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1 Introduction

Previously we have discussed various properties of estimator—unbiasedness, consistency,
etc—but with very little mention of where such an estimator comes from. In this part,
we shall investigate one particularly important process by which an estimator can be
constructed, namely, maximum likelihood. This is a method which, by and large, can be
applied in any problem, provided that one knows and can write down the joint PMF/PDF
of the data. These ideas will surely appear in any upper-level statistics course.

Let’s first set some notation and terminology. Observable data X1, . . . , Xn has a
specified model, say, a collection of distribution functions {Fθ : θ ∈ Θ} indexed by the
parameter space Θ. Data is observed, but we don’t know which of the models Fθ it came
from. In Stat 411, we shall assume that the model is correct, i.e., that there is a θ value

such that X1, . . . , Xn
iid∼ Fθ.

1 The goal, then, is to identify the “best” model—the one
that explain the data the best. This amounts to identifying the true but unknown θ
value. Hence, our goal is to estimate the unknown θ.

In the sections that follow, I shall describe this so-called likelihood function and how it
is used to construct point estimators. The rest of the notes will develop general properties
of these estimators; these are important classical results in statistical theory. In these
notes, focus is primarily on the single parameter case; Section 7 extends the ideas to the
multi-parameter case.

2 Likelihood

Suppose X1, . . . , Xn
iid∼ Fθ, where θ is unknown. For the time being, we assume that

θ resides in a subset Θ of R. We further suppose that, for each θ, Fθ(x) admits a

∗These notes are meant to supplement in-class lectures. The author makes no guarantees that these
notes are free of typos or other, more serious errors.
†HMC refers to Hogg, McKean, and Craig, Introduction to Mathematical Statistics, 7th ed., 2012.
1This is a huge assumption. It can be relaxed, but then the details get much more complicated—

there’s some notion of geometry on the collection of probability distributions, and we can think about
projections onto the model. We won’t bother with this here.
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PMF/PDF fθ(x). By the assumed independence, the joint distribution of (X1, . . . , Xn)
is characterized by

fθ(x1, . . . , xn) =
n∏
i=1

fθ(xi),

i.e., “independence means multiply.” In the Stat 401 context, we understand the above
expression to be a function of (x1, . . . , xn) for fixed θ. In Stat 411 we flip this around.
That is, we will fix (x1, . . . , xn) at the observed (X1, . . . , Xn), and imagine the above
expression as a function of θ only.

Definition 1. If X1, . . . , Xn
iid∼ fθ, then the likelihood function is

L(θ) = fθ(X1, . . . , Xn) =
n∏
i=1

fθ(Xi), (1)

treated as a function of θ. In what follows, I may occasionally add subscripts, i.e., LX(θ)
or Ln(θ), to indicate the dependence of the likelihood on data X = (X1, . . . , Xn) or on
sample size n. Also write

`(θ) = logL(θ), (2)

for the log-likelihood; the same subscript rules apply to `(θ).

So clearly L(θ) and `(θ) depend on data X = (X1, . . . , Xn), but they’re treated as
functions of θ only. How can we interpret this function? The first thing to mention is a
warning—the likelihood function is NOT a PMF/PDF for θ! So it doesn’t make sense
to integrate over θ values like you would a PDF in Stat 401.2 We’re mostly interested
in the shape of the likelihood curve or, equivalently, the relative comparisons of the L(θ)
for different θ’s. This is made more precise below:

If L(θ1) > L(θ2) (equivalently, if `(θ1) > `(θ2)), then θ1 is more likely to have
been responsible for producing the observed X1, . . . , Xn. In other words, Fθ1
is a better model than Fθ2 in terms of how well it fits the observed data.

So, we can understand likelihood (and log-likelihood) of providing a sort of ranking of
the θ values in terms of how well they match with the observations.

Exercise 1. Let X1, . . . , Xn
iid∼ Ber(θ), with θ ∈ (0, 1). Write down an expression for

the likelihood L(θ) and log-likelihood `(θ). On what function of (X1, . . . , Xn) does `(θ)
depend. Suppose that n = 7 and T equals 3, where T is that function of (X1, . . . , Xn)
previously identified; sketch a graph of `(θ).

Exercise 2. Let X1, . . . , Xn
iid∼ N(θ, 1). Find an expression for the log-likelihood `(θ).

2There are some advanced exceptions to this point that we won’t discuss in Stat 411; but see notes
about Bayesian analysis.
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3 Maximum likelihood estimators (MLEs)

In light of our interpretation of likelihood as providing a ranking of the possible θ values
in terms of how well the corresponding models fit the data, it makes sense to estimate
the unknown θ by the “highest ranked” value. Since larger likelihood means higher rank,
the idea is to estimate θ by the maximizer of the likelihood function, if possible.

Definition 2. Given X1, . . . , Xn
iid∼ fθ, let L(θ) and `(θ) be the likelihood and log-

likelihood functions, respectively. Then the maximum likelihood estimator (MLE) of θ is
defined as

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

`(θ), (3)

where “arg” says to return the argument at which the maximum is attained. Note that
θ̂ implicitly depends on (X1, . . . , Xn) because the (log-)likelihood does.

