Noise in Data: A geometric perspective

Yusu Wang

Compuer Science Dept., The Ohio State University

NSF-CBMS Conf. 2016

• Noise in data prevalent in various applications

- Noise in data prevalent in various applications
- Noise present in diverse forms

- Noise in data prevalent in various applications
- Noise present in diverse forms
- Effective handling of noise depends on how they are generated and what the target uses of data are

- Noise in data prevalent in various applications
- Noise present in diverse forms
- Effective handling of noise depends on how they are generated and what the target uses of data are
- This talk:
 - Focus on noise in metric of input data

Motivation

- Many geometric / topological data analysis algorithms often assume that the input is a (discrete) metric space.
- What are natural ways to model noise in input metric, and how to process such noise with theoretical guarantees.

Motivation

- Many geometric / topological data analysis algorithms often assume that the input is a (discrete) metric space.
- What are natural ways to model noise in input metric, and how to process such noise with theoretical guarantees.

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to process such noise effeciently with theoretical guarantees.

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to process such noise effeciently with theoretical guarantees.

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

Towards parameter-free denoising for PCD via decluttering and resampling

• Joint work with Mickaël Buchet, Tamal Dey and Jiayuan Wang

Problem Setup

Input: A set of points P embedded in a metric space, which is a "noisy" sample of a hidden ground truth Output: A "denoised" set of points $Q \subset P$

- choice of a density estimator, which involves parameter(s)
- choice of a threshold

- Thresholding
 - choice of a density estimator, which involves parameter(s)
 - choice of a threshold
- Mean-shift type

- Thresholding
 - choice of a density estimator, which involves parameter(s)
 - choice of a threshold
- Mean-shift type
 - needs additional parameters: such as step size, stopping criteria.

- Thresholding
 - choice of a density estimator, which involves parameter(s)
 - choice of a threshold
- Mean-shift type
 - needs additional parameters: such as step size, stopping criteria.
- "Deconvolution"
 - assuming the noise generative model, aiming to cancel it out.
 - requires a knowledge of the generative model
 - typically asymptotic guarantees

- Thresholding
 - choice of a density estimator, which involves parameter(s)
 - choice of a threshold
- Mean-shift type
 - needs additional parameters: such as step size, stopping criteria.
- "Deconvolution"
 - assuming the noise generative model, aiming to cancel it out.
 - requires a knowledge of the generative model
 - typically asymptotic guarantees

Require parameters and / or assumptions of noise models.

Parameters perhaps unavoidable

Yusu Wang

Noise in data

NSF-CBMS Conf. 2016 10 / 64

• Decluttering algorithm (works for any input, use one parameter)

• Decluttering algorithm (works for any input, use one parameter)

Parameter-free? Require stronger assumptions on noise model

• Decluttering algorithm (works for any input, use one parameter)

Parameter-free? Require stronger assumptions on noise model

• Declutter+Resample algorithm

• Decluttering algorithm (works for any input, use one parameter)

Parameter-free? Require stronger assumptions on noise model

• Declutter+Resample algorithm

Definition (CCM'11)

Given a point set *P* from a metric space $(\mathcal{X}, d_{\mathcal{X}})$, and an integer *k*, the *k*-distance is defined by:

$$d_{P,k}(x) = \sqrt{rac{1}{k}\sum_{i=1}^k d_{\mathcal{X}}(x,p_i(x))^2}$$

where $p_i(x)$ is the *i*th nearest neighbor of x.

$$d_{P,k}(x) = \sqrt{\frac{1}{k}\sum_{i=1}^{k} d_{\mathcal{X}}(x, p_i(x))^2}$$

- Intuitively, k-distance (average distance to k nearest neighbors) can be considered as inverse to a density estimator
 - [Biau, Chazal, Cohen-Steiner, Devroye and Rodrigues, 2011]

$$d_{P,k}(x) = \sqrt{\frac{1}{k}\sum_{i=1}^{k} d_{\mathcal{X}}(x, p_i(x))^2}$$

- Intuitively, k-distance (average distance to k nearest neighbors) can be considered as inverse to a density estimator
 - [Biau, Chazal, Cohen-Steiner, Devroye and Rodrigues, 2011]
- Parameter k specifies level of noise

$$d_{P,k}(x) = \sqrt{\frac{1}{k}\sum_{i=1}^{k} d_{\mathcal{X}}(x, p_i(x))^2}$$

 Intuitively, k-distance (average distance to k nearest neighbors) can be considered as inverse to a density estimator

• [Biau, Chazal, Cohen-Steiner, Devroye and Rodrigues, 2011]

- Parameter k specifies level of noise
- For any p ∈ P, we can consider r_p = 2d_{P,k}(p) as the radius of uncertainty for point p.

Input: A set of points P in a metric space Output: A *denoised and sparsified* set of points $Q \subset P$

 $Q_0 = \emptyset$

2 Sort P according to increasing k-distance.

So For *i* from 1 to n = |P|, if $B(p_i, 2d_{P,k}(p_i)) \cap Q_{i-1} = \emptyset$:

• then
$$Q_i = Q_{i-1} \cup p_i$$

• else
$$Q_i = Q_{i-1}$$
.

