Inference from Measures, PhD Thesis 2014]

Yusu Wang Noise in data NSF-CBMS Conf. 2016 19 / 64



Sampling conditions

We assume that we have a point cloud P describing an underlying
compact set K in a metric space X and we choose an integer k.

P is an εk noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk .
2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk .

Very general, can be used to model classical noise models such as
Hausdorff, Gaussian noise etc.

[Buchet, Topological Inference from Measures, PhD Thesis 2014]

Yusu Wang Noise in data NSF-CBMS Conf. 2016 19 / 64



Sampling conditions

We assume that we have a point cloud P describing an underlying
compact set K in a metric space X and we choose an integer k.

P is an εk noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk .
2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk .

Very general, can be used to model classical noise models such as
Hausdorff, Gaussian noise etc.

[Buchet, Topological Inference from Measures, PhD Thesis 2014]

Yusu Wang Noise in data NSF-CBMS Conf. 2016 19 / 64



Theoretical guarantees for decluttering

Theorem
Given a point set P which is an εk noisy sample of a compact K,
Algorithm Declutter returns a set Q such that

dH(K ,Q) ≤ 7εk .
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Adaptivity

The conditions can also be expressed for adaptive samples. Let f
be a feature size function (i.e. 1-Lipschitz non-negative function
on K ) and p̄ the projection of p onto K .

P is an εk adaptive noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk f (x).
2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk f (ȳ).
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Yusu Wang Noise in data NSF-CBMS Conf. 2016 21 / 64



Adaptive guarantees

Theorem
Given an input point set P which is an εk adaptive noisy sample of
a compact K with εk ≤ 1

2 , Algorithm Declutter returns a sample Q
of K where δf

H(Q,K ) ≤ 7εk .
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Illustration II

Input k = 4 k = 47
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Declutter Algorithm

Pros:
Requires only one parameter
Output is also sparsified (good? bad?)
Provide theoretical guarantee

Cons:
Choice of the parameter k.
Absence of a correct k.
Sparsifying effect too pronounced.
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Goal of Quest-1

Minimize the use of parameter in denoising embedded PCD data,
yet still provide theoretical guarantees and understanding

Decluttering algorithm (works for any input, use one
parameter)

Parameter-free? Require stronger assumptions on noise model
Declutter+Resample algorithm
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Need for one parameter
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How to avoid parameter?

The parameter-free algorithm will assume a stronger sampling
condition on input point samples.

P is an c-uniform εk noisy sample of K if:

1 ∀x ∈ K , dP,k(x) ≤ εk .
2 ∀y ∈ X , dK (y) ≤ dP,k(y) + εk .
3 ∀p ∈ P, dP,k(p) ≥ εk

c .
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Idea 1: Declutter+Resample
First idea:

To address over-sparsity, bring back neighboring points of
sub-samples Q!
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Idea 2: Gradually descrease parameter k
Second idea:

To avoid choosing a parameter k: starting with k = n,
gradually decrease k till k = 1.
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Algorithm ParfreeDeclutter

1 iM ← log2(|P|)

2 PiM ← P

3 For i = iM to 1

Qi ← Declutter(Pi , 2i )

Pi−1 ← ∪q∈Qi B(q, 4dPi ,2i (q))

4 Return P0
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Theoretical guarantees

Theorem
Given a point set P and i0 such that for all i > i0, P is a weak

uniform (ε2i , 2) noisy sample of K and is also an (ε2i0 , 2) noisy
sample of K, Algorithm ParfreeDeclutter returns a point set P0
such that dH(P0,K ) ≤ (87 + 16

√
2)ε2i0 .

