
CURIOUS MACHINES:
ACTIVE LEARNING WITH STRUCTURED INSTANCES

by

Burr Settles

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2008

arturner
Copyright

c© Copyright by Burr Settles 2008
All Rights Reserved

i

For my parents, who nurtured my curiosity,
and for Natalie, who now piques it.

ii

ABSTRACT

Supervised machine learning is a branch of artificial intelligence concerned with automatically
inducing predictive models from labeled data. Such learning approaches are useful for many inter-
esting real-world applications, but particularly shine for tasks involving the automatic organization,
extraction, and retrieval of information from large collections of data (e.g., text, images, and other
digital media).

In traditional supervised learning, one uses “labeled” training data to induce a model. How-
ever, labeled instances for real-world applications are often difficult, expensive, or time consuming
to obtain. Consider a complex task such as extracting key person and organization names from
text documents. While gathering large amounts of unlabeled documents for these tasks is often
relatively easy (e.g., from the World Wide Web), labeling these texts usually requires experienced
human annotators with specific domain knowledge and training. There are implicit costs associated
with obtaining these labels from domain experts, such as limited time and financial resources. This
is especially true for applications that involve learning from instances with complex structures,
which can require labels at varying levels of granularity.

Active learning addresses this inherent bottleneck by allowing the learner to selectively choose
which parts of the available data are labeled for training. The goal is to maximize the accuracy
of the learner through such “queries,” while minimizing the work required of human annotators.
In this thesis, I explore several important questions regarding active learning for these and sim-
ilar tasks involving structured instances. What query strategies are available for these learning
algorithms, and how do they compare? How might a learner pose queries at different levels of
granularity, as with multiple-instance learning? Are there relationships between certain properties
of a query and its difficulty for the annotator? If so, can these relationships be learned and ex-
ploited during active learning? The answers to the questions illustrate the utility and promise of
active learning algorithms in complex real-world learning systems.

iii

ACKNOWLEDGMENTS

This thesis would not exist without the help and guidance of many people. I am happy to take
this opportunity to thank those who have influenced me during my graduate career.

Professionally, I am most indebted to my advisor, Mark Craven. Throughout my time working
with him, he has provided an ideal balance of independence and direction regarding the work I
present in these pages. He gave me the freedom to pursue my own research interests, but was
always there to reign me in (when I got carried away) or help me get back on my feet (when I
floundered). He has taught me a great deal about artificial intelligence, machine learning, and how
to look at real problems—and real results—from an insatiably curious and scientific point of view.
Most importantly, he has been a good friend and ally for the journey1.

I also thank the members of my PhD committee for the investments they have made in my
education and research. Jude Shavlik, David Page, and Xiaojin “Jerry” Zhu have introduced me
to a variety of ways of thinking about and using machine learning in the real world. They were
also always (well, usually) game for a good discussion whenever I popped in unannounced. Lew
Friedland played an important role as well, through our useful conversations and his interest in
collaborating on research involving the CKB data set in Chapter 6.

Further down the food chain, various students, post-docs, and visitors in the machine learn-
ing research group have made valuable contributions to my personal and professional life. I am
specifically grateful to Soumya Ray and David Andrzejewski, who assisted me in annotating the
SIVAL and Spec data sets, respectively, which are described in Chapter 6. Keith Noto made a
great flat-mate during our time annexed at the University of Cambridge, sharing fabulous teas but
bland British food. Mark Goadrich, Louis Oliphant, Michael Waddell, and Housam Nassif have
been great office-mates over the years, always ready to scribble away on the whiteboards with me
(whether it was relevant to research or not). Mark’s fetish for German board games proved vital to
my sanity at times as well. Thanks also to Bess Berg, Joe Bockhorst, Jesse Davis, Andrew Gold-
berg, Gautam Kunapuli, Rich Maclin, Michael Molla, Sriraam Natarajan, Irene Ong, Yue Pan,
Beverly Seavey, Adam Smith, Ameet Soni, Lisa Torrey, Jurgen Van Gael and Trevor Walker for
sharing in ideas and lunch breaks along the way.

Beyond the research group, I must thank Matt Anderson for his exquisite taste in Bourbon,
marginal taste in pop culture, and encyclopedic knowledge of Macintosh computers. I am also
pleased to have spent a portion of my time in Madison as part of its most celebrated all-graduate-
student guitar, cello, and trumpet folk-rock trio. Brian and Sarah Wynia Smith were the other

1Mark may also be partially responsible for any physical fitness I possess. Before we met, I had never been skiing
or run a marathon. Due to a knee injury from the former I have yet to do the latter, but he let me graduate anyway.

iv

two thirds of that equation, and have been great friends and colleagues as well. A multitude of
other people have come and gone through various departments (and apartments) over the years,
too numerous to list here, but I appreciate the impact they have made to my life in the tundra.

Outside of Madison, Chinatsu Aone and Dmitry Zelenko created a stimulating research en-
vironment for me at SRA International during the summer of 2001. Likewise, Tom Rindflesch
and Lan Aronson provided me with challenging research opportunities at the National Library of
Medicine during the fall of 2003. These experiences not only put me in proximity to all of the
amazing museums in our nation’s capital, but also influenced my decision to pursue the PhD and
to look more closely at ways of applying artificial intelligence to real-world problems. Rolling
back the clock a little further, Dave Berque, my undergraduate advisor at DePauw, is who talked
me into applying to graduate school in the first place (but I’m not one to hold a grudge). Thanks to
Tom Warhover, Reuben Stern, and Brian Hamman at the Columbia Missourian and the Reynolds
Journalism Institute at the University of Missouri, who helped coordinate annotation efforts for
the CKB corpus described in Chapter 6. At the University of Cambridge Computer Laboratory,
I thank Ted Briscoe, Niki Karamanis, Ian Lewin, Advaith Siddharthan, and Andreas Vlachos for
making my time there enjoyable as well as productive. I have also been fortunate to meet and
converse with many other helpful people at conferences over the years. In particular, thanks to
Andrew McCallum, Aron Culotta, and Gregory Druck at UMass-Amherst for useful discussions
regarding conditional random fields and active learning.

I rarely went hungry during my tenure as a graduate student. That is due in no small part
to the fact that my research was financially supported, at various times, by the National Science
Foundation, grant IIS-0093016, and the National Institutes of Health, grants R01-LM07050 and
T15-LM07359.

Modulo one or two incidents as a teenager, my family has always been very supportive of
my life choices. My stint in graduate school has been no different. In a way, the research path
I have taken is a clear union of my mother’s love for language and my father’s love for biology
and mathematics (culminating in my schizophrenic love for all of it). Even though my studies
have taken me far away from them, my parents have been an unwavering source of support and
encouragement, constantly assuring me that “of course” I can do this, even though most of the time
they have no clue what the heck I do.

Finally, I am most personally indebted to my wife, lover, and best friend Natalie. Graduate
school has been a difficult journey for both of us (and this thesis certainly look longer than ex-
pected), but it is because of her that I even did it at all. Every step of the way, she has made me
laugh, made me food, and then made me go do the dishes. Now that the ink is dry on this volume
in our journey together, I cannot wait to see what is in store for us next...

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

LIST OF TABLES . ix

LIST OF FIGURES . x

NOMENCLATURE . xii

1 Introduction . 1

1.1 Active Learning . 2
1.2 Thesis Statement . 3
1.3 Outline . 4

2 Background . 5

2.1 Supervised Learning for Classification . 5
2.1.1 Logistic Regression . 6
2.1.2 Example: Text Classification . 8

2.2 Supervised Learning with Structured Instances 9
2.2.1 Sequence Labeling and CRFs . 9
2.2.2 Multiple-Instance Learning and MILR . 11

2.3 Evaluation Measures and Methodology . 14
2.4 Active Learning . 15

2.4.1 Pool-Based Active Learning and Query Selection 16
2.4.2 Example: Active Text Classification . 17

2.5 Summary . 18

3 Active Learning for Sequence Labeling . 19

3.1 Introduction . 19
3.2 Active Learning for Sequence Models . 20

3.2.1 Uncertainty Sampling . 21
3.2.2 Query-By-Committee . 22
3.2.3 Expected Gradient Length . 23
3.2.4 Fisher Information . 24

vi

Page

3.2.5 Information Density . 25
3.3 Sequence Labeling Data Sets . 26
3.4 Experiments . 27

3.4.1 Discussion of Learning Curves . 28
3.4.2 Discussion of Run Times . 31

3.5 Summary and Future Work . 31

4 More on the Information Density Algorithm . 33

4.1 Similarity Functions . 33
4.2 Weighting the Density Term . 36
4.3 Batch-Mode Active Learning . 37
4.4 Summary and Future Work . 40

5 Multiple-Instance Active Learning . 42

5.1 Introduction . 42
5.2 Learning from Labels at Mixed Granularities . 44
5.3 Query Selection Algorithms . 45

5.3.1 Querying Bags . 46
5.3.2 Querying Instances . 48

5.4 Multiple-Instance Data Sets . 48
5.5 Experiments . 51

5.5.1 Scenario I: Label a Query Bag . 51
5.5.2 Scenario II: Label a Query Instance from a Positive Bag 54
5.5.3 Scenario III: Label Any Positive Instance from a Positive Query Bag 56
5.5.4 Scenario IV: Label All Instances in a Positive Query Bag 58
5.5.5 Comparison of Instance-Labeling Scenarios 60
5.5.6 Active Learning with Diverse Density . 63

5.6 Summary and Future Work . 63

6 Accounting for Real-World Annotation Costs . 65

6.1 Introduction . 65
6.2 Data Sets and Annotation Methodology . 66

6.2.1 CKB News Corpus . 67
6.2.2 SIVAL Image Repository . 68
6.2.3 Speculative Text Corpus . 68
6.2.4 SigIE Email Corpus . 70

6.3 Analysis and Experiments . 70

vii

Page

6.3.1 Are Annotation Times Variable for a Given Task or Domain? 70
6.3.2 Do Times Vary from One Annotator to the Next? 71
6.3.3 Are Annotation Times Stationary? . 71
6.3.4 How Stochastic Are Annotation Times? 73
6.3.5 Can Annotation Times Be Accurately Predicted? 75
6.3.6 Can We Improve Active Learning by Utilizing Cost Information? 77

6.4 Summary and Future Work . 78

7 Active Learning Literature Survey . 80

7.1 What is Active Learning? . 80
7.2 Scenarios . 80

7.2.1 Membership Query Synthesis . 81
7.2.2 Stream-Based Selective Sampling . 81
7.2.3 Pool-Based Active Learning . 82

7.3 Query Strategy Frameworks . 83
7.3.1 Uncertainty Sampling . 83
7.3.2 Query-By-Committee . 84
7.3.3 Expected Model Change . 85
7.3.4 Variance Reduction and Fisher Information Ratio 86
7.3.5 Estimated Error Reduction . 88
7.3.6 Density-Weighting Methods . 89

7.4 Empirical Analysis . 89
7.5 Theoretical Analysis . 90
7.6 Structured Outputs . 91
7.7 Batch-Mode Active Learning . 92
7.8 Active Learning With Costs . 92
7.9 Alternative Query Types . 93
7.10 Related Research Areas . 93

7.10.1 Semi-Supervised Learning . 93
7.10.2 Reinforcement Learning . 94
7.10.3 Equivalence Query Learning . 95
7.10.4 Active Class Selection . 95
7.10.5 Active Feature Acquisition and Classification 95
7.10.6 Model Parroting and Compression . 96

8 Additional Work in Biomedical Natural Language Processing 97

8.1 Biomedical Named Entity Recognition . 97
8.1.1 The ABNER Software Tool . 98

viii

Page

8.1.2 Experiments . 99
8.1.3 Beyond Named Entities . 100
8.1.4 Summary . 102

8.2 Document-Passage Relationships in Biomedical Text Classification 102
8.2.1 TREC 2004 Experiments . 103
8.2.2 TREC 2005 Experiments . 104
8.2.3 Summary . 107

9 Conclusion . 108

9.1 Summary of Contributions . 108
9.2 Open Problems and Future Work . 110
9.3 Last Words . 111

Bibliography . 112

APPENDIX Implementation Notes . 125

ix

LIST OF TABLES

Table Page

2.1 Sample baseball vs. hockey word features and parameter values 9

3.1 Generic pool-based active learning algorithm . 20

3.2 Properties of the sequence labeling corpora . 27

3.3 Detailed results for the sequence labeling evaluation 29

4.1 Greedy batch-mode active learning algorithm . 38

5.1 Four multiple-instance active learning scenarios . 43

5.2 Results for MI active learning Scenario I . 53

5.3 Results for MI active learning Scenario II . 56

5.4 Results for MI active learning Scenario III . 58

5.5 Results for MI active learning Scenario IV . 59

8.1 MILR results on the TREC 2005 evaluation . 107

A.1 Comparison of three MI learning algorithms . 127

x

LIST OF FIGURES

Figure Page

2.1 Information extraction as a sequence labeling task 10

2.2 Multiple-instance learning examples . 12

2.3 Generic Diverse Density model for multiple-instance learning 13

2.4 Relationship between actual and predicted positives 14

2.5 The pool-based active learning cycle . 16

2.6 Pool-based active learning using a toy data set . 17

2.7 Learning curves for the baseball vs. hockey example 18

3.1 Uncertainty sampling can be a poor strategy . 26

3.2 Learning curves for the sequence labeling evaluation 30

3.3 Run times for the sequence labeling evaluation . 30

4.1 Learning curves for information density with different similarity functions 35

4.2 Effect of varying the information density β parameter 37

4.3 Learning curves for batch-mode active learning . 39

5.1 How to learn from labels at mixed granularity . 45

5.2 Learning curves for MI active learning Scenario I . 52

5.3 Learning curves for MI active learning Scenario II 55

5.4 Learning curves for MI active learning Scenario III 57

5.5 Learning curves for MI active learning Scenario IV 59

xi

Figure Page

5.6 Comparison of MI active learning scenarios . 61

5.7 Six example instance queries for the goldmedal task 62

6.1 Screenshot of the CKB labeling interface . 67

6.2 Screenshot of the SIVAL labeling interface . 69

6.3 Histograms illustrating annotation time distributions 71

6.4 Box plots illustrating per-annotator time distributions 72

6.5 Average annotation time per instance vs. number of instances labeled 73

6.6 Stochastic artifacts of annotation time . 74

6.7 Learning curves for predicting annotation times . 76

6.8 Learning curves for cost-sensitive active learning . 78

8.1 Screenshot of the ABNER graphical user interface 98

8.2 Empirical results for the ABNER system . 99

8.3 Two-tier system for the TREC 2004 classification task 103

8.4 TREC 2004 experimental results . 105

8.5 TREC 2005 experimental results . 106

xii

NOMENCLATURE

L Labeled data set

U Unabeled data set

x, y Input data point and corresponding label

x,y Input sequence and corresponding label sequence

X , y Input bag (multiple-instance representation) and bag label

θ Parameters in a learned model

` Objective function for training a model (e.g., log-likelihood)

φ(·) Query selection strategy (i.e., measure of informativeness)

H(·) Entropy

D(·‖·) Kullback-Liebler (KL) divergence

1

Chapter 1

Introduction

We live in an age of information. Businesses, government organizations, scientific researchers,
and individuals today are confronted with it in vast quantities: from news feeds and web sites to
financial transactions to traffic updates (all largely in electronic form). Furthermore, things like
email and instant messaging, address books, digital photos, and personal music and video libraries
add to our growing individual data footprints. Managing all this data is becoming a real chal-
lenge. Disciplines like biology and medicine are rapidly transitioning into information sciences.
Large-scale DNA sequencing (Blattner et al., 1997) and other high-throughput technologies such
as SNP genotyping chips (Wang et al., 1998) and expression microarrays (Schena et al., 1995)
allow researchers to easily obtain thousands of measurements of biological interest at once, but
these measurements often lack any obvious interpretation. Such advances are prodding biomedical
discovery toward information management tasks. Increasingly, these large collections of data are
becoming critical to our everyday life and work. As digital computers become more tightly woven
into the fabric of society, the proliferation of data will grow in both quantity and kind, as will the
need to effectively organize, extract, retrieve, and even interpret the information buried therein.

Fortunately, the technological advances that have helped give rise to all this information have
also created a fruitful environment for research in machine learning. Machine learning is the study
of computer algorithms that automatically improve through experience. They improve by becom-
ing better at explaining observations, making decisions, or predicting outcomes. For example,
machines can interpret human speech by learning from vocal recordings that have been annotated
for words and sentences (Tur et al., 2005). They can learn to drive a car after observing human
driving behavior for a period of time (Urmson et al., 2008). They can even diagnose diseases by
analyzing profiles of healthy vs. unhealthy patients (Mangasarian et al., 1995; Golub et al., 1999).
Generally, the learning methods used for information management tasks fall into two groups:

• Unsupervised learning. The learning system is given a collection of “unlabeled” data. The
goal is to organize aspects of the collection in some way. For example, clustering data points,
called instances, into natural groups based on a set of observable features.

• Supervised learning. The learning system is given a collection of “labeled” instances, each
denoted by the pair 〈x, y〉. The goal is to predict the label y for any new instance x, based
on a set of features that describe it. When y is a real number, the task is called regression,
when it is a set of discrete values, the task is called classification.

2

This thesis is concerned with applications that can be approached as supervised learning prob-
lems and, more specifically, as tasks that assign discrete labels to instances with complex input
structures (more details in the next chapter). Algorithms have been developed for a host of inter-
esting information management challenges. For example, models learned via supervised learning
have been used to categorize nearly every type of digital media, from classifying newspaper arti-
cles (Lewis and Ringuette, 1994) and web pages (Craven et al., 1998), to identifying the contents
of digital images (Chapelle et al., 1999), determining musical genre for audio recordings (Li et al.,
2003), and even detecting objects and activities in video surveillance feeds (Hoiem et al., 2006).
Supervised learning has also had much success in information extraction, such as recognizing per-
son and organization names in newswire texts (Sang and DeMeulder, 2003), or identifying gene
and protein mentions in biomedical journal articles (Settles, 2005), with the goal of mining inter-
esting semantic information out of plain text. For many real-world applications, robust and scalable
supervised machine learning algorithms have been developed and are in common use.