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

Yusu Wang

Noise in data

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

Yusu Wang

Noise in data

NSF-CBMS Conf. 2016 15 / 64

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

Yusu Wang

Noise in data

NSF-CBMS Conf. 2016 15 / 64

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

Yusu Wang

Noise in data

NSF-CBMS Conf. 2016 15 / 64

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

Yusu Wang

Noise in data

NSF-CBMS Conf. 2016 15 / 64

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

Yusu Wang

Noise in data

NSF-CBMS Conf. 2016 15 / 64

.

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

•

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

.

• Process points in increasing order of their *k*-distance (intuitively, in descreasing density).

Illustration I

Illustration II

Input

k = 4

k = 47

Algorithm Declutter

Input: A set of points P in a metric space Output: A denoised and sparsified set of points $Q \subset P$

$$Q_0 = \emptyset$$

- **2** Sort P according to increasing k-distance.
- So For *i* from 1 to n = |P|, if $B(p_i, 2d_{P,k}(p_i)) \cap Q_{i-1} = \emptyset$:

• then
$$Q_i = Q_{i-1} \cup p_i$$

• else
$$Q_i = Q_{i-1}$$
.

Properties:

- Requires only one parameter
- Output is also sparsified (good? bad?)
- Have theoretical guarantee (shortly)

Algorithm Declutter

Input: A set of points P in a metric space Output: A denoised and sparsified set of points $Q \subset P$

$$Q_0 = \emptyset$$

- **2** Sort P according to increasing k-distance.
- So For *i* from 1 to n = |P|, if $B(p_i, 2d_{P,k}(p_i)) \cap Q_{i-1} = \emptyset$:

• then
$$Q_i = Q_{i-1} \cup p_i$$

• else
$$Q_i = Q_{i-1}$$
.

Properties:

- Requires only one parameter
- Output is also sparsified (good? bad?)
- Have theoretical guarantee (shortly)
 - sampling conditions

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathcal{X} and we choose an integer k.

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathcal{X} and we choose an integer k.

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathcal{X} and we choose an integer k.

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathcal{X} and we choose an integer k.

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathcal{X} and we choose an integer k.

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathcal{X} and we choose an integer k.

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathcal{X} and we choose an integer k.

Very general, can be used to model classical noise models such as Hausdorff, Gaussian noise etc.

• [Buchet, Topological Inference from Measures, PhD Thesis 2014]

Theorem

Given a point set P which is an ϵ_k noisy sample of a compact K, Algorithm Declutter returns a set Q such that

 $d_H(K, Q) \leq 7\epsilon_k.$

P is an ϵ_k adaptive noisy sample of K if:

P is an ϵ_k adaptive noisy sample of K if:

P is an ϵ_k adaptive noisy sample of K if:

Theorem

Given an input point set P which is an ϵ_k adaptive noisy sample of a compact K with $\epsilon_k \leq \frac{1}{2}$, Algorithm Declutter returns a sample Q of K where $\delta_H^f(Q, K) \leq 7\epsilon_k$.

Illustration II

Input

k = 4

k = 47

Declutter Algorithm

Pros:

- Requires only one parameter
- Output is also sparsified (good? bad?)
- Provide theoretical guarantee

Declutter Algorithm

Pros:

- Requires only one parameter
- Output is also sparsified (good? bad?)
- Provide theoretical guarantee

Cons:

- Choice of the parameter k.
- Absence of a correct k.
- Sparsifying effect too pronounced.

Minimize the use of parameter in denoising embedded PCD data, yet still provide theoretical guarantees and understanding

• Decluttering algorithm (works for any input, use one parameter)

Parameter-free? Require stronger assumptions on noise model

• Declutter+Resample algorithm

Need for one parameter

Yusu Wang

The parameter-free algorithm will assume a stronger sampling condition on input point samples.

The parameter-free algorithm will assume a stronger sampling condition on input point samples.

P is an *c*-uniform ϵ_k noisy sample of K if:

.

First idea:

First idea:

First idea:

First idea:

.

First idea:
Second idea:

Second idea:

Second idea:

Second idea:

Second idea:

Second idea:

Second idea:

Second idea:

Second idea:

Second idea:

Second idea:

Second idea:

Algorithm ParfreeDeclutter

- $\bullet i_M \leftarrow \log_2(|P|)$
- $P_{i_M} \leftarrow P$
- For $i = i_M$ to 1
 - $Q_i \leftarrow \text{Declutter}(P_i, 2^i)$
 - $P_{i-1} \leftarrow \cup_{q \in Q_i} B(q, 4d_{P_i, 2^i}(q))$
- Return P₀

Given a point set P and i_0 such that for all $i > i_0$, P is a weak uniform $(\epsilon_{2^i}, 2)$ noisy sample of K and is also an $(\epsilon_{2^{i_0}}, 2)$ noisy sample of K, Algorithm ParfreeDeclutter returns a point set P_0 such that $d_H(P_0, K) \le (87 + 16\sqrt{2})\epsilon_{2^{i_0}}$.