Thus, we have defined a process by which an estimator of the unknown parameter
can be constructed. I call this a “process” because it can be done in the same way for
(essentially) any problem: write down the likelihood function and then maximize it. In
addition to the simplicity of the process, the estimator also has the nice interpretation
as being the “highest ranked” of all possible θ values, given the observed data. There
are also some deeper motivations for such considerations (e.g., the Likelihood Principle)
which we won’t discuss here.

I should mention that while I’ve called the construction of the MLE “simple,” I mean
that only at a fundamental level. Actually doing the maximization step can be tricky,
and sometimes requires sophisticated numerical methods (see supplement). In the nicest
of cases, the estimation problem reduces to solving the likelihood equation,

(∂/∂θ)`(θ) = 0.

This, of course, only makes sense if `(θ) is differentiable, as in the next two examples.

Exercise 3. Let X1, . . . , Xn
iid∼ Ber(θ), for θ ∈ (0, 1). Find the MLE of θ.

Exercise 4. Let X1, . . . , Xn
iid∼ N(θ, 1), for θ ∈ (0, 1). Find the MLE of θ.

It can happen that extra considerations can make an ordinarily nice problem not so
nice. These extra considerations are typically in the form of constraints on the parameter
space Θ. The next example gives a couple illustrations.

Exercise 5. Let X1, . . . , Xn
iid∼ Pois(θ), where θ > 0.

(a) Find the MLE of θ.

(b) Suppose that we know θ ≥ b, where b is a known positive number. Using this
additional information, find the MLE of θ.

(c) Suppose now that θ is known to be an integer. Find the MLE of θ.

It may also happen the the (log-)likelihood is not differentiable at one or more points.
In such cases, the likelihood equation itself doesn’t make sense. This doesn’t mean the
problem can’t be solved; it just means that we need to be careful. Here’s an example.
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Figure 1: Graph of the Laplace log-likelihood function for a sample of size n = 10.

Exercise 6. Let X1, . . . , Xn
iid∼ Unif(0, θ) find the MLE of θ.

I should also mention that, even if the likelihood equation is valid, it may be that the
necessary work to solve it cannot be done by hand. In such cases, numerical methods are
needed. Some examples are given in the supplementary notes.

Finally, in some cases, the MLE is not unique (more than one solution to the like-
lihood equation) and in others no MLE exists (the likelihood function is unbounded).
Example 1 demonstrates the former. The simplest example of the latter is in cases where
the likelihood is continuous and there is an open set constraint on θ. An important
practical example is in mixture models, which we won’t discuss in Stat 411.

Example 1. Let X1, . . . , Xn
iid∼ fθ(x) = e−|x−θ|/2; this distribution is often called the

shifted Laplace or double-exponential distribution. For illustration, I consider a sample
of size n = 10 from the Laplace distribution with θ = 0. In Figure 1 we see that the
log-likelihood flattens out, so there is an entire interval where the likelihood equation is
satisfied; therefore, there the MLE is not unique. (You should try to write R code to
recreate this example.)

4 Basic properties

4.1 Invariance

In the context of unbiasedness, recall the claim that, if θ̂ is an unbiased estimator of θ,
then η̂ = g(θ̂) is not necessarily and unbiased estimator of η = g(θ); in fact, unbiasedness
holds if and only if g is a linear function. That is, unbiasedness is not invariant with
respect to transformations. However, MLEs are invariant in this sense—if θ̂ is the MLE
of θ, then η̂ = g(θ̂) is the MLE of η = g(θ).
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Theorem 1 (HMC, Theorem 6.1.2). Suppose θ̂ is the MLE of θ. Then, for specified
function g, η̂ = g(θ̂) is the MLE of η = g(θ).

Proof. The result holds for any function g, but to see the main idea, suppose that g is
one-to-one. Then our familiar likelihood, written as a function of η, is simply L(g−1(η)).
The largest this function can be is L(θ̂). Therefore, to maximize, choose η̂ such that
g−1(η̂) = θ̂, i.e., take η̂ = g(θ̂).

This is a very useful result, for it allows us to estimate lots of different characteristics of
a distribution. Think about it: since fθ depends on θ, any interesting quantity (expected
values, probabilities, etc) will be a function of θ. Therefore, if we can find the MLE of θ,
then we can easily produce the MLE for any of these quantities.

Exercise 7. If X1, . . . , Xn
iid∼ Ber(θ), find the MLE of η =

√
θ(1− θ). What quantity

does η represent for the Ber(θ) distribution?

Exercise 8. Let X ∼ Pois(θ). Find the MLE of η = e−2θ. How does the MLE of η here
compare to the estimator given in Example 4 of Notes 02?

This invariance property is nice, but there is a somewhat undesirable consequence:
MLEs are generally NOT unbiased. Both of the exercises above demonstrate this. For
a simpler example, consider X ∼ N(θ, 1). The MLE of θ is θ̂ = X and, according to
Theorem 1, the MLE of η = θ2 is η̂ = θ̂2 = X2. However, Eθ(X

2) = θ2 + 1 6= θ2, so the
MLE is NOT unbiased.

Before you get too discouraged about this, recall the remarks made in Notes 02 that
unbiasedness is not such an important property. In fact, we will show below that MLEs
are, at least for large n, the best one can do.