1.1 Active Learning

So what, then, is active learning? Active learning is the study of machine learning algorithms
that ask questions. The key hypothesis underlying this approach is that, if the learning algorithm
is allowed to choose the data from which it learns—to be “curious,” if you will—it will perform
better with less training. Why is this a desirable property for learning algorithms to have? Consider
that, for any supervised learning system to perform well, it must often be trained on hundreds (even
thousands) of labeled instances. Sometimes these labels come at little or no cost, such as the the
“spam” flag you mark on unwanted email messages, or the five-star rating you might give to films
on a social networking website. Learning systems use these flags and ratings to better filter your
junk email and suggest movies you might enjoy. In these cases you provide such labels for free, but
for many other more sophisticated supervised learning tasks, labeled instances are very difficult,
time-consuming, or expensive to obtain. Here are a few examples:

• Speech recognition. Accurate labeling of speech utterances is extremely time consuming
and requires trained linguists. Zhu (2005a) reports that annotation at the word level can take
ten times longer than the actual audio (e.g., one minute of speech takes ten minutes to label),
and annotating phonemes can take 400 times as long (e.g., nearly seven hours). The problem
is compounded for rare languages or dialects, since expert annotators are equally rare.

• Information extraction. Good information extraction systems must be trained using labeled
documents, and require detailed annotations. Users must highlight entities or relations of
interest in text, such as person and organization names, or whether a person works for a
particular organization. Locating such entities and relations can take half an hour for even
simple newswire stories (as discussed in Chapter 6). Annotations for certain knowledge do-
mains may require additional expertise, for example, annotating gene and disease mentions
for biomedical information extraction often requires PhD-level biologists.

3

• Classification and filtering. Learning to classify documents (e.g., articles or web pages) or
any other kind of media (e.g., audio and video files) requires that users label each document
or media file with particular labels, like “relevant” or “not relevant.” Having to annotate
thousands of these instances can be tedious and even redundant. As with the previous ex-
amples, some applications may require hiring expensive annotators with rare, specialized
training and expertise.

For many of these sorts of learning tasks, training instances take the form of complex input
structures, e.g., sequences of words which must be individually labeled. These structured instances
contribute in no small part to the high annotation costs associated with training models for these
tasks. However, for these and similar applications, vast amounts of unlabeled data are readily
available at low cost or even for free. In such cases, we can often take advantage of what the system
has already learned by allowing it to ask questions about these vast and inexpensive unlabeled
resources. In particular, if we allow an active learner to examine the unlabeled data and then query
for the labels of instances it considers to be informative, we can make the most of the unlabeled
data that is available. In effect, an active learner learns only what it needs to in order to improve,
thus reducing the overall cost of training an accurate system.

1.2 Thesis Statement

This thesis aims to explore various key aspects of active learning for tasks that involve struc-
tured instances. The chapters that follow (i) describe machine learning approaches to various
structured learning tasks, (ii) present the active learning scenarios and algorithms I have developed
for these learning methods, and (iii) discuss how these approaches can mitigate the amount of work
required to acquire labeled data in practice. Specifically, I focus on the following hypotheses:

i. Strategies that take into account how “representative” or “relevant” query instances are can
produce more accurate systems with fewer labeled instances than strategies that do not.

ii. When querying instances with complex structures (e.g., labels on individual words in a sen-
tence), strategies that consider the structured instance as a whole can perform better than
strategies that aggregate individual label information.

iii. For some structured instances, labels can be acquired at multiple levels of granularity (e.g.,
documents and paragraphs). By selectively querying at these various granularities, particu-
larly when one is easier to label than another, we can even further reduce annotation effort.

iv. Not all instances have equal annotation cost. To truly minimize the cost of acquiring labeled
data, an active learning system should not only consider how informative each query is to
the learner, but also take into account how expensive it will be for an annotator to label.

4

1.3 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents an overview of supervised learning and active learning in general, as well
as the particular problem settings that I consider in this work.

• Chapter 3 details several active learning strategies in the context of sequence labeling tasks,
such as information extraction. I survey previously used query selection algorithms, and
propose various novel algorithms to address their shortcomings.

• Chapter 4 further explores different characteristics and extensions of the information density
algorithm, which I introduce in Chapter 3 of this thesis.

• Chapter 5 proposes multiple-instance active learning, a novel framework for acquiring and
learning from labels at mixed levels of granularity. This setting can further reduce the anno-
tation effort required for tasks such as text and image classification and retrieval.

• Chapter 6 investigates several key aspects of active learning with respect to minimizing real-
world annotation costs, specifically elapsed annotation time.

• Chapter 7 provides a survey of the active learning literature.

• Chapter 8 describes some of my additional research in biomedical natural language process-
ing, not directly related to active learning.

• Chapter 9 summarizes the key contributions of this work, discusses open problems and future
directions in active learning, and offers some concluding remarks.

5

Chapter 2

Background

This chapter provides a brief introduction to supervised machine learning and active learning,
as they pertain to the research in the chapters that follow.

2.1 Supervised Learning for Classification

In supervised learning, the machine is provided with labeled instances, each denoted by the
pair 〈x, y〉. Its objective, then, is to determine how to properly assign a label y to each new instance
x that it encounters in the future. For classification tasks, these labels come from a discrete set of
known class descriptions. For example, suppose we want a system to scan through a collection of
sports articles about baseball and hockey, and to automatically distinguish the two topics. This is
an example of the simplest type of classification problem, binary classification, for which there are
only two labels (e.g., baseball and hockey).

In general, the problem of supervised classification can be characterized as follows. The learner
is given a training set of labeled instances, denoted L = {〈x, y〉(1), . . . , 〈x, y〉(L)}, for which the
instances are described by some input representation. In some cases, each x is represented by
a vector ~x ∈ RJ composed of real-number measurements for each feature in the representation;
this instance description is called a feature vector. Under this representation, instances can be
thought of as points in a J-dimensional coordinate space (where J is the number of features),
called a feature space. Finally, we provide the learner with a training procedure which it uses
to induce a model (also called a hypothesis). A model here means a formal representation with
an interpretation, under which instance inputs are mapped to label outputs. Generally, the model
defines some classification function g on the instances: y = g(x). Depending on what form a model
can take, there may be an infinite number of them capable of explaining the observed data in L. So
the purpose of the training procedure is to find the “best” model from among the possibilities. The
set of all possible models for a given problem defines the model space (or hypothesis space). The
training procedure, then, searches through this space to find the optimal model according to some
objective function.

6

2.1.1 Logistic Regression
For many supervised learning algorithms, the model can be characterized by a parameter vector

θ ∈ RK , which is used to parameterize the classification function g on instances. In this thesis,
I primarily focus on probabilistic models of this form, such that g(x) = argmaxy P (y|x; θ). In
other words, the predicted class label y is the one with the highest probability, conditioned on the
instance x under model parameters θ. A simple example of this model type for binary classification
is logistic regression, which defines the conditional probability that an instance is “positive” to be:

P (y = 1|x; θ) =
1

1 + exp(−
∑K

k=1 θkfk(x) + θ0)
.

Here, y = 1 denotes the positive class (y = 0 would denote the negative), and θ is an array of
parameter weights corresponding to features in the input representation, each written fk(x). The
special parameter θ0 is called the bias term, which is a classification threshold of sorts. If the
sum of the weighted features is greater than this bias term, then P (y = 1|x; θ) > 0.5 and logistic
regression will predict the positive class (otherwise it predicts negative).

For a properly trained logistic regression model, a learned weight θk should be positive for a
feature fk that is indicative of the positive class, negative for a feature indicative of the negative
class, and near zero for a relatively uninformative feature. These values are determined by the
training procedure, which we can think of as an optimization algorithm that searches through the
model space for a good set of parameters. The “goodness” of a model’s parameters is measured by
the objective function, which evaluates how well a model fits the observations in the training set.
A common objective function for logistic regression is the log-likelihood of the data:

`(L; θ) =
L∑
l=1

logP (y(l)|x(l); θ)

=
L∑
l=1

(
y(l) log o(l) + (1− y(l)) log(1− o(l))

)
,

where L is the size of the labeled training set L, and ` is the conditional log-likelihood of the
training set under the model θ. The output variable o(l) in the expanded form is shorthand for
P (y = 1|x(l); θ), or the conditional probability that x(l) is positive under the model. Since these
equations represent smooth functions of the model parameters θ, we can estimate their values using
gradient-based optimization methods (Nocedal and Wright, 1999). The partial derivative ∂`

∂θk
, used

in computing the training gradient ∇`(L; θ), is given in the Appendix. Also note that the log-
likelihood of a so-called “exponential” model like logistic regression is a concave function. As a
result, there is a single set of parameters with the maximal value, and our training procedure is
guaranteed to find the optimal solution with respect to the log-likelihood function1.

1Another reason to use log-likelihood is that it transforms the likelihood of the data into a sum over the logs of
labeled instance probabilities. With plain likelihood estimation, the objective function must compute the product of
many probabilities, resulting in extremely small numbers that can be difficult to represent on computer hardware.

7

If we wish to make more complex label predictions, logistic regression can be easily general-
ized to more complex exponential models. For example, a common task is classifying objects into
three or more label classes. One such approach is a multinomial logistic regression model, also
known in the literature as a maximum entropy or MaxEnt model (Berger et al., 1996). This is a
generalization of binary logistic regression that is able to make predictions for an arbitrary number
of labels. MaxEnt models define the conditional probability of some label y given instance x to be:

P (y|x; θ) =
1

Z(x)
exp

(
K∑
k=1

θkfk(y, x)

)
,

where Z(x) =
∑

i P (yi|x; θ) is a normalization factor over all possible class labels. Note that
each feature fk(y, x) is now tied not only to the instance x, but also to the label y. This means that
there can be many more parameters than input features (i.e., K � J), but it also allows us to use
potentially different feature sets for each label. MaxEnt models are usually trained via gradient
optimization as well, using a log-likelihood objective function:

`(L; θ) =
L∑
l=1

logP (y(l)|x(l); θ)−
K∑
k=1

θ2
k

2σ2
.

Here, the second term is a Gaussian “regularization penalty” on ‖θ‖ to prevent over-fitting due
to feature sparsity in L. This regularizer essentially encourages the training procedure to prefer
a set of parameters θ with many smaller weights over a θ with only a few very large weights.
This regularization term is sometimes added to the objective function of binary logistic regression
models as well. The partial derivative calculation used to compute this training gradient is given
by Berger et al. (1996).

In this thesis, I conduct experiments using exponential methods that generalize logistic regres-
sion in similar ways. This family of algorithms can be used for many important supervised learning
problems, such as labeling sequences (Chapters 3, 4, and 6), classification with more than two la-
bels (Chapters 4 and 6), and multiple-instance learning (Chapters 5 and 6), as well as many other
applications I do not consider here. Years of machine learning research have also demonstrated
that these sorts of models are state-of-the-art for many important learning problems, in particular
those that require large feature spaces. Moreover, for most of these model types, gradient-based
training procedures are guaranteed to find the optimal set of parameters.

Note that there are many other types of supervised learning approaches. Some, like naı̈ve Bayes,
model the joint probability P (x, y) of the labeled training instances, and use Bayes’ rule to predict
label probabilities2. Other approaches are non-probabilistic in nature, such as decision trees and
inductive logic programming, and rely instead on classification rules in a subset of propositional
or first-order logic (respectively). Still others, such as nearest-neighbor classification, maintain no
model parameters at all and assign labels to instances based on the most similar labeled instances

2Learning algorithms that model the joint probability P (x, y) and classify using Bayes’ rule are called, by con-
vention, generative approaches. Algorithms that model the conditional probability P (y|x) directly (e.g., logistic
regression) are called discriminative approaches. The approaches in this thesis are mainly discriminative.

8

in the training set. Each approach possesses its own inductive bias and unique attributes, which
make it more or less well-suited to certain problem settings. For a good overview of supervised
learning methods in general, I recommend Duda et al. (2001) or Mitchell (1997). While the ac-
tive learning approaches I present in this work are described and evaluated in terms of exponential
models, most of them are in no way limited to a particular learning algorithm. Many of them have
analogs for these other learning approaches as well. I stress that whenever supervised learning is
possible, active learning should also be possible.

2.1.2 Example: Text Classification
Now let us consider how we can apply logistic regression to a text classification task. Re-

call our example from before of classifying sports documents with one of two labels: baseball
vs. hockey. This task comes from the 20 Newsgroups corpus (Lang, 1995), which is a collec-
tion of internet newsgroup posts from the early 1990s. Two of the newsgroup collections are
rec.sport.baseball and rec.sport.hockey, consisting of about 1000 documents each.

To treat this as a learning task, we first need an input representation for text documents. A
typical approach is the “bag of words” representation, which simply considers each word to be its
own feature, and the value of each feature is the number of times the corresponding word appears
in a given document. For example, if fk is the feature PUCK, and the word “puck” occurs three
times in document x, then fk(x) = 3. Alternatively, if “puck” doesn’t appear in the document at
all, then fk(x) = 0. Encoding each document in this way produces a feature vector of real values
for each word in the input representation3. Next, we simply define class labels, e.g., let baseball
be positive (y = 1) and hockey be negative (y = 0). This is all that is required to train a text
classifier using logistic regression.

Table 2.1 shows a few sample word features and their trained logistic regression parameter
weights for this example. Features with positive weights along the left-hand side indicate baseball
documents, while the negative weights on the right indicate hockey documents. Not surprisingly,
the words BASEBALL and HOCKEY are the features with the highest magnitude at the extreme
ends of the parameter spectrum. Notice also that as weights approach zero (toward the bottom of
either column), the features become more ambiguous, hence they are less informative. A logistic
regression classifier achieves average accuracy = 0.985 for this task, estimated using ten-fold
cross-validation (see Section 2.3 for more details on experimental methodology).

3Common words, called stop-words (e.g., “the” and “which”), are usually removed since they are often not useful
for classification anyway. It is also sometimes common practice to use stemming, which strips off affixes to reveal
the root word (e.g., “batting” and “punched” are reduced to their stems “bat” and “punch”). In this example, I do use
stop-word filtering, but do not use stemming.

9

Table 2.1: Sample word features from the baseball vs. hockey example. Features are shown with
their corresponding parameter weights from a trained logistic regression model.

Feature Weight Feature Weight
BASEBALL 0.1131 HOCKEY -0.1749
RUNS 0.0783 GOAL -0.0625
BRAVES 0.0649 PERIOD -0.0559
PITCHER 0.0516 PLAYOFF -0.0486
BALL 0.0493 PUCK -0.0394
HOME 0.0264 RANGERS -0.0312
STRIKE 0.0213 CANADIAN -0.0216
UMPIRE 0.0163 PENALTIES -0.0204
WINS 0.0093 RESULTS -0.0105
GAMES 0.0085 INJURIES -0.0022
ROOM 0.0002 COMPUTER -0.0005

2.2 Supervised Learning with Structured Instances

In the first chapter, I argued that many interesting supervised learning tasks involve learning
from structured instances. In this section, I describe two such learning settings, sequence labeling
and multiple-instance learning, and introduce the exponential models I use in each case.

2.2.1 Sequence Labeling and CRFs
Many real-world applications of machine learning, particularly in the areas of natural language

processing (Manning and Schütze, 1999) and bioinformatics (Durbin et al., 1998), involve labeling
and segmenting sequences. For example, we might wish to extract important organization names
from a sentence (i.e., a sequence of words) or identify genes in DNA (i.e., a sequence of nucleic
acids). Figure 2.1 illustrates how, for example, an information extraction problem can be viewed
as a sequence labeling task. Let x = 〈x1, . . . , xT 〉 be an observation sequence of length T with a
corresponding label sequence y = 〈y1, . . . , yT 〉. Words in a sentence correspond to tokens in the
input sequence x, which are mapped to labels in y. Figure 2.1(a) presents an example 〈x,y〉 pair.
The labels indicate whether a given word belongs to a particular entity class of interest (org and
loc in this case, for “organization” and “location,” respectively) or not (null).

Unlike the text classification example from before, each instance x in this setting is not rep-
resented by a single feature vector, but rather a structured sequence of feature vectors: one for
each token (i.e., word). For example, the word “Madison” might be described by the features
WORD=Madison and CAPITALIZED. However, it can variously correspond to the labels person
(“The fourth U.S. President James Madison...”), loc (“The city of Madison, Wisconsin...”), and org
(“Madison defeated St. Cloud in yesterday’s hockey match...”). The appropriate label for a token

10

start nullThe

org

ACME

Inc.

ofces

in

loc

announced...

Chicago

null

The ACME Inc. offices in Chicago announced ...

null null nullorg org loc

x =

y = ...

(a) (b)

Figure 2.1: An information extraction example viewed as a sequence labeling task. (a) A sample
input sequence x and corresponding label sequence y. (b) A sequence model repre-
sented as a finite state machine, illustrating the path of 〈x,y〉 through the model.

often depends on its context in the sequence. For sequence-labeling problems like information
extraction, labels are typically predicted by a sequence model based on a probabilistic finite state
machine, such as the one shown in Figure 2.1(b).

In this thesis, I focus on a family of sequence models known as conditional random fields,
or CRFs (Lafferty et al., 2001). The rest of this section serves as a brief introduction. CRFs
are undirected statistical graphical models which have demonstrated state-of-the-art accuracy on a
wide variety of sequence labeling tasks, including information extraction (Settles, 2005; Sang and
DeMeulder, 2003), document segmentation (Carvalho and Cohen, 2004), part-of-speech tagging
(Lafferty et al., 2001), and shallow parsing (Sha and Pereira, 2003). In this work I use linear-chain
CRFs, which correspond to conditionally trained probabilistic finite state machines.