Given a point set P and i_0 such that for all $i > i_0$, P is a weak uniform (ϵ_{2^i} , 2) noisy sample of K and is also an ($\epsilon_{2^i_0}$, 2) noisy sample of K, Algorithm ParfreeDeclutter returns a point set P_0 such that $d_H(P_0, K) \le (87 + 16\sqrt{2})\epsilon_{2^{i_0}}$.

Consider $k_0 = 2^{i_0}$.

Given a point set P and i_0 such that for all $i > i_0$, P is a weak uniform (ϵ_{2^i} , 2) noisy sample of K and is also an ($\epsilon_{2^{i_0}}$, 2) noisy sample of K, Algorithm ParfreeDeclutter returns a point set P_0 such that $d_H(P_0, K) \le (87 + 16\sqrt{2})\epsilon_{2^{i_0}}$.

Consider $k_0 = 2^{i_0}$.

• As algorithm reaches $k = k_0$, all bad points are removed.

Given a point set P and i_0 such that for all $i > i_0$, P is a weak uniform (ϵ_{2^i} , 2) noisy sample of K and is also an ($\epsilon_{2^{i_0}}$, 2) noisy sample of K, Algorithm ParfreeDeclutter returns a point set P_0 such that $d_H(P_0, K) \leq (87 + 16\sqrt{2})\epsilon_{2^{i_0}}$.

Consider $k_0 = 2^{i_0}$.

- As algorithm reaches $k = k_0$, all bad points are removed.
- As algorithm continues with $k < k_0$, no harm done!

Experimental results

Input

k = 1024 k = 256 k = 1

Experimental results

Experimental results

					Error(%)
Original	# Digit 1	1352	# Digit 7	1279	0.66
Swap. Noise	# Mislabel 1	270	# Mislabel 7	266	4.1
	Digit 1		Digit 7		
	# Removed	# True Noise	# Removed	# True Noise	
Denoising	314	264	17	1	2.45
Back. Noise	# Noisy 1	250	# Noisy 7	250	1.15
	Digit 1		Digit 7		
	# Removed	# True Noise	# Removed	# True Noise	
Denoising	294	250	277	250	0.75

Table: Denoising on digits 1 and 7 from the MNIST. Using linear SVM as classifier.

MNIST Digits – All

$c_{declutter} = 1.5, c_{resample} = 2.2, L_1$						
Digit	# Removed	#True Noise				
0	369	311				
1	1703	1025				
2	107	96				
3	584	383				
4	575	468				
5	652	337				
6	1011	585				
7	1558	930				
8	699	300				
9	1179	776				

Table: Denoising on all 60k MNIST. Every class has about 6000 points and about 1200 are noises.

Bad example

If P is an ϵ_k uniform sampling of $K \subset \mathbb{R}^d$, with $\epsilon_k < \frac{1}{28} \operatorname{wfs}(K)$. Then for all α , $\alpha' \in [7\epsilon_k, \operatorname{wfs}(K) - 7\epsilon_k]$ such that $\alpha' - \alpha > 14\epsilon_k$ and for all $\lambda \in (0, \operatorname{wfs}(K))$, we have

$$H_*(K^{\lambda}) \cong H_*(C_{\alpha}(Q_n) \hookrightarrow C_{\alpha'}(Q_n)).$$

Talk Outline

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to process such noise effeciently with theoretical guarantees.

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
 - Declutter algorithm one parameter
 - Declustter+Resampling parameter free, but requires stronger sampling conditions
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

Talk Outline

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to process such noise effeciently with theoretical guarantees.

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
 - Declutter algorithm one parameter
 - Declustter+Resampling parameter free, but requires stronger sampling conditions
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

Metric embedding with outliers

Joint work with Anastasios Sidiropoulos

Problem Setup

Input: A discrete *n*-point metric space $(X = \{x_1, \ldots, x_n\}, \rho)$

- (X, ρ) approximately comes from a "nice" *target metric space*
- some input points could have corrupted / erroneous distance to other points, they are "outliers"

Problem Setup

Input: A discrete *n*-point metric space $(X = \{x_1, \ldots, x_n\}, \rho)$

- (X, ρ) approximately comes from a "nice" *target metric space*
- some input points could have corrupted / erroneous distance to other points, they are "outliers"

Output: A "near-optimal" set of outliers $K \subset X$ together with a "low-distortion" embedding of $(X \setminus K, \rho)$ into some target metric space

• the target space could be a tree metric, ultrametric, or constant-dimensional Euclidean space.

Definition (Embedding)

Given two metric spaces $\mathcal{X} = (X, \rho_X)$ and $\mathcal{Y} = (Y, \rho_Y)$, an *embedding* of \mathcal{X} into \mathcal{Y} is simply a map $\phi : X \to Y$.

- ϕ is an *isometric embedding* if for any $x, x' \in X$, $\rho_X(x, x') = \phi_Y(\phi(x), \phi(x')).$
- ϕ is an ε -distorted embedding if for any $x, x' \in X$, $|\rho_X(x, x') - \rho_Y(\phi(x), \phi(x')| \le \varepsilon$. Alternatively, we say that \mathcal{X} admits an embedding into \mathcal{Y} with (additive) distortion ε .