Consider k0 = 2i0 .
As algorithm reaches k = k0, all bad points are removed.
As algorithm continues with k < k0, no harm done!
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Experimental results

Input k = 1024 k = 256 k = 1
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Experimental results
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MNIST Digits – 1 and 7

Error(%)
Original # Digit 1 1352 # Digit 7 1279 0.66

Swap. Noise # Mislabel 1 270 # Mislabel 7 266 4.1
Digit 1 Digit 7

# Removed # True Noise # Removed # True Noise
Denoising 314 264 17 1 2.45

Back. Noise # Noisy 1 250 # Noisy 7 250 1.15
Digit 1 Digit 7

# Removed # True Noise # Removed # True Noise
Denoising 294 250 277 250 0.75

Table: Denoising on digits 1 and 7 from the MNIST. Using linear SVM as
classifier.
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MNIST Digits – All

cdeclutter = 1.5,cresample = 2.2,L1
Digit # Removed #True Noise

0 369 311
1 1703 1025
2 107 96
3 584 383
4 575 468
5 652 337
6 1011 585
7 1558 930
8 699 300
9 1179 776

Table: Denoising on all 60k MNIST. Every class has about 6000 points
and about 1200 are noises.
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Bad example
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Topological inference using Declutter

Theorem
If P is an εk uniform sampling of K ⊂ Rd , with εk < 1

28wfs(K ).
Then for all α, α′ ∈ [7εk ,wfs(K )− 7εk ] such that α′ − α > 14εk
and for all λ ∈ (0,wfs(K )), we have

H∗(Kλ) ∼= H∗(Cα(Qn) ↪→ Cα′(Qn)).
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Talk Outline

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to
process such noise effeciently with theoretical guarantees.

Quest 1: towards parameter-free denoising for embedded
point cloud data (PCD)

Declutter algorithm – one parameter
Declustter+Resampling – parameter free, but requires stronger
sampling conditions

Quest 2: metric embedding with outliers
Quest 3: recovering shortest path metrics from perturbed
graphs
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Second Quest

Metric embedding with outliers

Joint work with Anastasios Sidiropoulos
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Problem Setup

Input: A discrete n-point metric space (X = {x1, . . . , xn}, ρ)

(X , ρ) approximately comes from a “nice” target metric space
some input points could have corrupted / erroneous distance
to other points, they are “outliers”

Output: A “near-optimal” set of outliers K ⊂ X together with a
“low-distortion” embedding of (X \ K , ρ) into some target metric
space

the target space could be a tree metric, ultrametric, or
constant-dimensional Euclidean space.
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Notations

Definition (Embedding)
Given two metric spaces X = (X , ρX ) and Y = (Y , ρY ), an
embedding of X into Y is simply a map φ : X → Y .

φ is an isometric embedding if for any x , x ′ ∈ X ,
ρX (x , x ′) = φY (φ(x), φ(x ′)).
φ is an ε-distorted embedding if for any x , x ′ ∈ X ,
|ρX (x , x ′)− ρY (φ(x), φ(x ′)| ≤ ε. Alternatively, we say that X
admits an embedding into Y with (additive) distortion ε.
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Optimization Problem

Minimum outlier-embedding problem: Given a discrete n-point
metric space (X = {x1, . . . , xn}, ρ), compute the smallest set
K ∗ ⊂ X such that (X \ K ∗, ρ) embeds into a target metric space
either isometrically, or with distortion at most ε.

Choices of target metric spaces: ultrametric, tree metric,
constant-dimensional Euclidean space Rd

The set K ∗ is refered to as the optimal set of outliers
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x1 x2 x3 x4

x1 0 1 1 1
x2 1 0 2 2
x3 1 2 0 2
x4 1 2 2 0


Input metric X
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Optimization Problem

Minimum outlier-embedding problem: Given a discrete n-point
metric space (X = {x1, . . . , xn}, ρ), compute the smallest set
K ∗ ⊂ X such that (X \ K ∗, ρ) embeds into a target metric space
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Choices of target metric spaces: ultrametric, tree metric,
constant-dimensional Euclidean space Rd

The set K ∗ is refered to as the optimal set of outliers


x1 x2 x3 x4

x1 0 1.1 0.89 1.05
x2 1.1 0 2.12 1.95
x3 0.89 2.12 0 2
x4 1.05 1.95 2 0


Input metric X ′

1

1

x2

x3

x1

Outlier embedding to R1 with
distortion 0.13
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Hardness of the Outlier Embedding

Theorem
The problem of minimum outlier embedding into a tree metric, an
ultrametric, or Rd , is NP-hard.

Furthermore, assuming the Unique Games Conjecture, it is
NP-hard to approximate the isometric version with a factor of
2− ν for any ν > 0.