A linear-chain CRF model with parameters θ defines the posterior probability of label sequence
y given input sequence x to be4:

P (y|x; θ) =
1

Z(x)
exp

(
T∑
t=1

K∑
k=1

θkfk(yt−1, yt,xt)

)
. (2.1)

Here Z(x) is a normalization factor over all possible labelings of x, and θk is one of K model
parameter weights corresponding to some feature fk(yt−1, yt,xt). Each feature fk describes the
sequence x at position t with label yt, observed along a transition from label states yt−1 to yt in the
finite state machine. To clarify, consider the example from Figure 2.1 again. Here, fk might be the
feature WORD=ACME and have the value fk = 1 along a transition from the null state to the org
state (and 0 elsewhere). Other features set to 1 here might be ALLCAPS and NEXTWORD=Inc.
The weights in θ are set to maximize the conditional log-likelihood ` of training sequences in the

4In this thesis I assume, without loss of generality, that each label is uniquely represented by one model state, thus
each label sequence y corresponds to exactly one path through the model.

11

labeled training set L:

`(L; θ) =
L∑
l=1

logP (y(l)|x(l); θ)−
K∑
k=1

θ2
k

2σ2
, (2.2)

where the second term is a Gaussian regularization penalty on ‖θ‖ to prevent over-fitting due to
sparsity in L. As with other exponential models in this family (e.g., logistic regression), the pa-
rameter weights θ can be learned using gradient-based methods, usually a quasi-Newton approach
called L-BFGS (Liu and Nocedal, 1989). The partial derivative ∂`

∂θk
, used in computing the training

gradient ∇`(L; θ), is given by Sutton and McCallum (2006). Once a CRF is trained, labels can
be predicted for new sequences using the Viterbi algorithm (Rabiner, 1989). For more details on
CRFs and their training or inference procedures, I recommend Sutton and McCallum (2006) for a
good introduction.

2.2.2 Multiple-Instance Learning and MILR
A very different setting for learning with structured inputs is the multiple-instance (MI) learn-

ing framework. In the MI setting, instances are grouped into bags (i.e., multi-sets) which may
contain any number of instances. More formally, let each bag X be composed of N constituent
instances: X = {x1, x2, . . . , xN}. A bag is labeled negative if and only if all of its instances xn are
negative. A bag is labeled positive, however, if at least one of its instances is positive. Note that
positive bags may also contain negative instances. The MI setting was formalized by Dietterich
et al. (1997) in the context of drug activity prediction, and has since been applied to a wide variety
of tasks including content-based image retrieval (Maron and Lozano-Perez, 1998; Andrews et al.,
2003; Rahmani and Goldman, 2006), text classification (Andrews et al., 2003; Ray and Craven,
2005), and protein family modeling (Tao et al., 2004).

Figure 2.2 illustrates how the MI representation can be applied to (a) content-based image re-
trieval (CBIR) and to (b) text classification. For the CBIR task, images are represented as bags
and instances correspond to segmented regions of the image. A bag representing a given image is
labeled positive if the image contains some object of interest. The multiple-instance paradigm is
well suited to this task because only a few regions of an image may represent the object of interest,
such as the gold medal in Figure 2.2(a). An advantage of the MI representation here is that it is
significantly easier to label an entire image than it is to label each segment, or even a subset of
the image segments. For the text classification task, documents can be represented as bags and
instances correspond to short passages (e.g., paragraphs) that comprise each document. This for-
mulation is useful in classification tasks for which document labels are freely available or cheaply
obtained, but the target concept is represented by only a few passages. For example, consider the
task of classifying biomedical journal articles according to whether or not they contain information
about a particular protein, characterized by labels in the Gene Ontology (GO Consortium, 2004),
such as its sub-cellular location. The article in Figure 2.2(b) is labeled by the Mouse Genome
Database (Eppig et al., 2005) as a citation for the protein catalase that specifies such a “GO code.”
However, the text that actually states this relationship is only a short passage on the second page
of the article. The MI approach is therefore compelling because document labels can be cheaply

12

bag: image = { instances: segments } bag: document = { instances: passages }

(a) (b)

Figure 2.2: Applications of multiple-instance learning. (a) In content-based image retrieval, im-
ages are represented as bags and instances correspond to segmented image regions.
(b) In text classification, documents are bags and instances represent passages of text.
In each problem domain, an example positive instance is highlighted.

obtained (say from the Mouse Genome Database), but the labeling is not readily available at the
most appropriate level of granularity (passages).

Each instance xn can be represented by a feature vector (e.g., color and texture features in
CBIR tasks, or word features in text classification tasks). However, a labeled bag X is actually
a set of these instances (feature vectors), thus there is no direct relationship between features and
labels. The inherent challenge in MI learning, therefore, is to induce an accurate model despite the
ambiguity about which instances are positive, since they are obscured by the structure of the MI
representation. One general approach is the Diverse Density framework (Maron and Lozano-Perez,
1998) for training probabilistic MI learning models. In my work, I train classifiers using multiple-
instance logistic regression (MILR), a generalization of logistic regression in the Diverse Density
framework that has been shown to be a state-of-the-art method for CBIR, text classification, and
other MI learning tasks (Ray and Craven, 2005).

For MI classification, we seek P (y = 1|X), the conditional probability that the label y is
positive for a given bag X . If a classifier can provide an analogous probability P (yn = 1|xn) for
each instance xn, we can use a combining function (such as softmax or noisy-or) to combine the
posterior probabilities for all instances in a bag and estimate its posterior probability P (y = 1|X).
The combining function here is what explicitly encodes the MI assumption. If the model finds an
instance likely to be positive, the output of the combining function should find its corresponding
bag likely to be positive as well. Figure 2.3 presents a diagram of a generic model in the Diverse
Density framework.

13

bag X

instance-level
classifier

instances {x1, . . . ,xN}

bag output o

instance outputs {o1, . . . ,oN}

bag-level
combining function

Figure 2.3: Diagram of a generic Diverse Density model for multiple-instance learning.

We can use logistic regression to estimate conditional probabilities for each instance:

on = P (yn = 1|xn; θ) =
1

1 + exp(−
∑K

k=1 θkfk(xn) + θ0)
. (2.3)

Here the output on is shorthand for P (y = 1|xn; θ), the conditional probability that instance xn
is positive under the model. Following convention, θ0 is called the bias term, and acts as the
classification threshold. In order to combine each output probability on for instances into an output
probability o for the bag, I use the softmax function:

o = P (y = 1|X ; θ) = softmaxα(o1, . . . , oN)

=

∑N
n=1 on exp(α on)∑N
n=1 exp(α on)

.
(2.4)

The constant α determines the extent to which softmax behaves like a hard max function. It
computes the mean when α = 0, approximates the max function as α→∞, and approximates the
min function as α→ −∞.

In the general MI setting, we do not know the labels of instances in positive bags. However,
because the equations above represent smooth functions of the model parameters θ, we can still
learn parameter values using gradient-based optimization, such as maximizing the log-likelihood
of training bags in the labeled set L = {〈X , y〉(1), . . . , 〈X , y〉(L)}:

`(L; θ) =
L∑
l=1

logP (y(l)|X (l); θ)−
K∑
k=1

θ2
k

2σ2

=
L∑
l=1

(
y(l) log o(l) + (1− y(l)) log(1− o(l))

)
−

K∑
k=1

θ2
k

2σ2
.

(2.5)

Here y(l) ∈ {0, 1} is the known label of bag X (l), o(l) is the bag output probability under the model,
and the second sum is a Gaussian regularization penalty on ‖θ‖ to prevent over-fitting (note that
the bias weight θ0 is not regularized). As with CRFs, I use L-BFGS (Liu and Nocedal, 1989)
to optimize these parameters. Calculations for the partial derivative ∂`

∂θk
, used in computing the

training gradient∇`, are given in the Appendix.

14

actual positives predicted positives

tn

tpfn fp

Figure 2.4: A Venn diagram illustrating the relationship between actual and predicted positives.
The various overlaps define regions of tp (true positives), fp (false positives), tn (true
negatives) and fn (false negatives).

Previous work with MILR has minimized the squared-loss objective function (Settles et al.,
2008b; Ray and Craven, 2005). In my work for this thesis, however, I have found that optimizing
log-likelihood yields more accurate results. Note that the log-likelihood of MILR (unlike stan-
dard supervised logistic regression) is non-convex due to the surface of the combining function.
This means that gradient-based optimization is not guaranteed to converge to the globally optimal
solution. Nevertheless, my work indicates that regularized log-likelihood usually behaves quite
consistently, much more so than squared-loss. A detailed empirical comparison of both MILR for-
mulations and well as the original Diverse Density approach (which couples a Gaussian instance
model with a noisy-or combining function) are provided in the Appendix.

2.3 Evaluation Measures and Methodology

Once we have chosen our parameters θ, or trained the model, it is a good idea to evaluate how
well it performs. To do this, we must use an evaluation measure of some sort, and this section
outlines the various measures I use for my experiments in this thesis. For a particular label of
interest, we are provided with a set of actual positives (e.g., objects that belong to that label)
contained within the data set. The model then makes a set of predicted positives (e.g., the objects it
assigns to that label) for the same data set. The actual and predicted label groupings can be thought
of as indicator variables, and their cross product results in four important values: tp (the number
of true positives), fp (false positives), tn (true negatives), and fn (false negatives). Figure 2.4
illustrates the relationship between these numbers.

15

A basic evaluation measure is accuracy5 = tp+tn
tp+fp+tn+fn

. Basically, this measure represents
the fraction of objects that were labeled correctly by the model. In some problems, however, the
data may be highly skewed, e.g., there might be nine times as many negative objects as positives.
In a cases like this, accuracy is a poor evaluation measure because a model that labels everything
negative will still have accuracy = 0.9. In these situations, it is common instead to use precision,
P = tp

tp+fp
, the fraction of predictions that are correct, and recall, R = tp

tp+fn
, the fraction of actual

positives that are correctly predicted. Because of the inherent trade-off between precision P and
recall R, a summary statistic called the F1 measure = 2×P×R

P+R
is commonly used when both are

considered equally important. A final evaluation measure I consider is the area under the Receiver
Operating Characteristic (ROC) curve. An ROC curve measures the rate of true positives vs. false
positives as a threshold is varied across a measure of confidence in its predictions (e.g., the model’s
posterior probability of the target label). It is regarded as a more appropriate measure than accuracy
for some machine learning applications (Provost et al., 1998). The area under the curve AUROC,
also called the Wilcoxon signed-rank test, can be interpreted as the probability that the model will
rank a randomly chosen positive object higher than a randomly chosen negative.

Since it is trivial for a model to do well on the labeled data L that was used to train it, we use
the practice of randomly partitioning data into a training set and an evaluation set, which do not
overlap. In this way, the model is properly evaluated on new instances it has never seen before.
To account for the effects of randomized partitioning, it is common to repeat an experiment for
several runs and average the results. One particular way of doing this is cross-validation. In five-
fold cross-validation, for example, we split the data into five partitions or folds. Then we run five
experiments for which each fold is held aside for evaluation, and the remaining four folds are used
for training; then results are averaged across all folds.

2.4 Active Learning

Supervised learning models, such as the ones described in this chapter, have traditionally been
trained on whatever labeled data is made available to them. As I have argued, active learning can
reduce labeling effort required to train such models by allowing the learner to choose the instances
from which it learns. This section provides an overview of the pool-based active learning setting,
and how it is applied to the kinds of problems investigated in this work. Interested readers may
skip ahead to Chapter 7 for an extended review of the active learning literature. It should be noted
that active learning is a growing and changing field, so the survey is necessarily incomplete.

There are three general scenarios in which active learning is possible: (i) query instances may
be synthesized by the learner de novo, (ii) instances are provided in a stream and the learner
chooses to query or discard each one sequentially, or (iii) there exists a large pool U of unlabeled
data which the learner may examine and select queries from. For many real-world tasks, synthesiz-
ing queries de novo can lead to instances that are unnatural or difficult for humans to interpret. For

5In this thesis, I sometimes use the word “accuracy” to mean the general performance of a model, and not any
evaluation measure in particular. However, when reporting empirical results (e.g., figures in a table or a plot), accuracy
always refers to the measure defined here.

16

machine learning
model

L
U

labeled
training set

unlabeled pool

oracle (e.g., human annotator)

learn a model

select queries

Figure 2.5: The pool-based active learning cycle.

example, Baum and Lang (1992) found that a model learning to recognize handwritten characters
generated query images that were not real characters at all, but artificial combinations of existing
letters and digits. Therefore, the stream-based and pool-based scenarios are often more realistic.
In this thesis, I focus on the pool-based setting, since large repositories of unlabeled texts, images,
and the like are usually available for these sorts of problems.

2.4.1 Pool-Based Active Learning and Query Selection
Figure 2.5 illustrates the pool-based active learning cycle. An active learner may begin with a

small number of labeled instances in the labeled training set L, request labels for a few carefully
selected instances from the unlabeled pool U , learn from the query results, and then leverage its
newly-found knowledge to choose which instances to query next. In this way, the active learner
aims to achieve high accuracy using as few labeled instances as possible. There are many ways to
select query instances, most of which stem from the uncertainty principle in experimental design
and statistics (Federov, 1972). One strategy for pool-based active learning, uncertainty sampling
(Lewis and Gale, 1994), queries the instance that the model is least certain how to label. For prob-
abilistic binary classifiers, this means querying the instance x ∈ U with the posterior probability
P (y = 1|x; θ) that is closest to 0.5 (i.e., the most ambiguous instance).

Figure 2.6 illustrates the potential of active learning in a way that is easy to visualize. First,
I created a toy data set from two Gaussians centered at (-2,0) and (2,0) with standard deviation
σ = 1, each representing a different class distribution. Figure 2.6(a) shows the resulting data set
after 400 instances are sampled (200 from each class); instances are represented as points in a 2D
feature space. In a real-world setting these instances may be available, but their labels usually are
not. Figure 2.6(b) illustrates the traditional supervised learning approach after randomly selecting

17

-3

-2

-1

 0

 1

 2

 3

-4 -2 0 2 4
-3

-2

-1

 0

 1

 2

 3

-4 -2 0 2 4
-3

-2

-1

 0

 1

 2

 3

-4 -2 0 2 4
(a) (b) (c)

Figure 2.6: An illustrative example of pool-based active learning. (a) A toy data set of 400 in-
stances, evenly sampled from two class Gaussians. The instances are represented as
points in a 2D feature space. (b) A logistic regression model trained with 30 labeled
instances randomly drawn from the pool. The line represents the decision boundary of
the classifier (accuracy = 0.7). (c) A logistic regression model trained with 30 actively
queried instances using uncertainty sampling (accuracy = 0.9).

30 instances for labeling, drawn i.i.d. from the problem domain. The line shows the linear de-
cision boundary of a logistic regression model (i.e., where the posterior equals 0.5) trained using
these 30 points. Notice that most of the labeled instances in this training set are far from zero on
the horizontal axis, which is where the decision boundary should probably be. As a result, this
classifier only achieves accuracy = 0.7 on the remaining unlabeled points. Figure 2.6(c), how-
ever, tells a very different story. The active learner uses uncertainty sampling to focus on instances
closest to its decision boundary, assuming it can adequately explain instances in other parts of the
instance space in U . As a result, it avoids requesting labels for redundant or irrelevant instances,
and achieves accuracy = 0.9 with a mere 30 labeled instances. That is a 67% reduction in error
compared to standard supervised learning, and less than 10% of the data was labeled.

2.4.2 Example: Active Text Classification
Now let us apply the same principles of uncertainty sampling to the baseball vs. hockey

example from before. In the supervised learning experiment from Section 2.1.2, we used ten-fold
cross-validation. Thus 10% of the corpus6 was held aside for evaluation for each fold, while the
remaining 90% was used for training. In an active learning experiment, we still hold 10% aside
for evaluation, but only a few of the remaining instances are placed in the labeled set L, while
all others are placed in the unlabeled pool U . The active learner then queries instances from U
according to the iterative active learning cycle shown in Figure 2.5. In this particular experiment,
L is initialized with five random instances each fold.

Active learning algorithms are generally evaluated by constructing learning curves. These
curves plot the evaluation measure of interest as a function of the number of new instances that are

6In text domains, a data set is usually called a corpus.

18

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

ac
cu

ra
cy

number of instance queries

uncertainty sampling
random

Figure 2.7: Learning curves for the baseball vs. hockey example. Curves plot the evaluation
measure (e.g., accuracy) as a function of the number of new instances labeled for two
selection strategies: uncertainty sampling (active learning) and random sampling (pas-
sive learning). We can see that the active learning approach is superior here because
its learning curve dominates that of random sampling.

labeled and added to L. Figure 2.7 shows learning curves for the first 100 instances labeled using
uncertainty sampling vs. random sampling, i.e., traditional “passive” supervised learning in which
instances are drawn i.i.d. from the unlabeled pool. After labeling 30 new instances, the accuracy
of active learning is 0.810, while the supervised learning baseline is only 0.730. As can be seen,
the active learning curve dominates the random baseline curve for all of the points shown in this
figure. We can conclude that an active learning algorithm is superior to some other approach (e.g.,
a random baseline) if it dominates the other for most or all of the points along their learning curves.

2.5 Summary

This chapter has provided an introduction to the principles of supervised learning, experimental
evaluation, and active learning that serve as a foundation for the rest of this document. In the
chapters that follow, I explore various query selection strategies for the more complex, structured
learning models I introduced in Section 2.2. I also consider cases in which the input structure itself
can be exploited by actively acquiring labels at mixed levels of granularity, and how one might
reduce not only the size of the training set L, but minimize real-world annotation costs as well.