Minimum outlier-embedding problem: Given a discrete *n*-point metric space $(X = \{x_1, \ldots, x_n\}, \rho)$, compute the *smallest set* $K^* \subset X$ such that $(X \setminus K^*, \rho)$ embeds into a target metric space either isometrically, or with distortion at most ε .

- Choices of target metric spaces: ultrametric, tree metric, constant-dimensional Euclidean space \mathbb{R}^d
- The set K* is referred to as the *optimal set of outliers*

Minimum outlier-embedding problem: Given a discrete *n*-point metric space $(X = \{x_1, \ldots, x_n\}, \rho)$, compute the *smallest set* $K^* \subset X$ such that $(X \setminus K^*, \rho)$ embeds into a target metric space either isometrically, or with distortion at most ε .

- Choices of target metric spaces: ultrametric, tree metric, constant-dimensional Euclidean space \mathbb{R}^d
- The set K* is referred to as the optimal set of outliers

	x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4
<i>x</i> 1	ΓO	1	1	1]
<i>x</i> 2	1	0	2	2
<i>x</i> 3	1	2	0	2
<i>x</i> 4	[1	2	2	0]

Input metric \mathcal{X}

Minimum outlier-embedding problem: Given a discrete *n*-point metric space $(X = \{x_1, \ldots, x_n\}, \rho)$, compute the *smallest set* $K^* \subset X$ such that $(X \setminus K^*, \rho)$ embeds into a target metric space either isometrically, or with distortion at most ε .

- Choices of target metric spaces: ultrametric, tree metric, constant-dimensional Euclidean space \mathbb{R}^d
- The set K* is referred to as the optimal set of outliers

Minimum outlier-embedding problem: Given a discrete *n*-point metric space $(X = \{x_1, \ldots, x_n\}, \rho)$, compute the *smallest set* $K^* \subset X$ such that $(X \setminus K^*, \rho)$ embeds into a target metric space either isometrically, or with distortion at most ε .

- Choices of target metric spaces: ultrametric, tree metric, constant-dimensional Euclidean space \mathbb{R}^d
- The set K* is referred to as the optimal set of outliers

Minimum outlier-embedding problem: Given a discrete *n*-point metric space $(X = \{x_1, \ldots, x_n\}, \rho)$, compute the *smallest set* $K^* \subset X$ such that $(X \setminus K^*, \rho)$ embeds into a target metric space either isometrically, or with distortion at most ε .

- Choices of target metric spaces: ultrametric, tree metric, constant-dimensional Euclidean space \mathbb{R}^d
- The set K* is referred to as the optimal set of outliers

43 / 64

Minimum outlier-embedding problem: Given a discrete *n*-point metric space $(X = \{x_1, \ldots, x_n\}, \rho)$, compute the *smallest set* $K^* \subset X$ such that $(X \setminus K^*, \rho)$ embeds into a target metric space either isometrically, or with distortion at most ε .

- Choices of target metric spaces: ultrametric, tree metric, constant-dimensional Euclidean space \mathbb{R}^d
- The set K* is referred to as the optimal set of outliers

Theorem

The problem of minimum outlier embedding into a tree metric, an ultrametric, or \mathbb{R}^d , is NP-hard.

Furthermore, assuming the Unique Games Conjecture, it is NP-hard to approximate the isometric version with a factor of $2 - \nu$ for any $\nu > 0$.

Theorem

The problem of minimum outlier embedding into a tree metric, an ultrametric, or \mathbb{R}^d , is NP-hard.

Furthermore, assuming the Unique Games Conjecture, it is NP-hard to approximate the isometric version with a factor of $2 - \nu$ for any $\nu > 0$.

Our next goal

Efficient approximation algorithms for the outlier-embedding problems.

Theorem

The problem of minimum outlier embedding into a tree metric, an ultrametric, or \mathbb{R}^d , is NP-hard.

Furthermore, assuming the Unique Games Conjecture, it is NP-hard to approximate the isometric version with a factor of $2 - \nu$ for any $\nu > 0$.

Our next goal

Efficient approximation algorithms for the outlier-embedding problems.

• We developed various approximation algorithms

Theorem

The problem of minimum outlier embedding into a tree metric, an ultrametric, or \mathbb{R}^d , is NP-hard.

Furthermore, assuming the Unique Games Conjecture, it is NP-hard to approximate the isometric version with a factor of $2 - \nu$ for any $\nu > 0$.

Our next goal

Efficient approximation algorithms for the outlier-embedding problems.

- We developed various approximation algorithms
- Focus on special case: isometric outlier-embedding into \mathbb{R}^d

Theorem (2-approximation)

Given an n-point metric space (X, ρ) , there is an algorithm that can compute at most $2|K^*|$ number of points $K \subset X$, such that $(X \setminus K, \rho)$ admits an isometric embeddign into \mathbb{R}^d . The algorithm runs in $O(n^{d+1})$ time.

Theorem (2-approximation)

Given an n-point metric space (X, ρ) , there is an algorithm that can compute at most $2|K^*|$ number of points $K \subset X$, such that $(X \setminus K, \rho)$ admits an isometric embeddign into \mathbb{R}^d . The algorithm runs in $O(n^{d+1})$ time.