Our next goal

Efficient approximation algorithms for the outlier-embedding
problems.

We developed various approximation algorithms
Focus on special case: isometric outlier-embedding into Rd
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First Approximation Algorithm

Theorem (2-approximation)
Given an n-point metric space (X , ρ), there is an algorithm that
can compute at most 2|K ∗| number of points K ⊂ X, such that
(X \ K , ρ) admits an isometric embeddign into Rd . The algorithm
runs in O(nd+1) time.

There is a randomized algorithm that can improve the running
time to O(n2) while worsening the approximation factor
(w.r.to the number of outliers) to (2 + ν) for ν > 0.
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Approximation Algorithm

Input: An n-point metric space (X , ρ), dimension d > 1
Output: A set of outliers K̂ ⊂ X

1 Initialize the set of candidate outlier sets C to empty set
2 For each d + 1 distinct points Yd = {y0, . . . , yd} ⊂ X :

Initialize sets Z = K = ∅
If (Yd , ρ) is not d-embeddable, return to step-2.
For each remaining point x ∈ X \ Yd , check whether
(Yd ∪ {x}, ρ) is d-embeddable. If yes, insert x to Z ; otherwise,
add x to the outlier set K .
Construct a graph G = (Z ,E ) where (z , z ′) ∈ E iff
(Yd ∪ {z , z ′}, ρ) is not d-embeddable.
Compute a 2-approximation Z ′ ⊂ Z of the vertex cover of G .
Set K = K ∪ Z ′.
Add K to the collection of candidate outlier sets C.

3 Return K̂ ∈ C with smallest cardinality as the outlier set.
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Illustration of Algorithm

Input: An n-point metric space (X , ρ), dimension d > 1

Yd = {y0, y1, y2}

d(y0, y1) = 3
d(y1, y2) = 4
d(y0, y2) = 5

Z : points consistent with
{y0, y1, y2}

K : points not consistent with
{y0, y1, y2} / outliers
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For each point x ∈ X \ Yd , is
{y0, y1, y2, x} embeddable in R2?
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Illustration of Algorithm

Input: An n-point metric space (X , ρ), dimension d > 1

Yd = {y0, y1, y2}

d(y0, y1) = 3
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d(y0, y2) = 5

Z : points consistent with
{y0, y1, y2}

K : points not consistent with
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If yes, add x to Z ; otherwise add x
to outlier set K .
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Illustration of Algorithm

Input: An n-point metric space (X , ρ), dimension d > 1

Yd = {y0, y1, y2}

d(y0, y1) = 3
d(y1, y2) = 4
d(y0, y2) = 5

Z : points consistent with
{y0, y1, y2}

K : points not consistent with
{y0, y1, y2} / outliers

z

z′

Construct G = (Z ,E) with
(z, z ′) ∈ E iff {y0, y1, y2, z, z ′} not

d-embeddable.
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Illustration of Algorithm

Input: An n-point metric space (X , ρ), dimension d > 1

Yd = {y0, y1, y2}

d(y0, y1) = 3
d(y1, y2) = 4
d(y0, y2) = 5

Z : points consistent with
{y0, y1, y2}

K : points not consistent with
{y0, y1, y2} / outliers

z

z′

Take Z ′ ⊂ Z vertex cover of G ,
add Z ′ to outlier set K
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Approximation Algorithm

Input: An n-point metric space (X , ρ), dimension d > 1
Output: A set of outliers K̂ ⊂ X

1 Initialize the set of candidate outlier sets C to empty set
2 For each d + 1 distinct points Yd = {y0, . . . , yd} ⊂ X :

Initialize sets Z = K = ∅
If (Yd , ρ) is not d-embeddable, return to step-2.
For each remaining point x ∈ X \ Yd , check whether
(Yd ∪ {x}, ρ) is d-embeddable. If yes, insert x to Z ; otherwise,
add x to the outlier set K .
Construct a graph G = (Z ,E ) where (z , z ′) ∈ E iff
(Yd ∪ {z , z ′}, ρ) is not d-embeddable.
Compute a 2-approximation Z ′ ⊂ Z of the vertex cover of G .
Set K = K ∪ Z ′.
Add K to the collection of candidate outlier sets C.