19

Chapter 3

Active Learning for Sequence Labeling

This chapter investigates active learning approaches to sequence labeling, which is a fundamen-
tal task for many real-world applications, such as in information extraction and text segmentation.
I survey the methods that have been proposed for sequence models to date, motivate and present
several novel algorithms to address their shortcomings, and conduct a large-scale empirical analy-
sis to compare their performance on multiple benchmark data sets. This work has been previously
published (Settles and Craven, 2008).

3.1 Introduction

Active learning is appropriate for problem domains where unlabeled data are readily available,
but obtaining training labels is expensive. Such is the case with many sequence labeling tasks in
natural language processing. For example, part-of-speech tagging (Lafferty et al., 2001; Seung
et al., 1992), information extraction (Settles, 2005; Sang and DeMeulder, 2003), and document
segmentation (Carvalho and Cohen, 2004) are all typically treated as sequence labeling problems.
The source data for these tasks (i.e., text documents in electronic form) are often easily and inex-
pensively obtained. However, due to the structured nature of sequence labeling tasks, annotating
these texts can be rather tedious and time-consuming, making active learning an attractive tech-
nique for building information management systems that involve these tasks.

While there has been much work on active learning for classification (Zhang and Oles, 2000;
McCallum and Nigam, 1998b; Cohn et al., 1994), active learning for sequence labeling has re-
ceived considerably less attention. A handful methods have been proposed, based mostly on the
conventions of uncertainty sampling, where the learner queries the instance about which it has
the least certainty, and one using query-by-committee; where a “committee” of models selects the
instance about which its members most disagree. I describe these previously proposed methods,
as well as several novel approaches, in the next section.

The comparative effectiveness of the few previously published approaches, however, has not
been studied. Furthermore, it has been suggested that uncertainty sampling and query-by-committee
fail on occasion for classification (Zhu et al., 2003; Roy and McCallum, 2001) by querying out-
liers, e.g., instances that are considered informative in isolation by the learner, but contain little
information about the rest of the distribution of instances. Proposed methods for dealing with
these shortcomings have so far only considered classification tasks.

20

Given: Labeled set L, unlabeled pool U , query strategy φ(·), query batch size B

repeat
// learn a model using the current L
θ = train(L) ;
for b = 1 to B do

// query the most informative instance
x∗b = argmaxx∈U φ(x) ;
yb = label(x∗b) ;
// move the labeled query from U to L
L = L ∪ 〈x∗b ,yb〉 ;
U = U − x∗b ;

end
until some stopping criterion ;

Table 3.1: A generic pool-based active learning algorithm.

This chapter presents two major advances in active learning research for sequence labeling
tasks. First, I motivate and introduce several new query strategies for probabilistic sequence mod-
els. Second, I conduct a thorough empirical analysis of previously proposed methods along with
my algorithms on a variety of benchmark corpora. The remainder of this chapter is organized as
follows. Section 3.2 describes in detail all the query selection strategies designed for sequence
models that I consider. Section 3.4 presents the results of the empirical study, and suggests how
these algorithms might best be used in practice. Section 3.5 concludes with a summary of findings
and suggests future work.

3.2 Active Learning for Sequence Models

In order to select queries, an active learner must have a way of assessing how informative each
instance is. Let x∗ be the most informative instance according to some query strategy φ(x), which
is a function used to evaluate each instance x in the unlabeled pool U . The algorithm in Table 3.1
provides a sketch of a generic pool-based active learning approach. In the remainder of this section,
I describe various query strategy formulations of φ(·) that have been used for active learning with
sequence models. I also point out where I think these approaches may be flawed, and propose
several novel query strategies to address these issues.

Note that, while I describe these active learning algorithms in terms of linear-chain conditional
random fields, or CRFs (see Section 2.2.1), they have analogs for other kinds of commonly used
sequence models such as hidden Markov models, or HMMs (Rabiner, 1989), probabilistic context-
free grammars (Lari and Young, 1990), and general CRFs (Sutton and McCallum, 2006).

21

3.2.1 Uncertainty Sampling
One of the most common general frameworks for measuring informativeness is uncertainty

sampling (Lewis and Gale, 1994), where a learner queries the instance that it is most uncertain how
to label. Culotta and McCallum (2005) employ a simple uncertainty-based strategy for sequence
models called least confidence (LC):

φLC(x) = 1− P (y∗|x; θ).

Here, y∗ is the most likely label sequence, i.e., the Viterbi parse. This approach queries the instance
for which the current model has the least confidence in its most likely labeling. For CRFs, this
confidence can be calculated using the posterior probability given by Equation 2.1.

Scheffer et al. (2001) propose an alternative uncertainty strategy, which queries the instance
with the smallest margin between the posteriors for its two most likely labelings. I call this ap-
proach margin (M):

φM(x) = −
(
P (y∗1|x; θ)− P (y∗2|x; θ)

)
.

Here, y∗1 and y∗2 are the first and second most likely label sequences, respectively. These can
be efficiently computed using the N -best algorithm (Schwartz and Chow, 1990), a beam-search
generalization of Viterbi, with N = 2. The minus sign in front is simply to ensure that φM acts as
a maximizer for use with the algorithm in Table 3.1.

Another uncertainty-based measure of informativeness is entropy (Shannon, 1948). For a dis-
crete random variable Y , the entropy is given byH(Y) = −

∑
i P (yi) logP (yi), and represents the

information needed to “encode” the distribution of outcomes for Y . As such, is it often thought of
as a measure of uncertainty in machine learning. In active learning, we wish to use the entropy of
our model’s posteriors over its labelings. One way this has been done with probabilistic sequence
models is by computing what I call token entropy (TE):

φTE(x) = − 1

T

T∑
t=1

M∑
m=1

Pθ(yt = m) logPθ(yt = m), (3.1)

where T is the length of x, m ranges over all possible token labels, and Pθ(yt = m) is shorthand
for the marginal probability thatm is the label at position t in the sequence, according to the model.
For CRFs and HMMs, these marginals can be efficiently computed using the forward and back-
ward algorithms (Rabiner, 1989). The summed token entropies have typically been normalized
by sequence length T , to avoid simply querying longer sequences (Baldridge and Osborne, 2004;
Hwa, 2004). However, I argue that querying long sequences should not be explicitly discouraged,
if in fact they contain more information. Thus, I also propose the total token entropy (TTE)
measure:

φTTE(x) = T × φTE(x).

For most sequence labeling tasks, however, it is more appropriate to consider the entropy of
the label sequence y as a whole, rather than some aggregate of individual token entropies. Thus an

22

alternate query strategy is sequence entropy (SE):

φSE(x) = −
∑
ŷ

P (ŷ|x; θ) logP (ŷ|x; θ), (3.2)

where ŷ ranges over all possible label sequences for input sequence x. Note, however, that the
number of possible labelings grows exponentially with the length of x. To make this feasible,
previous work (Kim et al., 2006) has employed an approximation I call N-best sequence entropy
(NSE):

φNSE(x) = −
∑
ŷ∈N

P (ŷ|x; θ) logP (ŷ|x; θ),

whereN = {y∗1, . . . ,y∗N}, the set of theN most likely parses, and the posteriors are re-normalized
(i.e., Z(x) in Equation 2.1 only ranges over N). For N = 2, this approximation is equivalent to
φM , thus N -best sequence entropy can be thought of as a generalization of the margin approach.

Recently, an efficient entropy calculation via dynamic programming was proposed for CRFs in
the context of semi-supervised learning (Mann and McCallum, 2007b). I use this algorithm to com-
pute the true sequence entropy (3.2) for active learning in a constant-time factor of Viterbi’s com-
plexity. Hwa (2004) employed a similar approach for active learning with probabilistic context-free
grammars.

3.2.2 Query-By-Committee
Another general active learning framework is the query-by-committee (QBC) approach (Seung

et al., 1992). In this setting, one uses a committee of models C = {θ(1), . . . , θ(C)} to represent C
different hypotheses that are consistent with the labeled set L. The most informative query, then,
is the instance over which the committee is in most disagreement about how to label. In particular,
I employ the query-by-bagging approach (Abe and Mamitsuka, 1998) to learn a committee of
CRFs. In each round of active learning, L is sampled (with replacement) L times to create a
unique, modified labeled set L(c). Each model θ(c) ∈ C is then trained using its own corresponding
labeled set L(c). To measure disagreement among committee members, I consider two alternatives.

Dagan and Engelson (1995) introduced QBC with HMMs for part-of-speech tagging using a
measure called vote entropy (VE):

φV E(x) = − 1

T

T∑
t=1

M∑
m=1

V (yt,m)

C
log

V (yt,m)

C
,

where V (yt,m) is the number of “votes” labelm receives from all the committee member’s Viterbi
labelings at sequence position t.

McCallum and Nigam (1998b) propose a QBC strategy for classification based on Kullback-
Leibler (KL) divergence (Kullback and Leibler, 1951), an information-theoretic measure of the
difference between probability distributions. Given two distributions P1 and P2 over a single dis-
crete random variable Y , the KL divergence is given by D(P1‖P2) =

∑
i P1(yi) log P1(yi)

P2(yi)
. For

23

active learning, the most informative query is considered to be the one with the largest average KL
divergence between a committee member’s posterior label distribution and that of the consensus. I
extend this approach from classification to sequence models by summing these average KL diver-
gence scores using the marginals at each token position and, as with vote entropy, normalizing for
length. I call this approach Kullback-Leibler (KL):

φKL(x) =
1

T

T∑
t=1

1

C

C∑
c=1

M∑
m=1

Pθ(c)(yt = m) log
Pθ(c)(yt = m)

PC(yt = m)
.

Here I use the shorthand again, and PC(yt = m) = 1
C

∑C
c=1 Pθ(c)(yt = m), denoting the “con-

sensus” marginal probability that m is the label at position t in the sequence. Both of these dis-
agreement measures are normalized for sequence length T . As with token entropy (3.1), this may
bias the learner toward querying shorter sequences. To study the effects of normalization, I also
conduct experiments with non-normalized variants φTV E and φTKL.

Additionally, I argue that these token-level disagreement measures may be less appropriate for
most tasks than measuring the committee’s disagreement about the label sequence y as a whole.
Therefore, I propose sequence vote entropy (SVE):

φSV E(x) = −
∑

ŷ∈NC
P (ŷ|x; C) logP (ŷ|x; C),

where N C is the union of the N -best parses from all models in the committee C, and P (ŷ|x; C) =
1
C

∑C
c=1 P (ŷ|x; θ(c)), or the “consensus” posterior probability for some label sequence ŷ. This

can be thought of as a QBC generalization of the N -best sequence entropy approach, where each
committee member casts a vote for the posterior label distribution. I also explore a sequence
Kullback-Leibler (SKL) variant:

φSKL(x) =
1

C

C∑
c=1

∑
ŷ∈NC

P (ŷ|x; θ(c)) log
P (ŷ|x; θ(c))

P (ŷ|x; C)
.

3.2.3 Expected Gradient Length
A third general active learning framework I consider is to query the instance that would impart

the greatest change to the current model if we knew its label. Since we train discriminative models
like CRFs using gradient-based optimization, this involves querying the instance which, if labeled
and added to the training set, would create the greatest change in the gradient of the objective
function (i.e., the largest gradient vector used to re-estimate parameter values).

Let ∇`(L; θ) be the gradient of the log-likelihood ` with respect to the model parameters θ, as
given by Sutton and McCallum (2006). Now let ∇`(L ∪ 〈x,y〉; θ) be the new gradient that would
be obtained by adding the training tuple 〈x,y〉 to L. Since the query algorithm does not know the
true label sequence y in advance, we must instead calculate the expected gradient length (EGL):

φEGL(x) =
∑
ŷ∈N

P (ŷ|x; θ)
∥∥∥∇`(L ∪ 〈x, ŷ〉; θ)∥∥∥,

24

approximated as an expectation over the N -best labelings, where ‖ · ‖ is the Euclidean norm of
each resulting gradient vector. I first introduced this approach in work on multiple-instance active
learning (Settles et al., 2008b), and adapt it to query selection with sequences here. Note that,
at query time, ∇`(L; θ) should be nearly zero since ` converged at the previous round of training.
Thus, we can approximate∇`(L∪〈x, ŷ〉; θ) ≈ ∇`(〈x, ŷ〉; θ) for computational efficiency, because
the training instances are assumed to be independent.

3.2.4 Fisher Information
I also introduce a query selection strategy for sequence models based on Fisher information,

building on the theoretical framework of Zhang and Oles (2000). Fisher information I(θ) repre-
sents the overall uncertainty about the estimated model parameters θ, as given by:

I(θ) = −
∫

x

P (x)

∫
y

P (y|x; θ)
∂2

∂θ2
logP (y|x; θ).

For a model with K parameters, the Fisher information takes the form of a K × K covariance
matrix. Our goal in active learning is to select the query that most efficiently minimizes the model
variance reflected in I(θ). One way to do this is to optimize the Fisher information ratio (FIR):

φFIR(x) = −tr
(
Ix(θ)−1IU(θ)

)
, (3.3)

where Ix(θ) and IU(θ) are Fisher information matrices for the unlabeled sequence x and the entire
unlabeled pool U , respectively. The trace function tr(·) is the sum of the terms along the principal
diagonal of a matrix, thus φFIR provides us with a ratio given by the inner product of IU(θ) and
the inverse of Ix(θ). The leading minus sign again ensures that φFIR is a maximizer for use with
the algorithm in Table 3.1.

Previously, active learning with Fisher information has only been investigated in the context of
simple binary classification (Zhang and Oles, 2000; Hoi et al., 2006a). When employing the FIR
strategy with sequence models such as CRFs, there are two additional computational challenges.
First, we must integrate over all possible labelings y, which can, as we have seen, be approximated
as an expectation over the N -best labelings. Second, the inner product in the ratio calculation (3.3)
requires inverting a K × K matrix for each x. In most interesting natural language applications,
K is very large (often hundreds of thousands of parameters), making this algorithm intractable.
However, it is common in similar situations to approximate the Fisher information matrix with its
diagonal vector (Nyffenegger et al., 2006). Thus we can estimate Ix(θ) using:

Ix(θ) =
∑
ŷ∈N

P (ŷ|x; θ)

[(
∂ logP (ŷ|x; θ)

∂θ1

)2

+ δ, . . . ,

(
∂ logP (ŷ|x; θ)

∂θK

)2

+ δ

]
,

and estimate IU(θ) using:

IU(θ) =
1

U

U∑
u=1

Ix(u)(θ).

25

A smoothing parameter δ � 1 is added to prevent division by zero when computing the ratio. For
CRFs, the partial derivative at the root of each element in the diagonal vector is given by:

∂ logP (ŷ|x; θ)

∂θk
=

T∑
t=1

fk(ŷt−1, ŷt,xt)−
T∑
t=1

∑
y,y′

P (y, y′|x)fk(y, y
′,xt),

which is similar to the equation used to compute the training gradient for a particular instance
(Sutton and McCallum, 2006), but without a regularization term. In a certain sense, the Fisher
information ratio can be thought of as an extension of the expected gradient length algorithm,
which tries to account for the the “representativeness” of an instance compared to the data in U .

3.2.5 Information Density
It has been suggested that uncertainty sampling and QBC are prone to querying outliers (Roy

and McCallum, 2001; Zhu et al., 2003). Figure 3.1 illustrates this problem for a binary linear
classifier using uncertainty sampling. The least certain instance lies on the classification boundary,
but is not “representative” of other instances in the distribution, so knowing its label is unlikely to
improve accuracy on the data as a whole. QBC and EGL may exhibit similar behavior, by spending
time querying possible outliers simply because they are controversial, or are expected to impart
significant change in the model. I argue that this phenomenon can occur with sequence labeling
tasks as well as with classification. To address this, I propose a new active learning approach called
information density (ID):

φID(x) = φSE(x)×

(
1

U

U∑
u=1

sim(x,x(u))

)β

.

That is, the informativeness of x is weighted by its average similarity to all other sequences in U ,
subject to a parameter β that controls the relative importance of the density term. In the formulation
presented above, sequence entropy φSE measures the “base” informativeness, but we could just
as easily use any of the instance-level strategies presented in the previous sections. Notice that
this approach selects representative instances by explicitly modeling the instance distribution with
a density term. This is in contrast to the Fisher information approach, which implicitly favors
queries with Fisher information Ix(θ) that is not only high, but similar to that of the overall data
distribution IU(θ).

The density term requires us to be able to measure the similarity of two sequences. To do this,
I first transform each x, which is a sequence of feature vectors (tokens), into a single kernel vector
denoted ~x:

~x =

[
T∑
t=1

f1(xt), . . . ,
T∑
t=1

fJ(xt)

]
, (3.4)

26

A

B

Figure 3.1: An illustration of when uncertainty sampling can be a poor strategy for classification.
Shaded polygons represent labeled instances in L, and circles represent unlabeled in-
stances in U . Since A is on the decision boundary, it would be queried as the most
uncertain. However, querying B is likely to result in more information about the data
distribution as a whole.

where fj(xt) is the value of feature fj for token xt, and J is the number of features in the input
representation1. In other words, sequence x is compressed into a fixed-length feature vector ~x, for
which each element is the sum of the corresponding feature’s values across all tokens. We can then
use cosine similarity on this simplified representation:

simcos(x,x
(u)) =

~x · ~x(u)

‖~x‖ × ‖~x(u)‖
.

Chapter 4 delves into the information density algorithm in more detail, e.g., examining the effec-
tiveness of other similarity functions. For now, suffice it to say that cosine similarity performs
quite well and is the only formulation we are concerned with in this chapter.

One potential drawback of information density is that the number of required similarity calcu-
lations grows quadratically with the number of instances in U . For pool-based active learning, we
often assume that the size of U is very large. However, these densities only need to be computed
once, and are independent of the base information measure. Thus, when employing information
density in a real-world interactive learning setting, the density scores can simply be pre-computed
and cached for efficient lookup during the actual active learning process.