4.2 Consistency

In certain examples, it can be verified directly that the MLE is consistent, e.g., this
follows from the law of large numbers if the distribution is N(θ, 1), Pois(θ), etc. It would
be better, though, if we could say something about the behavior of MLEs in general. It
turns out that this is, indeed, possible—it is a consequence of the process of maximizing
the likelihood function, not of the particular distributional form.

We need a bit more notation. Throughout, θ denotes a generic parameter value, while
θ? is the “true” but unknown value; HMC use the notation θ0 instead of θ?.3 The goal is
to demonstrate that the MLE, denoted now by θ̂n to indicate its dependence on n, will
be close to θ? in the following sense:

For any θ?, the MLE θ̂n converges to θ? in Pθ?-probability as n→∞, i.e.,

lim
n→∞

Pθ?{|θ̂n − θ?| > ε} = 0, ∀ ε > 0.

3Note that there is nothing special about any particular θ? value—the results to be presented hold
for any such value. It’s simply for convenience that we distinguish this value in the notation and keep it
fixed throughout the discussion.
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We shall also need to put forth some general assumptions about the model, etc.
These are generally referred to as regularity conditions, and we will list this as R0, R1,
etc. Several of these regularity conditions will appear in our development below, but we
add new ones to the list only when they’re needed. Here’s the first three:

R0. If θ 6= θ′, then fθ and fθ′ are different distributions.

R1. The support of fθ, i.e., supp(fθ) := {x : fθ(x) > 0}, is the same for all θ.

R2. θ? is an interior point of Θ.

R0 is a condition called “identifiability,” and it simply means that it is possible to estimate
θ based on only a sample from fθ. R1 ensures that ratios fθ(X)/fθ′(X) cannot equal ∞
with positive probability. R2 ensures that there is an open subset of Θ that contains θ?;
R2 will also help later when we need a Taylor approximation of log-likelihood.

Exercise 9. Can you think of any familiar distributions that do not satisfy R1?

The first result provides a taste of why θ̂ should be close to θ? when n is large. It falls
short of establishing the required consistency, but it does give some nice intuition.

Proposition 1 (HMC, Theorem 6.1.1). If R0 and R1 hold, then, for any θ 6= θ?,

lim
n→∞

Pθ?{LX(θ?) > LX(θ)} = 1.

Sketch of the proof. Note the equivalence of the events:

LX(θ?) > LX(θ) ⇐⇒ LX(θ?)/LX(θ) > 1

⇐⇒ Kn(θ?, θ) :=
1

n

n∑
i=1

log
fθ?(Xi)

fθ(Xi)
> 0.

Define the quantity4

K(θ?, θ) = Eθ?
{

log
fθ?(X)

fθ(X)

}
,

From Jensen’s inequality (HMC, Theorem 1.10.5), it follows that K(θ?, θ) ≥ 0 with
equality iff θ = θ?; in our case, K(θ?, θ) is strictly positive. From the LLN:

Kn(θ?, θ)→ K(θ?, θ) in Pθ?-probability.

That is, Kn(θ?, θ) is near K(θ?, θ), a positive number, with probability approaching 1.
The claim follows since the event of interest is equivalent to Kn(θ?, θ) > 0.

The intuition is that the likelihood function at the “true” θ? tends to be larger than any
other likelihood value. So, if we estimate θ by maximizing the likelihood, that maximizer
ought to be close to θ?. To get the desired consistency, there are some technical hurdles
to overcome—the key issue is that we’re maximizing a random function, so some kind of
uniform convergence of likelihood is required.

If we add R2 and some smoothness, we can do a little better than Proposition 1.

4This is known as the Kullback–Leibler divergence, a sort of measure of the distance between two
distributions fθ? and fθ.
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Theorem 2 (HMC, Theorem 6.1.3). In addition to R0–R2, assume that fθ(x) is dif-
ferentiable in θ for each x. Then there exists a consistent sequence of solutions of the
likelihood equation.

The proof is a bit involved so it’s omitted here; but see p. 325 in HMC. This is very
interesting fact but, being an existence result alone, it’s not immediately clear how useful
it is. For example, as we know, the likelihood equation could have many solutions for
a given n. For the question “which sequence of solutions is consistent?” the theorem
provides no guidance. But it does suggest that the process of solving the likelihood
equation is a reasonable approach. There is one special case in which Theorem 2 gives a
fully satisfactory answer.

Corollary 1 (HMC, Corollary 6.1.1). In addition to the assumptions of Theorem 2, sup-
pose the likelihood equation admits a unique solution θ̂n for each n. Then θ̂n is consistent.

I shall end this section with a short historical commentary. Much of the ideas (though
not the proofs) were developed by Sir Ronald A. Fisher, arguably the most influential
statistician in history. At the time (1920s), the field of statistics was very new and without
a formal mathematical framework. Fisher’s ideas on likelihood and maximum likelihood
estimation set the stage for all the theoretical work that has been done since then. He is
also responsible for the ideas of information and efficiency in the coming sections, as well
as the notion of sufficiency to be discussed later in the course. The p-value in hypothesis
testing is his idea, as well as the notion of randomization in designed experiments. Two of
Fisher’s other big ideas, which are less understood, are conditional inference (conditioning
on ancillary statistics) and fiducial inference. Besides being one of the fathers of statistics,
Fisher was also an extraordinary geneticist and mathematician. Personally, Fisher was
a bit of a fiery character—there are well-documented heated arguments between Fisher,
Neyman, and others about the philosophy of statistics. This “hot-headedness” was likely
a result of Fisher’s passion for the subject, as I have heard from people who knew him
that he was a kind and thoughtful man.