3 Return K̂ ∈ C with smallest cardinality as the outlier set.
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Correctness

Lemma
The K̂ output by previous algorithm satisfies:

|K ∗| ≤ |K̂ | ≤ 2|K ∗|
(X \ K̂ , ρ) is d-embeddable.

The correctness follows from the following classic result in distance
geometry; see e.g, [Blumenthal’70].

Theorem
A metric space (Y , ρY ) is d-embeddable in Rd iff there exists
d + 1 points say Yd such that:

(i) (Yd , ρY ) is d-embeddable; and
(ii) for any y , y ′ ∈ Y \ Yd , (Yd ∪ {y , y ′}, ρY ) is d-embeddable.

Yusu Wang Noise in data NSF-CBMS Conf. 2016 50 / 64



Correctness

Lemma
The K̂ output by previous algorithm satisfies:

|K ∗| ≤ |K̂ | ≤ 2|K ∗|
(X \ K̂ , ρ) is d-embeddable.

The correctness follows from the following classic result in distance
geometry; see e.g, [Blumenthal’70].

Theorem
A metric space (Y , ρY ) is d-embeddable in Rd iff there exists
d + 1 points say Yd such that:

(i) (Yd , ρY ) is d-embeddable; and
(ii) for any y , y ′ ∈ Y \ Yd , (Yd ∪ {y , y ′}, ρY ) is d-embeddable.

Yusu Wang Noise in data NSF-CBMS Conf. 2016 50 / 64



First Approximation Algorithm

Theorem (2-approximation)
Given an n-point metric space (X , ρ), there is an algorithm that
can compute at most 2|K ∗| number of points K ⊂ X, such that
(X \ K , ρ) admits an isometric embeddign into Rd . The algorithm
runs in O(nd+1) time.
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Improving Efficiency

Theorem (Improved 2-approximation)
Given an n-point metric space (X , ρ), there is a O(n2) time
randomized algorithm that can compute at most (2 + ν)|K ∗|
number of points K ⊂ X, such that with constant probability,
(X \ K , ρ) admits an isometric embeddign into Rd .

The big O notation hides constants depending on ( 1
ν )d .

Algorithm still simple, but analysis much more involved.
Algorithm can be extended to embedding with low-distortion.
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Talk Outline

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to
process such noise effeciently with theoretical guarantees.

Quest 1: towards parameter-free denoising for embedded
point cloud data (PCD)
Quest 2: metric embedding with outliers

identifying near optimal number of outliers so that the
remaining points can be embedded into a target metric space
isometrically or with low additive distortion.

Quest 3: recovering shortest path metric from perturbed
graphs
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Last Quest

Recovering shortest-path metric from perturbed graphs

Joint work with Minghao Tian, Srinivasan Parthasarathy, and David
Sivakoff
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Problem Setup

Input: An observed graph G = (V ,E )

G is a “noisy” observation of a true graph G∗

the metric of interest is the shortest path metric dG∗

Output: Recover (approximately) the “true” shortest path metric
dG∗ from G
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The model

The true graph G∗ = (V ,E ∗)
V sampled i.i.d from a L-doubling measure µ : M → R+ on a
compact geodesic metric space (M, dM)

E ∗ = E ∗r = {(u, v) | dM(u, v) ≤ r , u, v ∈ V } is the
r -neighborhood graph for some parameter r > 0

The observed graph G = (V ,E ): A (p, q)-perturbation of G∗
where

(p-deletion): For each edge e = (u, v) ∈ E ∗, we have e ∈ E
with probability 1− p
(q-insertion): For any pair of nodes u, v ∈ V s.t. (u, v) /∈ E ∗,
we have (u, v) ∈ E with probability q
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Illustration

Hidden domain M
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Illustration

Graph Nodes V
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Illustration

True graph G∗
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Illustration

Random perturbation G
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Motivation

In many graphs, e.g social networks, edges encode proximity
between graph nodes in certain feature space.

Sampling from a measure allows varing degree distribution
Random Erdös-Rényi type perturbation allows exceptions /
noise
The model related to superposing a “structured subgraph”
and a “random subgraph”

e.g, [Bollobás and Chung, 1988], [Watts and Strogatz, 1998],
[Kleinberg 2000] (the small-world phenomenon), . . .