3.3 Sequence Labeling Data Sets

To compare the empirical performance of these sequence model query strategies, I conduct
experiments across several benchmark information extraction and document segmentation data
sets. These sequence labeling data sets are summarized in Table 3.2, and represent a variety of
knowledge domains, corpus sizes, and numbers of labels or input features. The CoNLL03 corpus
(Sang and DeMeulder, 2003) is a collection of newswire articles annotated with four entities:
person, organization, location, and misc. NLPBA (Kim et al., 2004) is a large collection of
biomedical abstracts annotated with five entities of interest: protein, RNA, DNA, cell-line, and

1Note that J 6= K, and fj(xt) here differs slightly from the feature definition given in Section 2.2.1. Since the
labels yt−1 and yt are unknown before querying, the K features used for model training are reduced down to the J
input features here, which factor out any label dependencies.

27

Table 3.2: Properties of the different evaluation corpora.

Corpus Entities Features Instances
CoNLL03 4 78,644 19,959
NLPBA 5 128,401 18,854
BioCreative 1 175,331 10,000
FlySlip 1 31,353 1,220
CORA:Headers 15 22,077 935
CORA:References 13 4,208 500
Sig+Reply 2 25 617
SigIE 12 10,600 250

cell-type. BioCreative (Yeh et al., 2005) and FlySlip (Vlachos, 2007) also comprise texts in the
biomedical domain, annotated for gene entity mentions in articles from the human and fruit fly
literature, respectively. CORA (Peng and McCallum, 2004) consists of two collections: a set of
research paper headers annotated for entities such as title, author, and institution; and a collection
of references annotated with BibTeX fields such as journal, year, and publisher. The Sig+Reply
corpus (Carvalho and Cohen, 2004) is a set of email messages annotated for signature and quoted
reply line segments. SigIE is a subset of the signature blocks from Sig+Reply which I have
enhanced with several address book fields such as name, email, and phone (for more details, see
Chapter 6). All corpora are formatted in the “IOB” sequence label representation2 (Ramshaw and
Marcus, 1995).

3.4 Experiments

I implement all fifteen query selection strategies described in Section 3.2 for use with CRFs,
and evaluate them on all eight data sets. I also compare against two baseline strategies: random
instance selection (i.e., “passive” supervised learning), and naı̈vely querying the longest sequence
in terms of tokens. I use a typical feature set for each corpus based on the cited literature (including
words, orthographic patterns, part-of-speech, lexicons, etc.). Where the N -best approximation is
used, N = 15, and for all QBC methods C = 3. These values exhibited a good balance of
accuracy and training speed in preliminary work; previous research involving QBC has also shown
that small values of C often work well, and varying committee size can have surprisingly little
effect (McCallum and Nigam, 1998b). For information density, I set β = 1 so that information and
density terms have equal weight (in Chapter 4, I consider the effects of varying this parameter).
In each experiment, L is initialized with five labeled instances chosen at random, and up to 150

2The IOB representation breaks an entity segment into two sublabels, prefixed B- for the beginning of a segment
and I- for each subsequent token in a segment. For example, the words “ACME Inc.” from Figure 2.1 would actually
be labeled with “B-org I-org.” This is standard practice for many sequence segmentation tasks.

28

queries are subsequently selected from U in batches of size B = 5. All results are averaged across
five folds using cross-validation.

I evaluate each query strategy by constructing learning curves that plot the overall F1 measure
(as defined in Chapter 2) for all entities or segments as a function of the number of instances
queried. To reduce clutter, I do not show learning curves for every experiment. Instead, Table 3.3
summarizes all results by reporting the area under the learning curve for all strategies on all data.
Figure 3.2 presents a few representative learning curves for six of the corpora.

3.4.1 Discussion of Learning Curves
The first conclusion we can draw from these results is that there is no single clear winner.

However, information density (ID), which I introduce in this work, stands out. It usually improves
upon the base sequence entropy measure (SE), never performs poorly, and has the highest average
area under the learning curve across all tasks. It seems particularly effective on large corpora,
which is a typical assumption for the active learning setting. Sequence vote entropy (SVE), a
QBC method I propose here, is also noteworthy in that it is fairly consistently among the top
three strategies, although never the best. It is also interesting that the naı̈ve “longest” baseline is
marginally better than random, but still not competitive with the true active query strategies.

Secondly, the best uncertainty sampling strategies are least confidence (LC) and sequence en-
tropy (SE), the latter being the dominant entropy-based method. Among the QBC strategies, se-
quence vote entropy (SVE) is the clear winner. We can conclude that these three methods are the
best base information measures for use with information density.

Thirdly, query strategies that evaluate the entire sequence (SE, SVE, SKL) are generally supe-
rior to those which aggregate token-level information. Furthermore, the total token-level strategies
(TTE, TVE, TKL) outperform their length-normalized counterparts (TE, VE, KL) in nearly all
cases. In fact, the normalized variants are usually inferior even to the baselines. While an argu-
ment can be made that these shorter sequences might be easier to label from a human annotator’s
perspective, my work in Chapter 6 indicates that the relationship between instance length and ac-
tual labeling costs (e.g., elapsed annotation time) is not a simple one. Analysis of the experiment
logs also shows that length-normalized methods are occasionally biased toward short sequences
with little intuitive value (e.g., sentences with few or no entities to label). In addition, vote entropy
appears to be a better disagreement measure for QBC strategies than KL divergence.

Finally, Fisher information (FIR), while theoretically sound, exhibits behavior that is difficult
to interpret. It is sometimes the winning strategy, but occasionally only on par with the baselines.
When it does show significant gains over the other strategies, these gains appear to be only for the
first several queries (e.g., NLPBA and BioCreative in Figure 3.2). This inconsistent performance
may be a result of the approximations made for computational efficiency. Expected gradient length
(EGL) also appears to exhibit mediocre performance, and is likely not worth its additional compu-
tational expense.

29

Table 3.3: Detailed results for all query strategies on all evaluation corpora. Reported is the area
under the F1 learning curve for each strategy after 150 queries (maximum possible
score is 150). For each corpus (column), the three best strategies are shown in bold.
Small-font numbers in parentheses indicate the strategy’s corresponding rank (one is
best). The rightmost column summarizes results across all eight tasks by reporting the
average area for each strategy. Sequence model query strategies that I introduce in this
thesis are indicated with an asterisk (*).

St
ra

te
gy

C
oN

L
L

03

N
L

PB
A

B
io

C
re

at
iv

e

Fl
yS

lip

H
ea

de
rs

R
ef

er
en

ce
s

Si
g+

R
ep

ly

Si
gI

E

A
ve

ra
ge

Other Methods
ID* 89.6 (3) 73.1 (2) 59.1 (1) 126.8 (1) 80.2 88.7 131.5 88.5 92.2 (1)

FIR* 81.7 73.6 (1) 58.8 (2) 118.2 79.1 87.1 133.2 (1) 88.5 90.0
EGL* 87.3 69.3 51.5 125.9 (2) 79.6 88.2 130.5 87.7 90.0

Query-By-Committee
SKL* 87.9 68.5 50.8 120.7 78.4 86.9 132.3 89.7 (2) 89.4
SVE* 89.0 71.8 (3) 56.6 (3) 122.7 80.7 (3) 89.9 (3) 132.8 (3) 89.5 (3) 91.6 (2)

TKL* 81.7 63.5 45.1 119.5 78.5 88.2 130.6 85.1 86.5
TVE* 86.7 66.9 49.2 124.1 79.7 88.7 132.1 89.7 (2) 89.6
KL* 62.0 53.1 37.4 109.4 78.5 89.1 130.7 85.5 80.7
VE 45.9 52.4 35.2 113.3 72.8 85.1 131.4 89.8 (1) 78.2

Uncertainty Sampling
NSE 89.1 68.9 50.5 124.1 80.4 89.4 133.1 (2) 89.1 90.6
SE 90.1 (1) 71.5 56.0 125.4 (3) 80.8 (2) 88.4 131.4 87.6 91.4 (3)

TTE* 89.7 (2) 70.9 53.0 124.9 78.5 88.6 131.6 88.3 90.7
TE 38.9 53.4 37.8 110.3 78.5 84.4 131.7 89.3 78.0
M 84.5 62.9 46.8 119.5 78.6 91.5 (1) 132.3 87.3 87.9
LC 89.4 71.0 54.8 125.1 81.4 (1) 89.8 132.1 88.8 91.6 (2)

Baselines
Rand 78.8 59.9 34.6 112.1 76.0 90.0 (2) 129.1 84.3 83.1
Long 79.4 67.6 26.9 121.0 78.2 86.0 129.6 82.7 83.9

30

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 20 40 60 80 100 120 140

information density (ID)
Fisher information (FIR)

query-by-committee (SVE)
random

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 20 40 60 80 100 120 140

information density (ID)
Fisher information (FIR)

query-by-committee (SVE)
random

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 20 40 60 80 100 120 140

information density (ID)
Fisher information (FIR)

query-by-committee (SVE)
random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

information density (ID)
Fisher information (FIR)

query-by-committee (SVE)
random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

information density (ID)
Fisher information (FIR)

query-by-committee (SVE)
random

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 20 40 60 80 100 120 140

information density (ID)
Fisher information (FIR)

query-by-committee (SVE)
random

number of query instances

F1
 m

ea
su

re
F1

 m
ea

su
re

number of query instances number of query instances

CoNLL03 NLPBA BioCreative

FlySlip

Sig+Reply

SigIE

Figure 3.2: Learning curves for selected query strategies on six of the evaluation corpora.

LC
TTE
SE

SVE
SKL

EGL
FIR

ID

time required to select each query (in minutes)
0 2 4 6 8 10 12 14

information density (+ 42 to pre-compute densities)

uncertainty sampling

query-by-committee
gradient methods

Figure 3.3: Run times for selected query strategies, averaged over the four largest corpora.

31

3.4.2 Discussion of Run Times
Now we turn our attention to the execution times for these query strategies using current hard-

ware. Figure 3.3 summarizes the empirical run times for eight representative query selection algo-
rithms. The uncertainty sampling methods are clearly the fastest (token-based variants run slightly
faster), each routinely evaluating tens of thousands of sequences in under a minute. The QBC
methods run about three times longer, which is sensible because of the committee size C = 3.
These strategies must re-train multiple models with each query, resulting in a lag of around three
minutes per query batch (and up to 20 minutes for corpora with more entity labels). We can con-
clude that the time complexity of QBC methods will scale linearly with C.

The expected gradient length and Fisher information methods are the most computationally
expensive by far, because they must first perform inference over the possible labelings and then
calculate gradients for each candidate label sequence. As a result, these algorithms require more
than ten minutes (sometimes upwards of a half hour for the largest corpora) to select each query.
Unlike the other strategies, their time complexities also scale linearly with the number of model
parameters K which, in turn, increases as new sequences are labeled and added to L.

As noted in Section 3.2.5, information density incurs a large computational cost to estimate the
density weights, but these can be pre-computed and cached for efficient lookup. In my experiments,
this pre-processing step takes less than one minute for the smaller corpora and about 42 minutes on
average for the larger corpora. In particular, CoNLL03 and BioCreative were processed in about a
half hour, and NLPBA was finished in just over one and a half hours. The density lookup causes
no significant change in the run time of the base information measure (compare ID and SE in
Figure 3.3). Given these results, I advocate information density with an uncertainty sampling base
measure in practice, particularly for active learning with large corpora.

3.5 Summary and Future Work

In this chapter, I have presented a detailed analysis of active learning for sequence labeling
tasks. Specifically, I described and criticized the query selection strategies that have been proposed
for probabilistic sequence models to date, and introduced nine novel strategies to address some of
their shortcomings. My large-scale empirical evaluation demonstrates that some of these newly
proposed methods advance the state of the art in active learning with sequence models. Specific
conclusions from this work can be summarized as follows:

• Information density, a new query framework that I introduce here, is well-suited to active
learning with sequences. It performs particularly well on large corpora (a common assump-
tion for pool-based active learning), and is quite fast if densities are pre-computed.

• Sequence vote entropy, a QBC method I introduce here, also performs reasonably well,
though it is slightly more computationally expensive.

32

• In general, the informativeness of an instance x should be estimated using distributions over
the full label sequence y, as opposed to aggregating over token label distributions. Further-
more, normalizing for sequence length tends to perform poorly.

Chapter 4 explores the properties of the information density algorithm in further detail. Fu-
ture work in active learning for sequence labeling tasks might include devising efficient, exact
algorithms for the query strategies which currently resort to using approximations. For example,
just as the dynamic programming approach for calculating the exact sequence entropy (SE) is su-
perior to its N -best approximation (NSE) counterpart, I suspect that other strategies such as the
QBC methods, expected gradient length, and Fisher information can be improved if fast and exact
algorithms can be found.

33

Chapter 4

More on the Information Density Algorithm

This chapter explores the information density algorithm (which I introduced in the last chapter)
in more detail. I experiment with and reason about different similarity functions, examine the
impact of varying the β parameter, and consider the implications of using information density in
the batch-mode active learning setting.

4.1 Similarity Functions

The information density algorithm, introduced in Section 3.2.5, can be generically written:

φID(x) = φZ(x)×

(
1

U

U∑
u=1

sim(x,x(u))

)β

.

This query strategy is a wrapper algorithm, i.e., it is compatible with virtually any “base” informa-
tiveness measure φZ , and any desired similarity function. As a result, it is fairly straightforward to
implement for any sort of learning problem, provided that appropriate informativeness and instance
similarity measures are available for the task at hand. In this chapter, I consider both sequence la-
beling and text classification tasks, although for simplicity I will stick with the sequence notation of
x for an instance and y for its labeling. The concepts are straightforward to extend to classification
using an instance x with label y.

At the core of the information density approach is the similarity function, which is used to
compute the density term. In the last chapter, I used the cosine similarity function:

simcos(x,x
(u)) =

~x · ~x(u)

‖~x‖ × ‖~x(u)‖
,

where ~x is a fixed-length feature vector that represents a “kernelized” version of the sequence x, as
described in Equation 3.41. However, in this section I will examine and compare against two other
similarity measures that have been used for estimating density in machine learning applications.

McCallum and Nigam (1998b) also developed a density-weighted approach to active learning
for text classification. In their work, a QBC strategy is employed for a naı̈ve Bayes classifier, and

1For classification, the vector ~x is simply the input feature vector, as described in Section 2.1.

34

the informativeness of each instance is weighted by its average similarity to the rest of the pool U
using an exponentiated KL divergence similarity function:

simKL(x,x(u)) = exp

(
−γ1

J∑
j=1

P (fj|~x) log
P (fj|~x)

γ2P (fj|~x(u)) + (1− γ2)P (fj)

)
.

The first parameter γ1 controls the “sharpness” of the divergence measure, and the second γ2

determines how much smoothing to use on the encoded distribution in the denominator. We can
estimate the probability P (fj|~x) = ~xj/|~x|1, which is the value of input feature fj divided by the
“Manhattan norm” of the vector ~x (i.e., the sum of all feature values in the vector). The smoothing
term P (fj) is simply the marginal probability of feature fj over all instances in the pool U . Note
that, unlike the other similarity functions I consider here, KL divergence is non-symmetric and
must be re-computed in both directions, incurring twice the computational cost.

Another common similarity measure used to estimate density (Zhu, 2005a; Lee, 1999) is an
exponentiated Euclidean distance, which defines a Gaussian similarity function:

simGauss(x,x
(u)) = exp

(
−

J∑
j=1

(~xj − ~x(u)
j)2

α2

)
.

Here, α2 is the variance in the shape of the Gaussian. It is possible to use a different parameter
αj for each input feature fj , but tuning these parameters individually can be difficult since we do
not necessarily know what to optimize them for. Furthermore, results using the simpler formula-
tion (reported on shortly) suggest that tuning these extra parameters may not be worth the effort.
Therefore, I only consider the simpler formulation presented here.

I conduct experiments to compare these different similarity functions for both sequence label-
ing and classification tasks. For the sequence labeling experiments, I use the four largest informa-
tion extraction corpora from the previous chapter: CoNLL03, NLPBA, BioCreative, and FlySlip.
The learning algorithm is again a CRF (Section 2.2.1). For the classification experiments, I use
four topical subsets of the 20 Newsgroups corpus: rec.* (four labels: baseball, hockey, au-
tos, and motorcycles), sci.* (four labels: crypt, electronics, med, and space), talk.* (four
labels: guns, mideast, politics, and religion), and comp.* (five labels: graphics, ibm, mac, ms-
windows, and windows.x). The comp.* subset was also used by McCallum and Nigam (1998b)
in their work using the KL divergence similarity function. The learning algorithm used in my
classification experiments is a MaxEnt model (Section 2.1.1).

For the sequence labeling experiments, the labeled set L is initialized with five randomly se-
lected sequences; 10 instances are used for classification. For the sequence tasks, learning curves
are constructed using the overall F1 measure; accuracy is used for classification. In all experiments,
queries are selected from U one at a time, and results are averaged across ten folds using cross-
validation2. For the KL divergence similarity function, I use parameter values γ1 = 3 and γ2 = 0.5,

2Note that the setup for sequence labeling experiments here differs from the previous chapter in that batches are of
size B = 1, and there are twice as many folds in the cross-validation. The evaluations in this chapter involve fewer
experiments, thus we can afford the extra accuracy this newer methodology provides.