There is a randomized algorithm that can improve the running time to O(n²) while worsening the approximation factor (w.r.to the number of outliers) to (2 + ν) for ν > 0.

Approximation Algorithm

Input: An *n*-point metric space (X, ρ) , dimension d > 1Output: A set of outliers $\widehat{K} \subset X$

- $\textcircled{0} Initialize the set of candidate outlier sets \mathcal{C} to empty set}$
- 2 For each d+1 distinct points $Y_d = \{y_0, \ldots, y_d\} \subset X$:
 - Initialize sets $Z = K = \emptyset$
 - If (Y_d, ρ) is *not d*-embeddable, return to step-2.
 - For each remaining point x ∈ X \ Y_d, check whether
 (Y_d ∪ {x}, ρ) is d-embeddable. If yes, insert x to Z; otherwise, add x to the outlier set K.
 - Construct a graph G = (Z, E) where $(z, z') \in E$ iff $(Y_d \cup \{z, z'\}, \rho)$ is not d-embeddable.
 - Compute a 2-approximation Z' ⊂ Z of the vertex cover of G. Set K = K ∪ Z'.
 - Add K to the collection of candidate outlier sets C.
- **③** Return $\widehat{K} \in \mathcal{C}$ with smallest cardinality as the outlier set.

Input: An *n*-point metric space (X, ρ) , dimension d > 1

Input: An *n*-point metric space (X, ρ) , dimension d > 1

$$Y_d = \{y_0, y_1, y_2\}$$
$$d(y_0, y_1) = 3$$
$$d(y_1, y_2) = 4$$
$$d(y_0, y_2) = 5$$

Input: An *n*-point metric space (X, ρ) , dimension d > 1

$$Y_d = \{y_0, y_1, y_2\}$$
$$d(y_0, y_1) = 3$$
$$d(y_1, y_2) = 4$$
$$d(y_0, y_2) = 5$$

Is $Y_d = \{y_0, y_1, y_2\}$ embeddable in \mathbb{R}^2 ?

Input: An *n*-point metric space (X, ρ) , dimension d > 1

$$Y_d = \{y_0, y_1, y_2\}$$
$$d(y_0, y_1) = 3$$
$$d(y_1, y_2) = 4$$
$$d(y_0, y_2) = 5$$

Is $Y_d = \{y_0, y_1, y_2\}$ embeddable in \mathbb{R}^2 ?

Input: An *n*-point metric space (X, ρ) , dimension d > 1

$$Y_d = \{y_0, y_1, y_2\}$$
$$d(y_0, y_1) = 3$$
$$d(y_1, y_2) = 4$$
$$d(y_0, y_2) = 5$$

Z: points consistent with $\{y_0, y_1, y_2\}$ K: points not consistent with $\{y_0, y_1, y_2\}$ / outliers

Is $Y_d = \{y_0, y_1, y_2\}$ embeddable in \mathbb{R}^2 ?

Input: An *n*-point metric space (X, ρ) , dimension d > 1

$$Y_d = \{y_0, y_1, y_2\}$$
$$d(y_0, y_1) = 3$$
$$d(y_1, y_2) = 4$$
$$d(y_0, y_2) = 5$$

Z: points consistent with $\{y_0, y_1, y_2\}$ K: points not consistent with $\{y_0, y_1, y_2\}$ / outliers

For each point $x \in X \setminus Y_d$, is $\{y_0, y_1, y_2, x\}$ embeddable in \mathbb{R}^2 ?

Input: An *n*-point metric space (X, ρ) , dimension d > 1

$$Y_d = \{y_0, y_1, y_2\}$$
$$d(y_0, y_1) = 3$$
$$d(y_1, y_2) = 4$$
$$d(y_0, y_2) = 5$$

Z: points consistent with $\{y_0, y_1, y_2\}$ K: points not consistent with $\{y_0, y_1, y_2\}$ / outliers

If yes, add x to Z; otherwise add x to outlier set K.

Input: An *n*-point metric space (X, ρ) , dimension d > 1

$$Y_d = \{y_0, y_1, y_2\}$$
$$d(y_0, y_1) = 3$$
$$d(y_1, y_2) = 4$$
$$d(y_0, y_2) = 5$$

Z: points consistent with $\{y_0, y_1, y_2\}$ K: points not consistent with $\{y_0, y_1, y_2\}$ / outliers

Construct G = (Z, E) with $(z, z') \in E$ iff $\{y_0, y_1, y_2, z, z'\}$ not d-embeddable.