5 Fisher information and the Cramer–Rao bound

To further study properties of MLEs, we introduce a concept of information. Before we
can do this, however, we need two more regularity conditions.

R3. fθ(x) is twice differentiable in θ for each x;

R4.
∫
fθ(x) dx in the continuous case, or

∑
x fθ(x) in the discrete case, is twice differ-

entiable in θ, and the derivative can be evaluated by interchanging the order of
differentiation and integration/summation.

The first condition is to guarantee that the problem is sufficiently smooth. R4 is the first
condition that’s really technical. It holds for most problems we’ll encounter in Stat 411,
but it really has nothing to do with statistics or probability. For completeness, I’ve added
an appendix with some details about interchange of derivatives and integrals/sums.

In what follows I will work with the case of continuous distributions with PDF fθ(x).
The discrete case is exactly the same, but with summation over x where integration over
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x appears below. For moment, consider a single X ∼ fθ(x). Here’s a simple calculus
identity that will help simplify some notation, etc:

∂

∂θ
fθ(x) =

∂
∂θ
fθ(x)

fθ(x)
· fθ(x) =

∂

∂θ
log fθ(x) · fθ(x).

Using the fact that 1 =
∫
fθ(x) dx for all θ, if we differentiate both sides with respect to

θ and apply R4 we get

0 =

∫
∂

∂θ
fθ(x) dx =

∫
∂

∂θ
log fθ(x) · fθ(x) dx = Eθ

{ ∂

∂θ
log fθ(X)

}
.

The random variable Uθ(X) := ∂
∂θ

log fθ(X) is called the score function, and depends on
both X and θ. We have shown that the score function has mean zero.

Differentiate the fundamental identity 1 =
∫
fθ(x) dx a second time and apply R4

once more we get

0 =

∫
∂

∂θ

[ ∂
∂θ

log fθ(x) · fθ(x)
]
dx

= · · ·

= Eθ
{ ∂2

∂θ2
log fθ(X)

}
+ Eθ

{( ∂
∂θ

log fθ(X)
)2}

.

It follows that the latter two expectations are equal in magnitude—one negative, the
other positive. This magnitude is called the Fisher information; that is,

I(θ) = Eθ
{( ∂

∂θ
log fθ(X)

)2}
= −Eθ

{ ∂2

∂θ2
log fθ(X)

}
. (4)

This definition is understood that the Fisher information I(θ) can be evaluated with
either of the two expressions on the right-hand side. You may use whichever is most
convenient. It is clear that the first expression for I(θ) in (4) is positive (why?) and,
therefore, defines the magnitude mentioned above. So the second expectation is negative
and multiplication by −1 makes it positive.

If you recall the score function Uθ(X) defined above, then you’ll notice that I(θ) =
Eθ{Uθ(X)2}. If you also recall that Uθ(X) has mean zero, then you’ll see that the Fisher
information is simply the variance Vθ{Uθ(X)}. But despite this simple expression for
I(θ) in terms of a variance of the score, it turns out that it’s usually easier to evaluate
I(θ) using the version with second derivatives.

Exercise 10. Find I(θ) when X is Ber(θ), Pois(θ), and Exp(θ).

Exercise 11. Let X ∼ N(θ, σ2) where σ > 0 is a known number. Find I(θ).

Exercise 12. Let X ∼ fθ(x), where the PDF is of the form fθ(x) = g(x− θ), with g an
arbitrary PDF. Show that I(θ) is a constant, independent of θ. (Hint: In the integration,
make a change of variable z = x− θ.)

Exercise 13. Let I(θ) be the Fisher information defined above. Let η = g(θ) be a
reparametrization, where g is a one-to-one differentiable function. If Ĩ(η) is the Fisher
information for the new parameter η, show that Ĩ(η) = I(θ) · [g−1(η)]2.
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So far we’ve considered only a single observation X ∼ fθ(x) What happens when

we have an independent sample X1, . . . , Xn
iid∼ fθ(x)? We simply replace fθ(x) in the

calculations above with the likelihood function L(θ) = LX(θ). Fortunately, since the
model is iid, we don’t have to redo all the calculations. For the score function, Uθ(X) =
Uθ(X1, . . . , Xn), we have

Uθ(X1, . . . , Xn) =
∂

∂θ
logLX(θ)

=
∂

∂θ

n∑
i=1

log fθ(Xi) (by independence)

=
n∑
i=1

∂

∂θ
log fθ(Xi) (linearity of derivative)

=
n∑
i=1

Uθ(Xi), (definition of Uθ(Xi))

the sum of the individual score functions. The Fisher information in the sample of size
n is still defined as the variance of the score function. However, since we have a nice
representation of the score as a sum of individual scores, we have

Vθ{Uθ(X1, . . . , Xn)} = Vθ{Uθ(X1) + · · ·+ Uθ(Xn)}
= [missing details]

= nI(θ).