35

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 20 40 60 80 100 120 140

cosine / ID
KL divergence / ID

Gaussian / ID
uncertainty sampling

random

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 20 40 60 80 100 120 140

cosine / ID
KL divergence / ID

Gaussian / ID
uncertainty sampling

random

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 20 40 60 80 100 120 140

cosine / ID
KL divergence / ID

Gaussian / ID
uncertainty sampling

random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

cosine / ID
KL divergence / ID

Gaussian / ID
uncertainty sampling

random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

cosine / ID
KL divergence / ID

Gaussian / ID
uncertainty sampling

random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

cosine / ID
KL divergence / ID

Gaussian / ID
uncertainty sampling

random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

cosine / ID
KL divergence / ID

Gaussian / ID
uncertainty sampling

random

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140

cosine / ID
KL divergence / ID

Gaussian / ID
uncertainty sampling

random

F1
 m

ea
su

re
F1

 m
ea

su
re

F1
 m

ea
su

re
F1

 m
ea

su
re

ac
cu

ra
cy

ac
cu

ra
cy

ac
cu

ra
cy

ac
cu

ra
cy

number of query sequences number of query documents

CoNLL03

NLPBA

BioCreative

FlySlip

rec.*

sci.*

talk.*

comp.*

Figure 4.1: Learning curves for information density (ID) using the three different similarity func-
tions compared to uncertainty sampling and random selection: (left) the four sequence
labeling tasks, (right) the four text classification tasks.

36

following the work of McCallum and Nigam (1998b). For the Gaussian similarity function, I use
α = 5 based on some preliminary work to tune it. I again set β = 1 so that the information and
density terms have equal weight. In all experiments, the base information measure φZ is an un-
certainty sampling strategy. For the sequence tasks, I again use sequence entropy (3.2), and for
the classification tasks I use the posterior label entropy. The three information density variants are
compared against two baselines: the unweighted uncertainty strategy, and random sampling.

Figure 4.1 present learning curves for the three information density formulations compared to
the two baselines for the four sequence labeling and four text classification corpora. We can see
that, as in the previous chapter, information density with a cosine similarity function generally
improves upon the base uncertainty sampling strategy for these data sets (both sequence labeling
and classification tasks). The improvements over uncertainty sampling are in fact statistically sig-
nificant for the majority of points on the horizontal axis (using a two-tailed t-test at 95%) for all
but the CoNLL03 and FlySlip corpora. One surprising result is that uncertainty sampling actually
performs worse than random sampling for the comp.* task, but the cosine-based information den-
sity appears to compensate for the base measure’s shortcomings, becoming a competitive strategy
again.

If we compare the performance of the different similarity functions, we can see that cosine
is the clear winner. KL divergence exhibits somewhat erratic behavior, often on par with cosine
similarity but occasionally much worse, and Gaussian similarity is rarely better than random (and
consistently worse on the classification tasks). One possible explanation for this has to do with the
particular problem domain. These experiments explore natural language applications, for which
instances are represented as feature vectors which may be quite sparse (i.e., features represent
words, thus most feature values tend to be zero because not all words appear in all documents).
It has been shown that cosine similarity is an effective similarity measure for these sparse, high-
dimensional feature spaces (Manning and Schütze, 1999; Lee, 1999). It stands to reason, then, that
it should work well for information density as well.

These results underscore the importance of choosing the right similarity function when em-
ploying information density for active learning. One must first consider the properties of the task
and possibly the learning model as well, and choose a similarity measure that has appropriate prop-
erties. For example, if we were learning in a domain where Gaussian classifiers are shown to work
well, employing information density with the Gaussian similarity function might be the best active
learning approach.

4.2 Weighting the Density Term

Recall that the β parameter controls the relative importance of the density term. For example,
as β → 0, information density gracefully degrades to the base query selection strategy, while as
β → ∞, the density term becomes predominantly more important. So far, I have only discussed
formulations of information density where the β = 1, i.e., both the information and density terms
have equal weight. However, it may be that higher or lower values of this exponent are more
appropriate in some domains.

37

-4
-3
-2
-1
 0
 1
 2
 3
 4

 0.1 1 10

 a
re

a
un

de
r F

1
cu

rv
e

β parameter

CoNLL03
NLPBA

BioCreative
FlySlip

-10

-5

 0

 5

 10

 0.1 1 10

 a
re

a
un

de
r a

cc
ur

ac
y c

ur
ve

β parameter

rec.*
sci.*

talk.*
comp.*∆

∆

Figure 4.2: The effect of varying the β parameter on: (left) sequence labeling and (right) text
classification tasks. These plots show the change in the area under the learning curve
relative to the base strategy (after 150 queries) as a function of β. Note the log-scale
on horizontal axes, and that plots for the two problems are scaled differently.

To study this, I conduct several experiments using the various information extraction and text
classification tasks from the previous section. For each task, I again use entropy-based uncertainty
sampling as a base measure, coupled with the cosine similarity function. Other aspects of exper-
imental setup are identical to Section 4.1. Figure 4.2 illustrates the effect of varying β for each
of these eight data sets. The plots show the relative increase (or decrease) of the area under the
learning curve for the first 150 queries as a function of β. We can see that, with the exception of
the CoNLL03 information extraction corpus, there is some value of β that improves upon the base
query strategy for all of these tasks. As expected, the change approaches zero for smaller values of
β, and for all tasks there is some value at which the gains begin to decrease (eventually resulting
in negative effects), typically around β = 2 or greater. Note that all text classification tasks show
gains even for very small values (e.g., β = 0.02), and that the “optimal” value of β appears to be
different for the two problem domains. For the sequence labeling tasks, the value exhibiting the
highest overall gain appears to be around β = 2 (for the tasks that show any improvement), while
for text classification it appears to be in the range β = 0.2 to β = 0.5. In both domains, the initial
value of β = 1 (before any tuning) appears to work relatively well.

4.3 Batch-Mode Active Learning

Most work in active learning, including the majority of this thesis, is concerned with serial
active learning. That is, queries are selected in serial one at a time (or in small batches). The
experiments in Chapter 3 used small batches of size B = 5 for computational efficiency due to the
sheer number of experiments that needed to be run, and because some query strategies are slow
to compute. Even with efficient query strategies, however, we may want to query in batches for
other reasons, such as the speed of the actual training procedure. Sutton and McCallum (2006)

38

Given: Labeled set L, unlabeled pool U , query strategy φ(·), query batch size B

repeat
// learn a model using the current L
θ = train(L) ;
// initialize the empty query batch
Q = {} ;
for b = 1 to B do

// select the most informative instance
x∗b = argmaxx∈U φ(x) ;
// move the selected query from U to Q
Q = Q∪ x∗b ;
U = U − x∗b ;

end
// query each instance in Q and add to L
foreach x ∈ Q do

y = label(x) ;
L = L ∪ 〈x,y〉 ;

end
until some stopping criterion ;

Table 4.1: A greedy batch-mode active learning algorithm.

report that, for example, a typical information extraction corpus with five entities requires less than
two hours to estimate CRF model parameters. However, a part-of-speech tagging corpus with 45
labels can take over a week to train. While these numbers reflect learning from very large labeled
sets with hundreds of thousands of words (rather than the smaller labeled sets that hopefully result
from active learning), this illustrates the fact that as the learning task becomes sufficiently complex,
the re-training process in-between queries can become very slow. This may make “interactive”
learning impractical.

One way of addressing this limitation is with batch-mode active learning, in which a large
batch of queries are selected at once from U , then labeled as a group, and added to the train-
ing set L together. In this way, the active learning process need not be highly interactive, as the
learner can re-train using a large set of new labeled instances and the annotator can move on to
other things until the model is ready with its new batch of queries (perhaps overnight). It has been
shown that greedily querying the “N most informative” queries—according to, say, uncertainty
sampling—can often be a poor strategy for batch-mode active learning, and several more sophisti-
cated batch-mode methods have been proposed for classification (Guo and Schuurmans, 2008; Hoi
et al., 2006a). More specifically, these approaches are based on heuristics that greedily construct
query batches that are not only informative and representative, but contain a diverse set of instances
as well.

39

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

marginal (MID)
information density (ID)

uncertainty sampling
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

marginal (MID)
information density (ID)

uncertainty sampling
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

marginal (MID)
information density (ID)

uncertainty sampling
random

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350 400

marginal (MID)
information density (ID)

uncertainty sampling
random

number of query instances

ac
cu

ra
cy

ac
cu

ra
cy

number of query instances

rec.* sci.*

talk.* comp.*

Figure 4.3: Learning curves for batch-mode active learning using batch size B = 50.

To study to implications of the information density approach to batch-mode active learning,
I propose a variant that incorporates batch diversity into its selection strategy. This results in a
strategy I call marginal information density (MID):

φMID(x) = φZ(x)×

(
λ

1

U

U∑
u=1

sim(x,x(u)) + (1− λ)
1

Q

Q∑
q=1

diff(x,x(q))

)β

,

because we wish to querying informative instances that are in marginally dense regions with respect
to instances in the current batch. Here, Q is the size of the current query batch Q, the diff(·, ·)
function computes the difference (dissimilarity) between two instances, and λ is a parameter that
controls the tradeoff between an instance’s average similarity to the pool U (density) and its average
dissimilarity to the current batchQ (diversity). If λ = 1, for example, this approach is equivalent to
the original information density formulation from before. As λ→ 0, the diversity among instances
in the batch becomes more important. Table 4.1 presents a greedy batch-mode active learning
algorithm that can be used with any query strategy, including marginal information density.

To study the effectiveness of marginal information density in a batch-mode active learning set-
ting, I conduct several experiments using the text classification tasks from this chapter. Because the
cosine similarity function is always between zero and one, we can simply define the dissimilarity
function to be diffcos(·, ·) = 1 − simcos(·, ·). For the density vs. diversity tradeoff, I use λ = 0.5

40

in these experiments, i.e., both terms have equal weight. For the exponent I again use β = 1.
Marginal information density is compared to three baseline batch-mode strategies: information
density, uncertainty sampling, and random sampling.

Figure 4.3 presents learning curves for these strategies using a batch of size B = 50 (similar
results are obtained for batch sizes 10, 25, and 100). When queries are limited to being made
in batches, random sampling outperforms the active approaches for all four classification tasks,
which is consistent with some previously reported results for batch-mode active learning (Guo and
Schuurmans, 2008). One explanation for this is that greedy selection prefers very similar instances
in the query batch (after all, since these instances are deemed highly informative it is likely that
they inhabit similar regions of the feature space). Information density may actually exacerbate this
effect, by biasing instances toward dense regions. However, we do see that the marginal approach,
which encourages diversity in the batch, improves slightly upon regular information density and
sometimes the base uncertainty measure as well, although it is still nowhere near random sampling
for batches. It may be that more appropriate values of β and λ could result in better learning
curves. Exploring other notions of “diversity” in queries might also be useful. For example, Kim
et al. (2006) employ a different strategy favoring queries that are dissimilar, on average, to instances
already in the labeled set L.

4.4 Summary and Future Work

In this chapter, I have more deeply analyzed the information density algorithm introduced
in Chapter 3. This analysis includes exploring different similarity measures used in computing
the density term, and a discussion of why and when different measures are appropriate. I also
examined the effect of varying the β exponent, and considered a preliminary variant for batch-mode
active learning which encourages diversity in addition to density and informativeness. Specific
conclusions from this work can be summarized as follows:

• The appropriate similarity function for information density appears to depend on the task at
hand. For example, cosine similarity should be used for large, sparse feature spaces such as
text domains.

• The best value for the β exponent may depend on the problem domain, but values between
0.5 and 1.0 appear to be fairly robust for the tasks considered here.

• Information density, like most base query strategies, is not well-suited to greedy batch-mode
active learning. However, a marginal variant which incorporates batch diversity into its value
assessment may provide a simple and scalable solution for the batch setting.

There are many possibilities for future work regarding information density. One direction
involves approximating the density term to help scale the approach to very large data sets (e.g.,
millions of instances). I have so far only considered an approach that exhaustively compares all
instances, the time complexity of which is quadratic in the size of U . Solutions to this problem
may entail sub-sampling the pool, or sparsely computing density using only the nearest neighbors

41

for each instance. Another direction includes active learning with a gradually decaying value for β.
The intuition here is that early in active learning the model should focus on representative instances,
but as learning proceeds it should be allowed to explore the margins more freely. Another important
direction for future work is the design of better similarity measures for structured instances, such
as sequences. In this thesis, I use a simple kernel function that compresses a sequence x into a
single fixed-length feature vector ~x. However, even this method loses some potentially important
information about features that co-occur at the token level, which may explain why information
density is not as highly effective for sequence learning tasks as it is for simpler classification
tasks. Finally, developing a better generalization of information density for the batch-mode active
learning setting may hold some promise for large-scale active learning with structured instances,
by allowing the learner to query large sets of instances at once.

42

Chapter 5

Multiple-Instance Active Learning

This chapter presents a novel framework for active learning in multiple-instance (MI) settings.
In MI learning problems, instances are naturally organized into bags and it is the bags, instead
of individual instances, that are labeled for training. This chapter considers active learning in MI
settings as a way to even further reduce the labeling burden in problem domains where labels can
be acquired at both bag-level and instance-level granularities. An approach like this is well moti-
vated in learning settings where it is inexpensive to acquire bag labels and possible (but expensive)
to acquire more fine-grained instance labels. I propose and explore four different active learn-
ing scenarios for MI problems, and present a training algorithm that learns from labels at these
mixed levels of granularity. I also introduce and evaluate several active query selection strategies
motivated by the MI setting. Experiments show that active learning with instance labels can sig-
nificantly improve the performance of an MI learning algorithm. Much of the work in this chapter
has been previously published (Settles et al., 2008b).

5.1 Introduction

A limitation of traditional supervised learning algorithms is that they require instance labels
which are often difficult or expensive to obtain. The multiple-instance (MI) learning framework
(Dietterich et al., 1997) can, in some cases, address this handicap by relaxing the granularity at
which labels are given. The MI setting was introduced in Section 2.2.2, and is briefly reviewed
here. In the MI setting, instances are grouped into bags (i.e., multi-sets) which may contain an
arbitrary number of instances. A bag X = {x1, x2, . . . , xN} is labeled negative if every instance
xn it contains is actually negative. A bag is labeled positive, however, if at least one of its instances
is positive (note that positive bags may also contain negative instances).

The main challenge of multiple-instance learning is that, to induce an accurate model of the
target concept, the learner must determine which instances in positive bags are actually positive,
even though the ratio of negatives to positives in these bags can be arbitrarily high. For many MI
problems, such as the content-based image retrieval (CBIR) and text classification tasks illustrated
in Figure 2.2, it is possible to obtain labels both at the bag level and directly at the instance level.
Labeling all instances, however, would be expensive. Again, the rationale for formulating a learn-
ing task as an MI problem is that it allows us to take advantage of coarse-granularity labelings
that may be available at low cost, or even for free. Instead, consider a family of approaches that

43

Table 5.1: Four multiple-instance active learning scenarios.

Scenario I Scenario II Scenario III Scenario IV
Query unit unlabeled bag unlabeled

instance from
positive bag

labeled
positive bag

labeled
positive bag

Label(s) obtained for query bag query instance any positive
instance in the
query bag

all instances
in the query
bag

involves selectively obtaining the labels of only certain instances in the context of MI learning.
In particular, consider obtaining labels for selected instances in positive bags, since the labels for
instances in negative bags are implicitly known.

I argue that whereas multiple-instance learning reduces the burden of labeling data by getting
labels at a coarse level of granularity, we may also benefit from selectively labeling some part of
the training data at a finer level of granularity. Hence, the aim of this work is to explore vari-
ous approaches to multiple-instance active learning as a way to efficiently overcome the inherent
ambiguity of the MI framework, while still keeping label costs low.

Table 5.1 presents several MI active learning scenarios we might consider. Scenario I, which
is analogous to standard supervised active learning, simply allows the learner to query for labels
of unlabeled bags. Scenario II is one in which the bags in the training set are assumed to be
already labeled, and the learner is allowed to query and obtain labels for selected instances from
positive bags. For example, the learner might query on particular image segments in a CBIR
task, or passages of text in a document classification task (e.g., the highlighted instances shown in
Figure 2.2). If the instance label is positive, the learner now has direct evidence for the positive
class. If the label is negative, the learner knows to focus its attention to other instances from that
bag, also reducing ambiguity. Scenario III also assumes that bag labels are available, but relaxes
which instance label must be obtained. In this setting, the learner may query a positive bag and the
oracle provides a label for any positive instance in that bag. For example, the learner might query
a document in a text classification task and allow the annotator to label the first positive passage
he or she finds, without having to read through the entire document. Scenario IV similarly queries
positive bags, but asks the oracle to label all instances in the bag. For example, the learner might
query a positive image in the CBIR domain, and ask the oracle to label all segments that belong
to the target object (and the remaining segments are therefore implicitly negative). An additional
scenario might assume that some bags are labeled and some are not, and the learner is able to query
on (i) unlabeled bags, (ii) unlabeled instances in positive bags, or (iii) some combination thereof.
In this work, I focus on the four scenarios summarized in Table 5.1, and assume all queries for a
given learning application are of the same type.

This chapter presents three main contributions to research in MI active learning. First, I propose
several bag-level and instance-level query strategies designed for each of the four active learning

44

scenarios. Second, I empirically evaluate all of these scenarios and query strategies on a large col-
lection of multiple-instance tasks, and offer a discussion of when certain approaches may be more
appropriate in practice. The rest of this chapter is organized as follows. Section 5.2 presents the
mixed-granularity learning algorithm I have developed for MI learning models like MILR. Sec-
tion 5.3 defines several bag-level and instance-level query selection algorithms for the various MI
active learning scenarios described above. Section 5.4 describes several MI data sets, and Sec-
tion 5.5 presents experiments to evaluate the various MI active learning scenarios and algorithms.
Finally, Section 5.6 offers a summary of findings and suggestions for future work for MI active
learning.