Input: An *n*-point metric space (X, ρ) , dimension d > 1

$$Y_d = \{y_0, y_1, y_2\}$$
$$d(y_0, y_1) = 3$$
$$d(y_1, y_2) = 4$$
$$d(y_0, y_2) = 5$$

Z: points consistent with $\{y_0, y_1, y_2\}$ K: points not consistent with $\{y_0, y_1, y_2\}$ / outliers

Take $Z' \subset Z$ vertex cover of G, add Z' to outlier set K

Approximation Algorithm

Input: An *n*-point metric space (X, ρ) , dimension d > 1Output: A set of outliers $\widehat{K} \subset X$

- $\textcircled{0} Initialize the set of candidate outlier sets \mathcal{C} to empty set}$
- 2 For each d+1 distinct points $Y_d = \{y_0, \ldots, y_d\} \subset X$:
 - Initialize sets $Z = K = \emptyset$
 - If (Y_d, ρ) is *not d*-embeddable, return to step-2.
 - For each remaining point x ∈ X \ Y_d, check whether
 (Y_d ∪ {x}, ρ) is d-embeddable. If yes, insert x to Z; otherwise, add x to the outlier set K.
 - Construct a graph G = (Z, E) where $(z, z') \in E$ iff $(Y_d \cup \{z, z'\}, \rho)$ is not d-embeddable.
 - Compute a 2-approximation Z' ⊂ Z of the vertex cover of G. Set K = K ∪ Z'.
 - Add K to the collection of candidate outlier sets C.
- **③** Return $\widehat{K} \in \mathcal{C}$ with smallest cardinality as the outlier set.

Correctness

Lemma

The \widehat{K} output by previous algorithm satisfies:

•
$$|K^*| \leq |\widehat{K}| \leq 2|K^*|$$

•
$$(X \setminus \widehat{K}, \rho)$$
 is d-embeddable.

Correctness

Lemma

The \widehat{K} output by previous algorithm satisfies:

•
$$|K^*| \leq |\widehat{K}| \leq 2|K^*|$$

•
$$(X \setminus \widehat{K}, \rho)$$
 is d-embeddable.

The correctness follows from the following classic result in distance geometry; see e.g, [Blumenthal'70].

Theorem

A metric space (Y, ρ_Y) is d-embeddable in \mathbb{R}^d iff there exists d + 1 points say Y_d such that:

(i)
$$(Y_d, \rho_Y)$$
 is d-embeddable; and

(ii) for any $y, y' \in Y \setminus Y_d$, $(Y_d \cup \{y, y'\}, \rho_Y)$ is d-embeddable.

Theorem (2-approximation)

Given an n-point metric space (X, ρ) , there is an algorithm that can compute at most $2|K^*|$ number of points $K \subset X$, such that $(X \setminus K, \rho)$ admits an isometric embeddign into \mathbb{R}^d . The algorithm runs in $O(n^{d+1})$ time.

Theorem (Improved 2-approximation)

Given an n-point metric space (X, ρ) , there is a $O(n^2)$ time randomized algorithm that can compute at most $(2 + \nu)|K^*|$ number of points $K \subset X$, such that with constant probability, $(X \setminus K, \rho)$ admits an isometric embeddign into \mathbb{R}^d .

Theorem (Improved 2-approximation)

Given an n-point metric space (X, ρ) , there is a $O(n^2)$ time randomized algorithm that can compute at most $(2 + \nu)|K^*|$ number of points $K \subset X$, such that with constant probability, $(X \setminus K, \rho)$ admits an isometric embeddign into \mathbb{R}^d .

- The big O notation hides constants depending on $(\frac{1}{\nu})^d$.
- Algorithm still simple, but analysis much more involved.

Theorem (Improved 2-approximation)

Given an n-point metric space (X, ρ) , there is a $O(n^2)$ time randomized algorithm that can compute at most $(2 + \nu)|K^*|$ number of points $K \subset X$, such that with constant probability, $(X \setminus K, \rho)$ admits an isometric embeddign into \mathbb{R}^d .

- The big O notation hides constants depending on $(\frac{1}{\nu})^d$.
- Algorithm still simple, but analysis much more involved.
- Algorithm can be extended to embedding with low-distortion.

Talk Outline

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to process such noise effeciently with theoretical guarantees.

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
 - identifying near optimal number of outliers so that the remaining points can be embedded into a target metric space isometrically or with low additive distortion.
- Quest 3: recovering shortest path metric from perturbed graphs

Talk Outline

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to process such noise effeciently with theoretical guarantees.

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
 - identifying near optimal number of outliers so that the remaining points can be embedded into a target metric space isometrically or with low additive distortion.
- Quest 3: recovering shortest path metric from perturbed graphs

Recovering shortest-path metric from perturbed graphs

Joint work with Minghao Tian, Srinivasan Parthasarathy, and David Sivakoff

Input: An observed graph G = (V, E)

- G is a "noisy" observation of a true graph G^*
- the metric of interest is the shortest path metric d_{G^*}

Input: An observed graph G = (V, E)

- G is a "noisy" observation of a true graph G^*
- the metric of interest is the shortest path metric d_{G^*}

Output: Recover (approximately) the "true" shortest path metric d_{G^\ast} from G

Input: An observed graph G = (V, E)

- G is a "noisy" observation of a true graph G^*
- the metric of interest is the shortest path metric d_{G^*}

Output: Recover (approximately) the "true" shortest path metric d_{G^\ast} from G

Input: An observed graph G = (V, E)

- G is a "noisy" observation of a true graph G*
- the metric of interest is the shortest path metric d_{G^*}

Output: Recover (approximately) the "true" shortest path metric d_{G^\ast} from G

The model

The true graph $G^* = (V, E^*)$

- V sampled i.i.d from a L-doubling measure µ : M → ℝ⁺ on a compact geodesic metric space (M, d_M)
- $E^* = E^*_r = \{(u, v) \mid d_M(u, v) \le r, u, v \in V\}$ is the *r*-neighborhood graph for some parameter r > 0