Exercise 14. Fill in the missing details in the expression above.

We have, therefore, shown that the information in a sample of size n is simply n times
the information in a single sample. This derivation depends critically on the iid assump-
tion, but that’s the only case we’ll consider in Stat 411; but know that in dependent or
non-iid data problems the Fisher information would be different.

I have so far deferred the explanation of why I(θ) is called “information.” A complete
understanding cannot be given yet—wait until we discuss sufficient statistics—but the
derivation above gives us some guidance. Intuitively, we expect that, as n increases (i.e.,
more data is collected), we should have more “information” about what distribution data
was sample from and, therefore, we should be able to estimate θ better, in some sense.
Our derivation shows that, since I(θ) is non-negative, as sample size n increases, the
information about θ in that sample nI(θ) increases (linearly). So our intuition is satisfied
in this case. For dependent-data problems, for example, information in the sample will
still increase, but slower than linear. The Cramer–Rao lower bound result that follows
should also help solidify this intuition.

In Notes 02 we discussed point estimation and the idea of making mean-square error
small. Of course, mean-square error is closely related to the variance of the estimator.
The result that follows helps relate the variance of an estimator to the Fisher information.
The message is that, if information is large, then better estimation should be possible.
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Theorem 3 (Cramer–Rao; Theorem 6.2.1 in HMC). Let X1, . . . , Xn
iid∼ fθ(x), and assume

R0–R4 hold. Let Tn = Tn(X1, . . . , Xn) be a statistic, with Eθ(Tn) = τ(θ). Then

Vθ(Tn) ≥ [τ ′(θ)]2

nI(θ)
, ∀ θ,

where τ ′(θ) denotes the derivative of τ(θ).

Proof. See Appendix B.

The following corollary helps us better understand the message of the Cramer–Rao
inequality. Here we focus on the case where Tn is an unbiased estimator of θ.

Corollary 2 (HMC, Corollary 6.2.1). Let Tn be an unbiased estimator of θ. Then under
the assumptions of Theorem 3, Vθ(Tn) ≥ [nI(θ)]−1.

Therefore, in this special case, the Cramer–Rao inequality can be understood as giving
a lower bound on the variance of an unbiased estimator of θ. From a practical point of
view, this provides us a gauge for measuring the quality of unbiased estimators. For
example, if we find an unbiased estimator whose variance is exactly equal to the Cramer–
Rao bound, then we know that no other unbiased estimator can do better than this one.
We follow up on this idea in Section 6.

Exercise 15. Let X1, . . . , Xn
iid∼ Pois(θ). Find the Cramer–Rao lower bound for unbiased

estimators of θ. Find the variance of X̄ and compare to this lower bound. We’ve seen
before that S2 is also an unbiased estimator of θ. What does your comparison of the
Cramer–Rao lower bound and Vθ(X̄) say about the relative performance of of X̄ and S2?
You don’t have to evaluate the variance of S2, just explain how Corollary 2 helps with
your comparison.

6 Efficiency and asymptotic normality

To follow up, more formally, on the notion of measuring performance of estimators by
comparing their variance to the Cramer–Rao lower bound, we define a notion of efficiency.
If θ̂n is an unbiased estimator of θ, then the efficiency of θ̂n is

effθ(θ̂n) = LB/Vθ(θ̂n), where LB = 1/nI(θ).

An estimator is efficient if effθ(θ̂n) = 1.

Exercise 16. Let X1, . . . , Xn
iid∼ N(0, θ), where θ > 0 denotes the variance.

(a) Let θ̂
(1)
n be the sample variance. Find effθ(θ̂

(1)
n ).

(b) Find the MLE of θ, and write this as θ̂
(2)
n . Find effθ(θ̂

(2)
n ).

(c) Compare θ̂
(1)
n and θ̂

(2)
n based on their efficiencies.
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We are particularly interested in the efficiency of MLEs, but there’s not so many
problems where the MLE has a nice expression, and even fewer of these cases can we
write down a formula for its variance. So it would be nice to have some idea about
the efficiency of MLEs without having to write down its variance. The next theorem,
a fundamental result in statistics, gives us such a result. Indeed, a consequence of this
theorem is that the MLE asymptotically efficient in the sense that, as n → ∞, the
efficiency of the MLE approaches 1. We need one more regularity condition:

R5. fθ(x) is thrice differentiable in θ for each x, and there exists a constant c > 0
and a function M(x) > 0 such that Eθ[M(X)] < ∞ and, for “true value” θ?,
| ∂3
∂θ3

log fθ(x)| ≤M(x) for all x and for all θ ∈ (θ? − c, θ? + c).

This assumption allows us to write a two-term Taylor approximation for `(θ), which is
the driving part of the proof, sketched in Appendix C.

Theorem 4 (HMC, Theorem 6.2.2). Let X1, . . . , Xn
iid∼ fθ(x), with “true value” θ?. If

R0–R5 hold, and I(θ?) ∈ (0,∞), then for any consistent sequence of solutions θ̂n of the
likelihood equation

√
n(θ̂n − θ?)→ N(0, I(θ?)−1) in distribution as n→∞.

For simplicity, let’s drop the ? superscript. Then we can understand the result as
saying that, when n is large, the MLE θ̂n is approximately normal with mean θ and
variance [nI(θ)]−1. So the claim about asymptotic efficiency of the MLE is clear.