5.2 Learning from Labels at Mixed Granularities

For most of the MI active learning scenarios described in the last section, labels can be provided
at the instance level of granularity. For example, in Scenario II an active MI learner may query an
instance xn and the corresponding instance label yn is provided by the oracle. We would like to
include a direct training signal for this instance in the training procedure for the model, in this case
log-likelihood optimization for MILR (see Section 2.2.2). However, the objective function `(L; θ)
is defined in terms of bag-level likelihood, not instance-level likelihood. Consider, though, that
in MI learning a labeled instance is effectively the same as a labeled bag that contains only that
instance. So when the label for an instance is known, we can transform the training set by adding
a new training tuple 〈{xn}, yn〉 to L, where {xn} is a new singleton bag containing only a copy
of the labeled instance, and yn is its corresponding instance label. If xn is positive, it may seem
reasonable to simply substitute it for the original bag X in the training set, but doing so assumes
that a bag contains one and only one positive instance. This assumption is too strong for many
MI learning tasks, as can be seen later. Instead, a copy of the query instance also remains in the
original bag, enabling the learner to compute the remaining instance gradients as described below.

Let us assume that the oracle labels instance xn as positive. Because the objective function
` will guide the learner toward classifying the singleton query instance in the new positive tuple
〈{xn}, 1〉 as positive, it will tend to classify the original bag X positive as well. Conversely, if the
oracle’s answer is negative, the tuple 〈{xn}, 0〉will be added and the learner will tend to classify the
instance negative in the original bag. This will affect the other instance gradients via the combining
function and will guide the learner to focus on other potentially positive instances in that bag.

It may seem that this effect on the original bag could be achieved by simply clamping the
instance output on ≡ yn during training, rather than creating new singleton bags. However, this
has the undesirable property of eliminating the training signals for both bags and instances. If
on ≡ 1, the combining function output o for the bag would be extremely high, making the log-
likelihood nearly one, thus maximizing the objective function without actually updating any model
parameters. If on ≡ 0, the instance would contribute nothing to the combining function, thus
the learner would get no training signal at all for that instance (though in this case the learner
can still focus its calculations on other positive-looking instances in the bag). It is possible to
combine clamped instance outputs with the singleton bag approach to overcome this problem, but

45

original labeled training set bags

additional singleton bags
for labeled instance-queries

1/2 1 111/3 1

1/31/31/2
normalized weights

preserve the
objective function

+ − − −+ +

+ + −+ +

++
−

−

−
−

− −
−

−
−

Figure 5.1: An example MI training set after three instances have been labeled and added to L.
Squares represent labeled bags, circles represent instances (some instance labels are
implicitly known), and boxes with rounded corners represent labeled singleton bags.
The labeled instances are highlighted, shown with dashed lines to their corresponding
singleton bags. The fractions below each bag indicate that bag’s training weight.

my research indicates that this has no empirical advantage over adding singleton bags using the
method described above.

Figure 5.1 shows what an example MI training set might look like after three instances have
been labeled. Note that simply adding singleton bags will alter the objective function by adding
weight, albeit indirectly, to bags that have been queried more often. To control for this effect, each
bag and all its queried singleton bags are uniformly weighted to sum to one when computing the
value and gradient during training. Let Q ≤ N be the number of queried instances from a bag, and
let the weight of said bag (and thus all of its queried instances) be 1

Q+1
. Therefore, an unqueried

bag has a weight of one, a bag with one instance query and its derived singleton bag both have
weight 1/2, a bag with two instance queries has weight 1/3, and so on.

While this mixed-granularity learning algorithm (and the active learning algorithms in the next
section) are described in terms of a log-likelihood formulation of multiple-instance logistic regres-
sion, it is important to note that these approaches generalize to any multiple-instance classifier
that outputs instance-level probabilities used with differentiable combining and objective func-
tions. For example, the original formulation of Diverse Density (Maron and Lozano-Perez, 1998)
couples a Gaussian instance model with a noisy-or combining function.

5.3 Query Selection Algorithms

In order to select queries, an active learner must have a way of assessing how informative each
bag or instance is. Again, let φ(·) be an query selection strategy that evaluates the informativeness

46

of potential queries. The remainder of this section presents several formulations of φ(·) that can be
used for the various MI active learning scenarios described in Section 5.1.

5.3.1 Querying Bags
First let us consider selecting bags for labeling. The methods in this section apply to MI active

learning Scenario I from Table 5.1, where bags are queried from an unlabeled pool U and bag-
level labels are provided by the oracle. These query selection strategies can also be employed for
Scenarios III and IV, where positive bags are queried and instance-level labels are obtained for any
or all unlabeled instances in the query bag.

We begin with query strategies in the uncertainty sampling framework, which queries the bag
about which the model is least certain how to label. Using the posterior label entropy to evaluate
uncertainty, let us define bag uncertainty (BU) to be:

φBU(X) = −
(
o log o+ (1− o) log(1− o)

)
,

where o = P (y = 1|X ; θ) is shorthand for the posterior probability that X is positive under the
model. Note that the particular uncertainty measure we use (entropy in this case) is not especially
critical; the important properties are that its minima are at zero and one, its maximum is at 0.5, and
it is symmetric about 0.5.

Estimating uncertainty at the bag level can possibly obscure the model’s underlying uncertainty
about the instances within the bag. This effect is undesirable for Scenarios III and IV, where we
wish to query positive bags (whose labels are known), but in order to obtain labels for one or
more of its constituent instances. To study the differences between using bag-level vs. instance-
level uncertainty in such cases, I also explore several query selection strategies that evaluate bags
by aggregating instance-level uncertainties. The first such method is combined bag uncertainty
(CBU):

φCBU(X) = softmaxα
(
φIU(x1), . . . , φ

IU(xN)
)
,

where φIU(xn) is the instance-level uncertainty for each constituent instance inX = {x1, . . . , xN},
given below by Equation 5.1 in Section 5.3.2. Here, the informativeness of a bag is evaluated
by using the model’s combining function to aggregate instance-level uncertainties. Two other
aggregate uncertainty strategies I consider are maximum bag uncertainty (MBU):

φMBU(X) =
N

max
n=1

φIU(xn),

which is similar, but uses the hard max function, and total bag uncertainty (TBU):

φTBU(X) =
N∑
n=1

φIU(xn).

In addition to these uncertainty sampling approaches, I also examine the “expected gradient
length” (EGL) framework (introduced in Section 7.3.3), which considers the informativeness of

47

a query to be the amount of change it would impart on the current model if we knew its label.
Since we train MILR via gradient optimization (2.5), this involves querying the bag X which, if
〈X , y〉 is added to the training set L, would create the greatest expected change in the gradient of
the objective function (i.e., the highest-magnitude gradient vector used to re-estimate values for
θ). Let ∇`(L; θ) be the gradient of the objective function ` with respect to θ; it is a vector whose
components are the partial derivatives of ` with respect to each model parameter: ∇`(L; θ) =
[∂`
∂θ0
, . . . , ∂`

∂θK
].

Now, let ∇`(L ∪ 〈X , 1〉; θ) be the new gradient obtained by adding the positive tuple 〈X , 1〉
to the training set, and likewise let ∇`(L ∪ 〈X , 0〉; θ) be the new gradient if a query results in the
negative tuple 〈X , 0〉 being added. Since we do not know which label the oracle will provide in
advance, we instead calculate the expected length of the gradient based on the learner’s current
estimate o of the outcome. More precisely, let the expected bag gradient length (BGL) criterion
be defined as:

φBGL(X) = o
∥∥∥∇`(L ∪ 〈X , 1〉; θ)∥∥∥+ (1− o)

∥∥∥∇`(L ∪ 〈X , 0〉; θ)∥∥∥.
Note that, since the model converged on its current parameters θ after the previous round of
training, ‖∇`(L, θ)‖ ≈ 0. That is to say, the length of the gradient using L with no new bags
added should be nearly zero. Because the model assumes that labeled bags are independent,
∇`(L ∪ 〈X , y〉, θ) ≈ ∇`(〈X , y〉, θ). In other words, the expected gradients above only need to
be calculated for the new bag X currently being evaluated for querying. This approach simplifies
the implementation and reduces any unnecessary computation.

The formulation of φBGL above is only appropriate for the Scenario I, in which unlabeled bags
are queried and bag labels are provided by the oracle. For the Scenario IV, in which positive bags
are queried and labels are obtained for all of its constituent instances, I instead use the total bag
gradient length (TBGL) strategy:

φTBGL(X) =
N∑
n=1

φIGL(xn),

which is the sum of expected gradient lengths φIGL(xn) for each instance xn ∈ X , given below
by Equation 5.3 in Section 5.3.2. This is an approximation to the true expected gradient length
for this scenario, which would otherwise require an expectation over all possible permutations of
the potential instance labels. Because the model assumes that instance-based singleton bags are
independent, this is a reasonable approximation. Observe that when computing these expected
gradients, each singleton bag is given weight 1

N+1
, as explained in Section 5.2. This is because

φTBGL strictly expects that all the instances in the query bag will be labeled (i.e., N = Q). I
do not explore any approaches based on EGL for Scenario III, in which a positive bag is queried
but a label is obtained only for one of its positive instances. This is because EGL computes an
expectation over possible labels it explicitly expects; however in Scenario III the query and label
granularities are not the same. Furthermore, the BGL and TBGL formulations do not work well
for Scenario III in my experience.

48

5.3.2 Querying Instances
Now let us turn our attention to strategies that select unlabeled query instances directly from

positive bags. The methods in this section are appropriate for use in the MI active learning Sce-
nario II from Table 5.1. Returning to the uncertainty sampling framework, one approach is to query
instances based on the aforementioned instance uncertainty (IU):

φIU(xn) = −
(
on log on + (1− on) log(1− on)

)
, (5.1)

where again entropy is used to measure uncertainty.
I argue that when querying for instance labels in a multiple-instance setting, the selection cri-

terion should take into account not just uncertainty about a given instance’s class label, but also
the extent to which the learner can adequately “explain” the bag to which the instance belongs.
For example, the instance that the learner finds most uncertain may belong to the same bag as the
instance it finds most positive. In this case, the bag will have a high probability P (y = 1|X ; θ) of
being positive, because the combining function output will be dominated by the positive-looking
instance. Thus, naı̈vely querying the most uncertain instance may only have a small impact on
the model overall. To address this shortcoming, I propose an uncertainty-based query strategy that
weights the uncertainty of xn in terms of how much it contributes to the classification of its parent
bag X . I call this approach multiple-instance uncertainty (MIU):

φMIU(xn) = φIU(xn)×
(
∂o

∂on

)β
, (5.2)

which is the instance uncertainty (5.1) times a “relevance” term, which is the derivative of the
bag output o with respect to the instance output on (i.e., the derivative of the softmax combining
function, which is given in the Appendix). The parameter β controls the relative importance of
the relevance term (e.g., if β = 1 both terms have equal weight). This criterion encourages the
learner to query instances that are both uncertain and influential in the labeling of their respective
parent bags. Note that this approach is reminiscent of the information density algorithm (Chap-
ters 3 and 4), except that here we are balancing the uncertainty of an instance with its influence
over the bag (rather than similarity to other instances).

I also consider a query strategy for instances based on expected gradient length, which is called
instance gradient length (IGL):

φIGL(xn) = on

∥∥∥∇`(L ∪ 〈{xn}, 1〉; θ)∥∥∥+ (1− on)
∥∥∥∇`(L ∪ 〈{xn}, 0〉; θ)∥∥∥. (5.3)

For efficiency reasons, the gradient here again only needs to be calculated over the expectation of
the label for {xn}. Also, each instance gradient is given weight 1

Q+2
, where Q is the number of

instances in the same parent bag that have already been queried.

5.4 Multiple-Instance Data Sets

In Scenario I, only bag labels are necessary because instance labels are never queried. There-
fore, we can evaluate these active learning strategies using several benchmark MI data sets. Drug

49

activity prediction was the original motivating application for the MI representation, so we begin
with the MUSK data set from Dietterich et al. (1997). For this task, a bag represents a molecule
which can assume multiple conformations (three-dimensional shapes) in solution. These confor-
mations are described by various positional features, and are represented as instances. A molecule
(bag) is positive if at least one of its conformations (instances) binds to a target of interest, and
negative if none of its conformations bind. There are two versions of the data set which contain
approximately the same number of bags, but the second version contains many more instances per
bag. Active learning via Scenario I for drug activity prediction can be thought of as an automated
experimental selection methodology. The model attempts to learn how a molecule (or one of its
conformations) binds to a target by conducting chemical binding affinity experiments, with the
goal of minimizing the number of molecules to analyze. A related idea has been explored for ac-
tive learning with inductive logic programming to autonomously discover metabolic pathways in
yeast, with the goal of minimizing the cost of laboratory materials (King et al., 2004). Note that it
is probably not possible to chemically determine which conformations (instances) bind to a target.
Therefore, drug activity prediction is not a good candidate for MI active learning via Scenarios II
through IV.

Protein family modeling has also been framed as a multiple instance problem. I explore MI
active learning in this application using the TrX data set (Tao et al., 2004), where the task is to
classify given protein sequences according to whether they belong to the family of TrX proteins.
The proteins are first aligned with respect to a motif that is known to be conserved in members
of the family. A bag then represents an aligned protein, and an instance corresponds to a position
in a fixed-length sequence around the conserved motif. Each instance is described by properties
of the amino acid at that position, and smoothed using the same properties from its 16 neighbors.
A protein (bag) is positive if it belongs to the family, and negative otherwise. Labeling instances
for this application may be possible, though extremely expensive. Therefore, as with drug activity
prediction, Scenario I is the most appropriate MI active learning setting for this task.

I also investigate text classification with the TST-OHSUMED corpus, prepared by Andrews
et al. (2003) and derived from the OHSUMED corpus (Hersh et al., 1994). This data set comprises
biomedical article abstracts, and is divided into seven subtasks. Each subtask involves assigning
abstracts to a specific MeSH (Medical Subject Heading) term. Similar to the MI text classification
setting discussed in Section 5.1, a bag represents a document and instances are passages of text.
More specifically, in this corpus, instances are overlapping windows of 50 words each. A document
(bag) is positive if at least one of its passages (instances) asserts that the MeSH term is relevant.
Instances are characterized using a bag-of-words feature representation. Each subtask contains 200
positive and 200 negative bags, which have about 16 instances per bag on average.

For the content-based image retrieval task I use the SIVAL repository, which is a collection
of 1500 images, each labeled with one of 25 class labels. The images contain complex objects
photographed in a variety of positions, orientations, locations, and lighting conditions. As ex-
plained in Section 2.2.2, in this setting a bag represents an image, which has been transformed
and segmented into approximately 30 segments. An image (bag) is positive if at least one of its

50

segments (instances) belongs to an object of interest. Each instance segment is described by a 30-
dimensional feature vector describing color and texture attributes of the segment and its cardinal
neighbors. For more details, see Rahmani and Goldman (2006).

Conducting experiments for active learning Scenarios II, III, and IV requires data sets that have
instance-level labels available. Since no MI data sets with instance-level labels previously existed,
I created several, including an augmented version of the SIVAL repository. Using a web-based
graphical interface I developed, a few members of my research group helped manually annotate all
positive instance segments belonging to the labeled object of interest for each image. We used this
system to annotate all 1500 images in the repository. More details on the annotation methodology
for this data set are provided in Chapter 6 (Section 6.2.2)

For text classification, I created a semi-synthetic MI data set using the 20 Newsgroups corpus
as a base. This corpus was chosen because it is an established benchmark for text classification,
and because the source documents—Usenet posts from the early 1990s—are relatively short (in the
MI setting, instances are usually paragraphs or short passages). For each of the 20 news categories,
I generate artificial bags of approximately 50 posts (instances) each by randomly sampling from
the target class (i.e., newsgroup category) at a rate of up to 10% for positive bags, with remaining
instances (and all instances for negative bags) drawn uniformly from the other 19 classes. The
documents are processed by first stripping out all headers (e.g., from and subject lines), email
addresses (that match a regular expression), and reply quotes (i.e., lines that begin with “>,” or
“:” characters). This step helps prevent content in one message from bleeding into other messages
which may quote it verbatim. The resulting documents are then processed with stemming, stop-
word filtering, and term-frequency ranked feature selection. Frequency counts for the 500 most
common words are used as features to represent the instance documents. I construct a data set of
100 bags (50 positives and 50 negatives) for each of the 20 label classes. The corpus described here
differs slightly from the semi-synthetic corpus used in previous work (Settles et al., 2008b). This
is because I found the previous version to be trivial for MILR after switching to the log-likelihood
objective function (see Section 2.2.2). This new corpus is more difficult and, I feel, somewhat
more realistic.

I also created a semi-synthetic MI data set using the Handwritten Digits collection (Hull,
1994) as a base. This data set contains thousands of handwritten digits that belong to ten label
classes (zero through nine), each represented as 8 × 8 pixel images (resulting in a 64-feature
vector). To treat this as an MI learning problem, I generate random integers of up to 15 digits in
length. A bag, then, is one of these randomly generated integers, and an instance is a randomly
chosen image from the collection corresponding to a digit position in the integer. An integer (bag)
is positive if it contains at least one digit (instance) of the target label class (e.g., zero), and is
negative otherwise. This results in ten subtasks, one for each digit, for which I generate 5,000 total
bags each.

51

5.5 Experiments

This section presents experimental results using the various query strategies from Section 5.3,
using MILR as the base learning algorithm, for each of the four active learning scenarios. Methods
are evaluated by constructing learning curves that plot the area under the ROC curve, or AUROC
(as defined in Section 2.3) as a function of the number of queries made for each data set and query
selection strategy. In all experiments, I use α = 3 for the softmax combining function following
previous work (Ray and Craven, 2005), and because this value seems to provide a good empirical
balance between the “average” and “hard max” extremes. Further experimental details for each
scenario are given the subsections below.