The observed graph G = (V, E): A (p, q)-perturbation of G^* where

- (p-deletion): For each edge e = (u, v) ∈ E*, we have e ∈ E with probability 1 − p
- (q-insertion): For any pair of nodes u, v ∈ V s.t. (u, v) ∉ E*, we have (u, v) ∈ E with probability q

Hidden domain M

Tubu Wang

Graph Nodes V

True graph G^*

Viceri	Wang
Tusu	vvalle

Random perturbation G

Motivation

• In many graphs, e.g social networks, edges encode proximity between graph nodes in certain feature space.
- In many graphs, e.g social networks, edges encode proximity between graph nodes in certain feature space.
- Sampling from a measure allows varing degree distribution

- In many graphs, e.g social networks, edges encode proximity between graph nodes in certain feature space.
- Sampling from a measure allows varing degree distribution
- Random Erdös-Rényi type perturbation allows exceptions / noise

- In many graphs, e.g social networks, edges encode proximity between graph nodes in certain feature space.
- Sampling from a measure allows varing degree distribution
- Random Erdös-Rényi type perturbation allows exceptions / noise
- The model related to superposing a "structured subgraph" and a "random subgraph"
 - e.g, [Bollobás and Chung, 1988], [Watts and Strogatz, 1998], [Kleinberg 2000] (the small-world phenomenon), ...

- In many graphs, e.g social networks, edges encode proximity between graph nodes in certain feature space.
- Sampling from a measure allows varing degree distribution
- Random Erdös-Rényi type perturbation allows exceptions / noise
- The model related to superposing a "structured subgraph" and a "random subgraph"
 - e.g, [Bollobás and Chung, 1988], [Watts and Strogatz, 1998], [Kleinberg 2000] (the small-world phenomenon), ...
- Shortest path metric natural choice in many situations (especially for sparse graphs)

- In many graphs, e.g social networks, edges encode proximity between graph nodes in certain feature space.
- Sampling from a measure allows varing degree distribution
- Random Erdös-Rényi type perturbation allows exceptions / noise
- The model related to superposing a "structured subgraph" and a "random subgraph"
 - e.g, [Bollobás and Chung, 1988], [Watts and Strogatz, 1998], [Kleinberg 2000] (the small-world phenomenon), ...
- Shortest path metric natural choice in many situations (especially for sparse graphs)
- However, shortest path metric sensitive to random perturbations (especially "short-cuts")

Our Goal

The true graph $G^* = (V, E^*)$

- V sampled i.i.d from a L-doubling measure µ : M → ℝ⁺ on a compact geodesic metric space (M, d_M)
- $E^* = E^*_r = \{(u, v) \mid d_M(u, v) \le r, u, v \in V\}$ is the *r*-neighborhood graph for some parameter r > 0
- The observed graph G = (V, E): A (p, q)-perturbation of G^*

Our goal

Recover the shortest path metric d_{G^*} from G with approximation guarantee.

Definition (Doubling measure)

A measure $\mu: X \to \mathbb{R}^+$ on a metric space (X, d) is said to be *L*-doubling if all metric balls have finite and positive measure and that there is a constant *L* such that for all $x \in X$ and r > 0, $\mu(B(x, 2r)) \leq L \cdot \mu(B(x, r)).$ We call *L* the doubling constant and $\ell = \log_2 L$ the doubling dimension of μ .

Definition (Doubling measure)

A measure $\mu: X \to \mathbb{R}^+$ on a metric space (X, d) is said to be *L*-doubling if all metric balls have finite and positive measure and that there is a constant *L* such that for all $x \in X$ and r > 0, $\mu(B(x, 2r)) \leq L \cdot \mu(B(x, r)).$ We call *L* the doubling constant and $\ell = \log_2 L$ the doubling dimension of μ .

Assumption-R: The parameter r is large enough that $\mu(B(x, \frac{r}{2})) \ge s \ge \frac{12 \ln n}{n}$ for any $x \in M$.

Theorem (Deletion only)

Let G^* be the true graph generated as described, and G a graph obtained by deleting each edge in G^* with probability p. Assuming Assumption-R, then for $p < \frac{1}{2}e^{-\frac{2\ln n}{sn}}$ with probability at least $1 - \frac{1}{n^{\Omega(1)}}$, the shortest path metric d_G in the observed graph is a 2-approximation of the shortest path metric d_{G^*} in the true graph; that is, $\frac{1}{n}d_n(u,v) \leq d_n(u,v) \leq 2d_n(u,v)$

 $\frac{1}{2}d_G(u,v) \leq d_{G^*}(u,v) \leq 2d_G(u,v).$

Theorem (Deletion only)

Let G^* be the true graph generated as described, and G a graph obtained by deleting each edge in G^* with probability p. Assuming Assumption-R, then for $p < \frac{1}{2}e^{-\frac{2\ln n}{sn}}$ with probability at least $1 - \frac{1}{n^{\Omega(1)}}$, the shortest path metric d_G in the observed graph is a 2-approximation of the shortest path metric d_{G^*} in the true graph; that is, $\frac{1}{2}d_G(u,v) \leq d_{G^*}(u,v) \leq 2d_G(u,v)$.