Given the importance of MLEs in applied statistics, Theorem 4 is fundamental. It
says that no matter how the MLE is obtained—closed form expression, complicated
numerical algorithms, etc—the sampling distribution is approximately normal when n
is large. Many statistical computing packages report hypothesis tests and confidence
intervals in relatively complex problems, such as logistic regression, and these are based
on the sampling distribution result in Theorem 4.

Example 2. An interesting question is: how accurate is the normal approximation for

finite n? Suppose X1, . . . , Xn
iid∼ Exp(θ). If θ = 1, then Theorem 4 says the MLE X̄n is

approximately normal with mean 1 and variance n−1. However, it can be shown, using
some basic results from Stat 401, that X̄n ∼ Gamma(n, n−1). Figure 2 shows the exact
distribution of X̄n and the normal approximation for two relatively small values of n. At
n = 25 there’s some noticeable differences between the two distributions, but for n = 50
there’s hardly any difference.

Exercise 17. Show that if X1, . . . , Xn
iid∼ Exp(θ), then X̄n ∼ Gamma(n, n−1θ).

Theorem 4 is much more broad than it looks initially. As it’s stated, it applies only to
the MLE of θ (specifically, consistent solutions of the likelihood equation). But in light of
the invariance of MLE (Theorem 1) and the Delta Theorem (Notes 01), we can develop
a similar asymptotic normality result for any function of the MLE.

Exercise 18. Let X1, . . . , Xn
iid∼ Exp(θ). The MLE is θ̂n = X̄n. Use Theorem 4 and the

Delta Theorem to find the limiting distribution of log X̄n.
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Figure 2: Exact and approximate sampling distributions for the MLE in Example 2.

Asymptotic normality of MLEs, in combination with the Delta Theorem, is very
useful in the construction of confidence intervals. Unfortunately, we don’t have sufficient
time to cover this important application in detail. But some supplementary material on
maximum likelihood confidence intervals is provided in a separate document.

This consideration of the asymptotic efficiency of MLEs is effectively a comparison
of the asymptotic variance of the MLE, which according to Theorem 4, is I(θ)−1. This
is just like the “vθ” in the Delta Theorem statement in Notes 01. So a way to compare
two estimators is look at the ratio of their respective asymptotic variances. That is, the
asymptotic relative efficiency of θ̂

(1)
n and θ̂

(2)
n is

areθ(θ̂
(1)
n , θ̂(2)

n ) =
aVθ(θ̂

(1)
n )

aVθ(θ̂
(2)
n )

,

where aV denotes the asymptotic variance. If this ratio is bigger (resp. smaller) than 1,

then θ̂
(2)
n is “better” (resp. “worse”) than θ̂

(1)
n .

Example 3. Let X1, . . . , Xn
iid∼ N(θ, σ2), with σ known. The MLE is θ̂

(1)
n = X̄n, and

it’s easy to check that the MLE is efficient. An alternative estimator is θ̂
(2)
n = Mn, the

sample median. The exact variance of Mn is difficult to get, so we shall compare these
two estimators based on asymptotic relative efficiency. For this, we need a sort of CLT
for Mn (the 50th percentile):

(CLT for percentiles) Let X1, . . . , Xn
iid∼ f(x) = F ′(x). For any p ∈ (0, 1),

let ηp be the 100pth percentile, i.e., F (ηp) = p. Likewise, let η̂p be the 100pth
sample percentile. If f(ηp) > 0, then

√
n(η̂p − ηp)→ N

(
0, p(1− p)/f(ηp)

2
)
, in distribution.

In this case, the asymptotic variance of Mn is

aVθ(θ̂
(2)
n ) =

0.5 · 0.5(√
1/2πσ2

)2 =
πσ2

2
.

12



Since aVθ(θ̂
(1)
n ) = σ2, the asymptotic relative efficiency is

areθ(θ̂
(1)
n , θ̂(2)

n ) =
σ2

πσ2/2
=

2

π
< 1.

This ratio is less than 1, so we conclude that θ̂
(1)
n is “better” asymptotically.

7 Multi-parameter cases

Now suppose that θ ∈ Θ ⊆ Rd, for integer d ≥ 1. An important example is Θ = {θ =
(µ, σ2) : µ ∈ R, σ2 ∈ R+} for the normal distribution where both mean µ and variance

σ2 are unknown. In general, let X1, . . . , Xn
iid∼ fθ(x). Then we may define the likelihood,

and log-likelihood functions just as before:

L(θ) =
n∏
i=1

fθ(Xi) and `(θ) = logL(θ).

Likelihood still can be understood as providing a ranking of the possible parameter values
and, therefore, maximizing the likelihood function to estimate the unknown θ still makes
sense. That is, the MLE θ̂ is still defined as

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

`(θ).

Conceptually, everything is the same as in the one-dimensional parameter case. Techni-
cally, however, things are messier, e.g., we need vectors, matrices, etc. We can immedi-
ately see how things get more technically involved, by considering the analogue of the
likelihood equation: θ̂ is the solution to

∇`(θ) = 0.