Shortest path metric natural choice in many situations
(especially for sparse graphs)
However, shortest path metric sensitive to random
perturbations (especially “short-cuts”)
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(especially for sparse graphs)
However, shortest path metric sensitive to random
perturbations (especially “short-cuts”)

Yusu Wang Noise in data NSF-CBMS Conf. 2016 58 / 64



Motivation

In many graphs, e.g social networks, edges encode proximity
between graph nodes in certain feature space.
Sampling from a measure allows varing degree distribution
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Random Erdös-Rényi type perturbation allows exceptions /
noise
The model related to superposing a “structured subgraph”
and a “random subgraph”

e.g, [Bollobás and Chung, 1988], [Watts and Strogatz, 1998],
[Kleinberg 2000] (the small-world phenomenon), . . .

Shortest path metric natural choice in many situations
(especially for sparse graphs)
However, shortest path metric sensitive to random
perturbations (especially “short-cuts”)

Yusu Wang Noise in data NSF-CBMS Conf. 2016 58 / 64



Our Goal

The true graph G∗ = (V ,E ∗)
V sampled i.i.d from a L-doubling measure µ : M → R+ on a
compact geodesic metric space (M, dM)

E ∗ = E ∗r = {(u, v) | dM(u, v) ≤ r , u, v ∈ V } is the
r -neighborhood graph for some parameter r > 0

The observed graph G = (V ,E ): A (p, q)-perturbation of G∗

Our goal

Recover the shortest path metric dG∗ from G with
approximation guarantee.
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Assumptions

Definition (Doubling measure)
A measure µ : X → R+ on a metric space (X , d) is said to be
L-doubling if all metric balls have finite and positive measure and
that there is a constant L such that for all x ∈ X and r > 0,

µ(B(x , 2r)) ≤ L · µ(B(x , r)).
We call L the doubling constant and ` = log2 L the doubling
dimension of µ.

Assumption-R: The parameter r is large enough that
µ(B(x , r

2)) ≥ s ≥ 12 ln n
n for any x ∈ M.
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Effect of Deletion

Theorem (Deletion only)
Let G∗ be the true graph generated as described, and G a graph
obtained by deleting each edge in G∗ with probability p. Assuming
Assumption-R, then for p < 1

2 e− 2 ln n
sn with probability at least 1− 1

nΩ(1) ,
the shortest path metric dG in the observed graph is a 2-approximation of
the shortest path metric dG∗ in the true graph; that is,

1
2 dG (u, v) ≤ dG∗(u, v) ≤ 2dG (u, v).

Suppose an edge (u, v) ∈ E∗ is deleted in the observed graph G .
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Effect of Insertion

Consider a very-bad inserted edge (u, v) ∈ E , meaning that
dG∗(u, v) > 2.

τ -Jaccard-Cleanup: Given graph G , for each edge (u, v) ∈ G , we
keep the edge in a filtered graph Ĝ iff

ρu,v (G) =
|NG

u ∩ NG
v |

|NG
u ∪ NG

v |
≥ τ.
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Main Result

Theorem
Given an observed graph G as a perturbed version of G∗ as
decribed before. Suppose Assumption-R holds, sn = ω(ln n), the
deletion probabily p < min{1−

√
3

2 ,
1
2e− 9 ln n

sn }, and that the
insertion probability q ≤ cs. Let Ĝτ denote the graph after
τ -Jaccard-cleanup of G with τ ∈ ( c

1−p q + o(1), 2(1−p)2

15L2(1+2c)
). Then

the shortest path distance metric dĜτ
from Ĝτ is a 2-approximation

of the shortest path metric dG∗ of the true graph G∗ with high
probability.
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Summary

In this talk:
Quest 1: towards parameter-free denoising for embedded
point cloud data (PCD)
Quest 2: metric embedding with outliers
Quest 3: recovering shortest path metrics from perturbed
graphs

One small step towards understanding / modeling noise in data,
and how to process them with theoretical guarantees

Adaptive noise for PCD denoising with guarantees
Outlier distance entries (instead of outlier points) in metric
embedding
More general graph perturbation models / diffusion distance
metric instead of shortest path metrics?
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