Theorem (Deletion only)

Let G^* be the true graph generated as described, and G a graph obtained by deleting each edge in G^* with probability p. Assuming Assumption-R, then for $p < \frac{1}{2}e^{-\frac{2\ln n}{sn}}$ with probability at least $1 - \frac{1}{n^{\Omega(1)}}$, the shortest path metric d_G in the observed graph is a 2-approximation of the shortest path metric d_{G^*} in the true graph; that is, $\frac{1}{2}d_G(u,v) \leq d_{G^*}(u,v) \leq 2d_G(u,v)$.

Theorem (Deletion only)

Let G^* be the true graph generated as described, and G a graph obtained by deleting each edge in G^* with probability p. Assuming Assumption-R, then for $p < \frac{1}{2}e^{-\frac{2\ln n}{sn}}$ with probability at least $1 - \frac{1}{n^{\Omega(1)}}$, the shortest path metric d_G in the observed graph is a 2-approximation of the shortest path metric d_{G^*} in the true graph; that is, $\frac{1}{2}d_G(u,v) \leq d_{G^*}(u,v) \leq 2d_G(u,v)$.

Theorem (Deletion only)

Let G^* be the true graph generated as described, and G a graph obtained by deleting each edge in G^* with probability p. Assuming Assumption-R, then for $p < \frac{1}{2}e^{-\frac{2\ln n}{sn}}$ with probability at least $1 - \frac{1}{n^{\Omega(1)}}$, the shortest path metric d_G in the observed graph is a 2-approximation of the shortest path metric d_{G^*} in the true graph; that is, $\frac{1}{2}d_G(u,v) \leq d_{G^*}(u,v) \leq 2d_G(u,v)$.

Theorem (Deletion only)

Let G^* be the true graph generated as described, and G a graph obtained by deleting each edge in G^* with probability p. Assuming Assumption-R, then for $p < \frac{1}{2}e^{-\frac{2\ln n}{sn}}$ with probability at least $1 - \frac{1}{n^{\Omega(1)}}$, the shortest path metric d_G in the observed graph is a 2-approximation of the shortest path metric d_{G^*} in the true graph; that is, $\frac{1}{2}d_G(u,v) \leq d_{G^*}(u,v) \leq 2d_G(u,v)$.

Theorem (Deletion only)

Let G^* be the true graph generated as described, and G a graph obtained by deleting each edge in G^* with probability p. Assuming Assumption-R, then for $p < \frac{1}{2}e^{-\frac{2\ln n}{sn}}$ with probability at least $1 - \frac{1}{n^{\Omega(1)}}$, the shortest path metric d_G in the observed graph is a 2-approximation of the shortest path metric d_{G^*} in the true graph; that is, $\frac{1}{2}d_G(u,v) \leq d_{G^*}(u,v) \leq 2d_G(u,v)$.

Consider a very-bad inserted edge $(u, v) \in E$, meaning that $d_{G^*}(u, v) > 2$.

au-Jaccard-Cleanup: Given graph G, for each edge $(u, v) \in G$, we keep the edge in a filtered graph \widehat{G} iff

$$\rho_{u,v}(G) = \frac{|N_u^G \cap N_v^G|}{|N_u^G \cup N_v^G|} \geq \tau.$$

Theorem

Given an observed graph G as a perturbed version of G^* as decribed before. Suppose Assumption-R holds, $sn = \omega(\ln n)$, the deletion probabily $p < \min\{1 - \frac{\sqrt{3}}{2}, \frac{1}{2}e^{-\frac{9\ln n}{sn}}\}$, and that the insertion probability $q \le cs$. Let \widehat{G}_{τ} denote the graph after τ -Jaccard-cleanup of G with $\tau \in (\frac{c}{1-p}q + o(1), \frac{2(1-p)^2}{15L^2(1+2c)})$. Then the shortest path distance metric $d_{\widehat{G}_{\tau}}$ from \widehat{G}_{τ} is a 2-approximation of the shortest path metric d_{G^*} of the true graph G^* with high probability.

In this talk:

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

In this talk:

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

One small step towards understanding / modeling noise in data, and how to process them with theoretical guarantees

In this talk:

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

One small step towards understanding / modeling noise in data, and how to process them with theoretical guarantees

• Adaptive noise for PCD denoising with guarantees

In this talk:

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

One small step towards understanding / modeling noise in data, and how to process them with theoretical guarantees

- Adaptive noise for PCD denoising with guarantees
- Outlier distance entries (instead of outlier points) in metric embedding

In this talk:

- Quest 1: towards parameter-free denoising for embedded point cloud data (PCD)
- Quest 2: metric embedding with outliers
- Quest 3: recovering shortest path metrics from perturbed graphs

One small step towards understanding / modeling noise in data, and how to process them with theoretical guarantees

- Adaptive noise for PCD denoising with guarantees
- Outlier distance entries (instead of outlier points) in metric embedding
- More general graph perturbation models / diffusion distance metric instead of shortest path metrics?