Here∇ is the gradient operator, producing a vector of component wise partial derivatives,

∇`(θ) =
(∂`(θ)
∂θ1

, . . . ,
∂`(θ)

∂θd

)>
,

and superscript > being the transpose operator.

Exercise 19. Let X1, . . . , Xn
iid∼ N(µ, σ2), with θ = (µ, σ2) unknown. Find the MLE.

For multiple parameters, it is less likely that a closed-form solution to the likelihood
equation is available. Typically, some kind of numerical methods will be needed to find
the MLE. Next is a simple example of this scenario.

Exercise 20. Let X1, . . . , Xn
iid∼ Gamma(α, β), with θ = (α, β) unknown. Write down

the likelihood equation and confirm that no closed-form solution is available.

13



For a single observation X ∼ fθ(x), the score vector is

Uθ(X) = ∇ log fθ(X) =
( ∂

∂θ1

log fθ(X), . . . ,
∂

∂θd
log fθ(X)

)>
.

In this case, the score is a d × 1 (column) random vector. Recall that, for random
vectors, there are notions of a mean vector and a covariance matrix. In particular, if Z
is a d-dimensional random vector, then

E(Z) =
(
E(Z1), . . . ,E(Zd)

)>
C(Z) = E(ZZ>)− E(Z)E(Z)>.

So the mean of a random vector is a d × 1 vector and the covariance is a d × d matrix
(provided these quantities exist). Under versions of the regularity conditions in the one-
parameter case, it can be shown that

Eθ[Uθ(X)] = 0 (a d-vector of zeros).

Just like in the one-parameter case, we define the Fisher information as the (co)variance
of the score, i.e., I(θ) = Cθ[Uθ(X)], which is a d × d matrix, rather than a number.
Under regularity conditions, each component of this matrix looks like a one-dimensional
information; in particular, its (j, k)th element satisfies

I(θ)jk = Eθ
{ ∂

∂θj
log fθ(X) · ∂

∂θk
log fθ(X)

}
= −Eθ

{ ∂2

∂θj∂θk
log fθ(X)

}
.

Typically, I(θ) is a symmetric matrix (i.e., I(θ) = I(θ)>); for us, this will always be true.
This means you only need to evaluate d(d+ 1)/2 of the d2 total matrix entries.

Exercise 21. For X ∼ N(µ, σ2), with θ = (µ, σ2), find I(θ).

What about if we have an iid sample X1, . . . , Xn
iid∼ fθ(x) of size n? Everything goes

just as before, except we’re working with vectors/matrices. In particular, we replace the
density fθ(X) in the definition of the score vector with the likelihood function LX(θ),
and just as before, the Fisher information matrix for a sample of size n is just n times
the information matrix I(θ) for a single observation.

For brevity, I shall summarize the d-dimensional analogues of the large-sample results
derived above with care for one-dimensional problems. Here I will not explicitly state the
regularity conditions, but know that they are essentially just higher-dimensional versions
of R0–R5 listed above.

• Under regularity conditions, there exists a consistent sequence θ̂n (a d-vector) of
solutions of the likelihood equation.

• Under regularity conditions, for any consistent sequence of solutions θ̂n,
√
n(θ̂n − θ)→ Nd(0, I(θ)−1) in distribution (for all θ),

where Nd(0, I(θ)−1) denotes a d-dimensional normal distribution with mean vector
0 and covariance matrix I(θ)−1, the d× d inverse of the Fisher information matrix.

14



• (Delta Theorem) Let g : Rd → Rk have continuous partial derivatives, and define
the k × d matrix

D =
(
∂g(θ)i/∂θj

)
i=1,...,k;j=1,...,d

.

Then, under regularity conditions,

√
n[g(θ̂n)− g(θ)]→ Nk(0, DI(θ)−1D>).

For example, take g : Rd → R so that g(θ) = θj. Then D is a 1 × d matrix of all
zeros except a 1 appearing in the (1, j) position. With this choice,

√
n(θ̂n,j − θj)→ N(0, I(θ)−1

jj ),

which is the one-dimensional counterpart, like Theorem 4.

Exercise 22. Let X1, . . . , Xn
iid∼ Gamma(α, β), where θ = (α, β)> is unknown. Denote

the MLE by θ̂n = (α̂n, β̂n)>; there’s no closed-form expression for the the MLE, but it
can be readily evaluated numerically. State the limiting distribution of θ̂n.

A Interchanging derivatives and integrals/sums

Condition R4 requires that derivatives of integrals/sums can be evaluated by differenti-
ating the integrand/summand. The question of whether these operations can be inter-
changed has nothing to do with statistics, these are calculus/analysis issues. But, for
completeness, I wanted to give a brief explanation of what’s going on.

Let f(x, θ) be a function of two variables, assumed to be differentiable with respect
to θ for each x. Here f need not be a PDF/PMF, just a function like in calculus. Let’s
consider the simplest case: suppose x ranges over a finite set, say, {1, 2, . . . , r}. Then it’s
a trivial result from calculus that

d

dθ

r∑
x=1

f(x, θ) =
r∑

x=1

∂

∂θ
f(x, θ).

This is referred to as the linearity property of differentiation. Similarly, suppose x ranges
over a bounded interval [a, b], where neither a nor b depends on θ (this last assumption
can easily be relaxed). Then the famous Leibnitz formula gives

d

dθ

∫ b

a

f(x, θ) dx =

∫ b

a

∂

∂θ
f(x, θ) dx.

So, in these two cases, differentiation and summation/integration can be interchanged
with essentially no conditions. The common feature of these two situations is that sum-
mation/integration is over a finite/bounded range. Things are not so simple when “in-
finities” are involved.

Both the summation and integration problems over bounded and unbounded ranges
can be lumped together under one umbrella in a measure-theoretic context, and the ques-
tion of interchange with differentiation can be answered with the Lebesgue Dominated
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Convergence Theorem. The general details are too much for Stat 411, so here I’ll work
on the two cases separately.

Start with the summation problem. That is, we want to know when

d

dθ

∞∑
x=1

f(x, θ) =
∞∑
x=1

∂

∂θ
f(x, θ). (5)

The three sufficient conditions are

S1.
∑∞

x=1 f(x, θ) converges for all θ in an interval (a, b);

S2. ∂
∂θ
f(x, θ) is continuous in θ for all x;

S3.
∑∞

x=1
∂
∂θ
f(x, θ) converges uniformly on every compact subset of (a, b).

That is, if S1–S3 hold, then (5) is valid.
In the integration problem, we want to know when

d

dθ

∫ ∞
−∞

f(x, θ) dx =

∫ ∞
−∞

∂

∂θ
f(x, θ) dx. (6)

In this case, there is just one sufficient condition, with two parts. Suppose that there
exists a function g(x, θ) and a number δ > 0 such that∣∣∣f(x, θ + δ′)− f(x, θ)

δ′

∣∣∣ ≤ g(x, θ) for all x and all |δ′| ≤ δ,

and ∫ ∞
−∞

g(x, θ) dx <∞.

Then statement (6) is valid.

B Proof of Theorem 3

For two random variables X and Y , the covariance (if it exists) is defined as C(X, Y ) =
E(XY )−E(X)E(Y ). The Cauchy–Schwartz inequality (you may have seen this in a linear
algebra course) that says |C(X, Y )| ≤

√
V(X)V(Y ).

Here I will work with the case n = 1; write X = X1, T = T (X) for the statistic
in question, and U = Uθ(X) for the score function. The first goal is to evaluate the
covariance Cθ(T, U). For this, recall that U has zero mean, so Cθ(T, U) = Eθ(TU). Recall
that ∂

∂θ
log fθ(x) · fθ(x) = ∂

∂θ
fθ(x); then the expectation of TU can be written as

Eθ(TU) =

∫
T (x)Uθ(x)fθ(x) dx

=

∫
T (x)

∂

∂θ
log fθ(x)fθ(x) dx

=

∫
T (x)

∂

∂θ
fθ(x) dx

=
∂

∂θ

∫
T (x)fθ(x) dx (by R4)

= τ ′(θ).
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Now we know that Vθ(U) = I(θ), so the Cauchy–Schwartz inequality above gives

|τ ′(θ)| ≤
√

Vθ(T )I(θ).

Squaring both sides and solving for Vθ(T ) gives the desired result.

C Proof of Theorem 4

The basic idea of the proof is fairly simple, although carrying out the precise details is a
bit tedious. So here I’ll just give a sketch to communicate the ideas.

First, do a Taylor approximation of `′n(θ̂n) in a neighborhood of θ̂n = θ?. Since θ̂n is
a solution to the likelihood equation, we know that `′n(θ̂n) = 0. Therefore, this Taylor
approximation looks like

0 = `′n(θ) = `′n(θ?) + `′′n(θn)(θ̂n − θ?) + error,

where θn is some value between θ̂n and θ?. Since θ̂n is consistent, it follows that θn is too.
Ignoring the error and rearranging the terms in the Taylor approximation gives

√
n(θ̂n − θ?) = −n

1/2`′n(θ?)

`′′n(θn)
= −n

−1/2`′n(θ?)

n−1`′′n(θn)
.

Now we’ll look at the numerator and denominator separately.
We can apply the usual CLT to study the numerator. Indeed, note that

Ūn :=
1

n
`n(θ?) =

1

n

n∑
i=1

Uθ?(Xi)

is an average of iid mean-zero, variance-I(θ?) random variables. So the usual CLT says
n−1/2`n(θ?) =

√
n(Ūn − 0)→ N(0, I(θ?)) in distribution.

For the denominator, we’ll do a bit of fudging. Recall that θn is close to θ? for
large n. So we’ll just replace n−1`′′n(θn) in the denominator with n−1`′′n(θ?). A careful
argument using the regularity conditions can make this step rigorous. Now n−1`′′n(θ?) is
an average of iid mean-I(θ?) random variables, so the usual LLN says n−1`′′n(θ?) converges
in probability to I(θ?).

If we use Slutsky’s theorem, we get

√
n(θ̂n − θ?) = −n

1/2`′n(θ?)

`′′n(θn)
= −n

−1/2`′n(θ?)

n−1`′′n(θn)
→ I(θ?)−1 · N(0, I(θ?)), in distribution.

But multiplying a normal random variable by a number changes the variance by the
square of that number. That is,

I(θ?)−1 · N(0, I(θ?)) ≡ N(0, I(θ?)−1).

This completes the (sketch of the) proof.
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