5.5.1 Scenario I: Label a Query Bag
The goal of these experiments is to determine how MILR and related models can best select

unlabeled bags for querying. This setting is analogous to standard active learning, in that labels are
not acquired at mixed levels of granularity. In these experiments, results are averaged over over
20 independent runs for which the data set is randomly split into two halves: one for the pool of
unlabeled bags U , and the other held aside for evaluation. For each run, four bags (two positive
and two negative) are randomly drawn from U to comprise the initial labeled set L. Randomization
is done using seed numbers to ensure that all query strategies receive the same initial partitioning
of the data for each run. For each query strategy, bags are queried one at a time from U to be
labeled and added to L, the model is re-trained, and the process repeats. I compare the active
learning algorithms presented in Section 5.3.1 against a simple baseline that randomly chooses an
unlabeled bag from U .

Figure 5.2 presents selected learning curves for for each data set. For legibility, the figures only
show the random baseline and three of the five query strategies: BU, CBU, and BGL (the other
approaches all aggregate instance-level uncertainty, and either perform poorly or very similarly
to CBU). Since the TST-OHSUMED, SIVAL, and Handwritten Digits collections are made up of
many subtasks, I present plots for only three representative subtasks each. Table 5.2 summarizes
the curves for these larger data sets by reporting the average improvement across all subtasks made
by each strategy over the initial model (i.e., before any queries are made). Curves for 20 News-
groups are omitted because they are flat and uninformative, but the results are summarized in
Table 5.2.

For the MUSK, TST-OHSUMED, and 20 Newsgroups tasks, active learning does not appear
to be helpful under these experimental conditions. While accuracy does generally improve as
new labeled bags are added to the training set, the active query strategies are often on par with
(or even inferior to) the random baseline. The 20 Newsgroups tasks seem particularly difficult
to learn in general. For the TrX data set, the BU and BGL strategies show some improvement
over random, but the differences are not statistically significant. With the SIVAL and Handwritten
Digits tasks, however, active learning does appear to help fairly consistently, mainly using the
bag uncertainty (BU) strategy. The AUROC gains over random for several of these subtasks are
statistically significant as well (for the majority of sample sizes along the learning curve, using

52

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

BGL
CBU

BU
random

AU
RO

C

number of query bags

AU
RO

C
AU

RO
C

AU
RO

C

number of query bags number of query bags

musk1 musk2 trx

topic1 topic4 topic10

bluescrunge fabricsoftenerbox goldmedal

three seven nine

Figure 5.2: Selected learning curves for Scenario I: MUSK and TrX data sets (top row), TST-
OHSUMED (second row), SIVAL (third row), and Handwritten Digits (bottom row).

a two-tailed t-test at 95%). The BU strategy is consistently better than the other bag-level query
algorithms for this scenario, indicating that it is better to consider the informativeness of the bag
as a whole rather than aggregating instance-level information for this active learning setting.

Why active learning under Scenario I should be helpful for certain tasks and not others might
have something to do with the underlying ratio of positive instances in positive bags. We know
that positive images from the SIVAL repository contain 15–28% positive segments, and integer-
bags from the Handwritten Digits collection contain about 16% positive digits. These high figures

53

Table 5.2: Summary of Scenario I learning curves for large data sets. Reported is the average im-
provement in AUROC over the initial model (i.e., before any queries are made) for each
query strategy. Numbers are averaged across all subtasks for each data set at various
points during active learning, and the algorithm with the highest average improvement
at a given point is shown in bold. Small numbers in parentheses represent the number
of subtasks for which the strategy was the “winner” at that point in the curve.

Queries Random BU CBU MBU TBU BGL
TST-OHSUMED

5 +0.062 (2) +0.047 (1) +0.034 +0.039 (1) +0.066 (3) +0.033
10 +0.093 (1) +0.066 (1) +0.071 +0.069 (1) +0.087 (2) +0.086 (2)

20 +0.116 (2) +0.089 +0.088 +0.112 (2) +0.116 (1) +0.126 (2)

40 +0.164 (3) +0.126 +0.128 +0.139 +0.143 +0.166 (4)

SIVAL
5 +0.054 (5) +0.064 (3) +0.057 (4) +0.058 (3) +0.056 (5) +0.051 (5)

10 +0.070 (3) +0.082 (5) +0.076 (6) +0.071 (1) +0.069 (4) +0.067 (6)

20 +0.085 (4) +0.099 (4) +0.096 (4) +0.087 (1) +0.091 (4) +0.091 (8)

40 +0.098 (2) +0.125 (9) +0.119 (2) +0.113 +0.118 (6) +0.113 (6)

Handwritten Digits
5 +0.084 (1) +0.090 (3) +0.096 (2) +0.076 (1) +0.069 +0.097 (3)

10 +0.143 (1) +0.169 (5) +0.160 (2) +0.136 +0.119 +0.159 (2)

20 +0.219 (1) +0.251 (5) +0.237 (2) +0.198 +0.190 +0.234 (2)

40 +0.286 (1) +0.297 (2) +0.288 (2) +0.273 (1) +0.260 (1) +0.279 (3)

20 Newsgroups
5 –0.009 (1) –0.002 (5) +0.000 (6) –0.004 (1) –0.012 (2) –0.003 (5)

10 +0.004 (5) –0.002 (2) +0.004 (4) –0.003 (2) –0.009 (2) –0.002 (5)

20 +0.009 (4) –0.001 (3) +0.013 (7) +0.004 (1) –0.009 (2) +0.002 (3)

40 +0.021 (4) +0.014 (2) +0.021 (8) +0.014 +0.018 (5) +0.010 (1)

correlate with with their higher gains during active learning. Bags in the 20 Newsgroups corpus,
however, are more sparsely positive at 10% or less. While we know nothing about the abundance
of positive instances in the MUSK, TrX, and TST-OHSUMED data sets, it is possible that positive
instances in these problem domains are also rare. In previous work with MUSK and TrX (Ray and
Craven, 2005), models with strong assumptions of a single positive instance performed well, sug-
gesting that this is indeed the case. It may also be that the ratio of positive bags in the overall data
set influences the utility of active learning. The 20 Newsgroups, TST-OHSUMED and MUSK1
data sets are fairly balanced, while the SIVAL (4% positive) and Handwritten Digits (61%) are
more skewed. However, MUSK (38%) and TrX (13%) are also skewed and show little improve-
ment with active learning. It is more likely, then, that the active learning algorithms I consider for
this scenario are only useful when the ratio of positive instances in positive bags is relatively high.

54

One possible explanation stems from the use of the combining function. If a bag contains many
instances, only a few of which are positive, the softmax function may underestimate the overall
bag-level output. If this is the case, the bags with the highest posteriors may in fact result in the
highest entropy values (which may not be the desired effect). To study this, I have experimented
with other query strategies that measure uncertainty as proximity to a dynamic threshold, as esti-
mated by the mean or median of the bag label posteriors in U . However, these approaches perform
no better in practice. It is possible that more carefully tuning the α parameter might resolve some
of these issues for highly ambiguous tasks, however, my preliminary investigation of this yielded
no improvements and I have not explored it any further.

I feel that these results underscore the rationale for exploring the other three active learning
scenarios, examined in the following subsections. For problem domains in which instance-level
labels can be reasonably acquired, queries that obtain these ambiguous instance labels directly may
lead to more substantial gains in accuracy while keeping labeling costs low.

5.5.2 Scenario II: Label a Query Instance from a Positive Bag
The goal of these experiments is to assess whether instance-level queries are of value to MI

learning algorithms, and how to best select them. In these experiments, results are again averaged
over 20 independent runs; I draw 20 bags (ten positive and ten negative) randomly from the data
set to comprise L, and hold aside all remaining bags for evaluation. This is because, in this active
learning setting, the learner queries unlabeled instances in positive bags and acquires labels for
these instances. Thus the active learning pool is actually comprised of instances from the bags
in L. Using the query strategies from Section 5.3.2, the unlabeled instances are queried directly,
labeled, and added as singleton bags to L. The model is re-trained with these mixed-granularity
labels using the method described in Section 5.2, and the active learning process repeats. For
the MIU strategy, I use β = 1 (i.e., both the uncertainty and relevance terms have equal weight).
I compare the three active query approaches to a baseline that chooses an unlabeled instance at
random from any positively labeled bag.

Figure 5.3 presents selected learning curves for the three data sets with instance labels available:
SIVAL, 20 Newsgroups, and Handwritten Digits. Notice that the horizontal axis is now plotted
in terms of query instances rather than bags. Table 5.3 summarizes learning curves across all
subtasks for each data set. Note that the active query strategies reported here are different than
with Scenario I, because we are now interested in selecting instance queries directly.

We can draw several interesting conclusions from these results. First and most germane to
this MI active learning setting, is that MI learners benefit from instance-level labels. Note that,
unlike Scenario I, no new labeled bags are added to the training set; each query instead helps by
disambiguating which instances in the positively labeled bags are truly positive. With the exception
of random selection on the 20 Newsgroups data, these instance-level labels almost always improve
the accuracy of the learner, often with statistical significance after only a few queries.

Second, we see that all three active query strategies (IU, MIU, and IGL) perform better than
passive (random) instance labeling. On SIVAL tasks, random querying steadily improves accuracy,
but very slowly. As Table 5.3 shows, random selection at 40 queries is roughly comparable to the

55

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

IGL
MIU

IU
random

number of query instances

AU
RO

C
AU

RO
C

AU
RO

C

number of query instances number of query instances

bluescrunge fabricsoftenerbox goldmedal

three seven nine

misc.forsale rec.autos sci.crypt

Figure 5.3: Selected learning curves for Scenario II: SIVAL (top row), Handwritten Digits (second
row), and 20 Newsgroups (bottom row).

active query strategies after a quarter as many queries. On the 20 Newsgroups tasks, random
selection has a slight negative effect (if any) early on, possibly because it lacks a focused search
for the positive and/or ambiguous instances (of which there are only a few per bag). All three active
selection methods, on the other hand, show significant gains fairly quickly on all data sets. This
is particularly important for the 20 Newsgroups tasks, for which we know that positive instances
are sparse. Unlike Scenario I, which queries unlabeled bags, these results demonstrate that active
learning can help even in these highly ambiguous domains, as long as the learner is allowed to
query for specific instance labels.

Finally, MIU appears to be a particularly well-suited query strategy for Scenario II. On all data
sets, it consistently improves the initial MI learner, usually with statistical significance, and often
approaches the asymptotic level of accuracy with fewer labeled instances than the other two active
methods (sometimes in as few as ten query instances). IGL in turn outperforms the IU strategy
in most cases. It is true that MIU’s gains over IGL are not usually statistically significant, and in
the long run it is generally matched or slightly surpassed it. However, MIU shows the greatest

56

Table 5.3: Summary of Scenario II learning curves. See Table 5.2 for an explanation of notation.

Queries Random IU MIU IGL
SIVAL

5 +0.056 (1) +0.072 (8) +0.079 (12) +0.073 (4)

10 +0.070 (2) +0.090 (4) +0.096 (12) +0.090 (7)

20 +0.083 (1) +0.105 (7) +0.106 (9) +0.107 (8)

40 +0.090 (3) +0.117 (9) +0.118 (7) +0.118 (6)

Handwritten Digits
5 +0.087 (2) +0.088 (1) +0.102 (5) +0.098 (2)

10 +0.113 (1) +0.121 (1) +0.140 (5) +0.130 (3)

20 +0.141 +0.149 (1) +0.176 (6) +0.160 (3)

40 +0.160 +0.176 (2) +0.184 (3) +0.181 (5)

20 Newsgroups
5 –0.010 +0.014 +0.043 (14) +0.032 (6)

10 –0.011 +0.035 (1) +0.085 (16) +0.051 (3)

20 –0.007 +0.071 (4) +0.112 (14) +0.091 (2)

40 +0.007 (1) +0.097 (1) +0.116 (6) +0.130 (12)

advantage early in the active learning, perhaps because it is the only method tested that explicitly
encodes the MI assumption by taking advantage of the combining function in its selection process.

5.5.3 Scenario III: Label Any Positive Instance from a Positive Query Bag
The goal of these experiments is to evaluate the utility of querying a bag and obtaining the

label of any positive instance in that bag (which may be more natural in some domains). The initial
partitioning of the data is the same as in Scenario II. However, in this setting the learner queries a
labeled positive bag, and acquires an instance label for a randomly chosen positive instance from
that bag. The labeled instance is then added as a singleton bag to L. The instance is chosen at
random because, from the point of view of the annotator, we can assume that any labeled positive
instance is as reasonable as any other from the same bag. To account for the randomness in which
instance is actually labeled, however, I replicate each of the 20 independent runs 20 times (thus,
results are averaged over 400 runs). Once all the positive instances in a bag have been queried, the
parent bag is marked such that it will not be queried again (this simulates an annotator flagging,
for example, an image for which all the positive segments have now been labeled). I compare the
bag-level active query strategies (Section 5.3.1) to a baseline that chooses a positive query bag at
random.

Figure 5.4 presents selected learning curves for this scenario. Note that, since the active learner
does not know which instance will actually be labeled and added to the training set, I do not
consider an “expected gradient length” query strategy variant, which inherently assumes that the

57

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

CBU
BU

random
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

CBU
BU

random
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

CBU
BU

random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

CBU
BU

random
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

CBU
BU

random
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

CBU
BU

random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

CBU
BU

random
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

CBU
BU

random
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

CBU
BU

random

number of query bags

AU
RO

C
AU

RO
C

AU
RO

C

number of query bags number of query bags

bluescrunge fabricsoftenerbox goldmedal

three seven nine

misc.forsale rec.autos sci.crypt

Figure 5.4: Selected learning curves for Scenario III.

instance to be labeled is known. Note also that the horizontal axis is again plotted in terms of
query bags (however, only one instance is labeled per query). Table 5.4 summarizes learning
curves across all subtasks. Since queries can no longer be made once all positive instances in L are
labeled, some data sets have fewer possible queries. As a result, Handwritten Digits experiments
only run out to ten queries, and 20 Newsgroups experiments run out to 30 queries.

The first thing to note from these results is that learning with positive instance labels still
shows improvement over the base MI model for all data sets. This is again even true for the
20 Newsgroups corpus. For some tasks, the learner even approaches its asymptotic accuracy after
seeing only five to ten positive instances (and merely one instance for the seven subtask).

However, unlike Scenario II, the active query strategies perform no better than random selection
in this setting. In fact, for most tasks they are somewhat worse. While all methods generally
improve the base MI learner, querying bags randomly does so with fewer labeled instances. I
surmise that this is because the active strategies implicitly expect to obtain labels for the instances
that most influence the uncertainty of the parent bag’s labeling. However, there is no guarantee
as to exactly which positive instance will be labeled and added to L, thus the attempts of these
active strategies are ultimately thwarted. Furthermore, the most informative instance may in fact
be negative.

58

Table 5.4: Summary of Scenario III learning curves. See Table 5.2 for an explanation of notation.

Queries Random BU CBU MBU TBU
SIVAL

5 +0.078 (11) +0.072 (3) +0.072 (5) +0.072 (2) +0.071 (4)

10 +0.091 (16) +0.084 (3) +0.083 (5) +0.083 +0.082 (1)

20 +0.098 (18) +0.092 (3) +0.091 (3) +0.092 (1) +0.091
40 +0.101 (16) +0.095 (4) +0.096 (3) +0.097 (1) +0.095 (1)

Handwritten Digits
5 +0.134 (1) +0.139 (8) +0.126 +0.124 +0.125 (1)

10 +0.150 (3) +0.150 (4) +0.143 +0.142 +0.144 (3)

20 Newsgroups
5 +0.024 (19) +0.010 +0.014 (1) +0.013 +0.009

10 +0.049 (20) +0.013 +0.024 +0.017 +0.012
20 +0.081 (20) +0.015 +0.039 +0.020 +0.015

We also see that the gains under this scenario are not as pronounced or as rapid as they were
with Scenario II. We can conclude from these results that there is value in having the learner choose
the specific instance to be labeled directly. It also appears advantageous to obtain both positive and
negative instance labels, despite the fact that positives are less abundant (and thus intuitively more
important). This is possible with Scenario II but not with Scenario III.

5.5.4 Scenario IV: Label All Instances in a Positive Query Bag
The goal of these experiments is to evaluate the benefit of obtaining labels for every instance

in an informative query bag. The setup for these experiments is similar to Scenario III; the only
difference is that once a bag is queried, all instances (both positive and negative) are labeled.
Each time a bag is queried, it is marked as such—so that it will not be queried again—and all
of its instances are labeled and added as singleton bags to L. The model is re-trained with these
mixed-granularity labels and the active learning process repeats. I again compare the active query
strategies to a baseline that randomly chooses a positive bag.

Figure 5.5 presents selected learning curves for this scenario. Notice that the horizontal axis
in these plots only goes to ten, since L only contains ten positive bags. Thus, the rightmost point
in each plot means that all instances in the training set have been fully labeled. The reason the
algorithms to not always converge to the exact same AUROC value is likely due to local optima.
Table 5.5 summarizes learning curves across all subtasks for each data set.

We can see that fully labeling all instances from positive bags can improve accuracy. However,
there are several other interesting observations we can make with these results. For one thing, once
again the active strategies appear to show no consistent gains over the random baseline. While
labeling instances appears to be generally valuable, the proper way to choose which bags should

59

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

TBGL
CBU

BU
random

number of query bags

AU
RO

C
AU

RO
C

AU
RO

C

number of query bags number of query bags

bluescrunge fabricsoftenerbox goldmedal

three seven nine

misc.forsale rec.autos sci.crypt

Figure 5.5: Selected learning curves for Scenario IV.

Table 5.5: Summary of Scenario IV learning curves. See Table 5.2 for an explanation of notation.

Queries Random BU CBU MBU TBU TBGL
SIVAL

5 +0.081 (4) +0.074 (3) +0.088 (6) +0.085 (2) +0.086 (5) +0.086 (5)

10 +0.062 (5) +0.057 (6) +0.062 (4) +0.062 (3) +0.061 (5) +0.059 (2)

Handwritten Digits
5 +0.112 (2) +0.114 (3) +0.108 (1) +0.105 (1) +0.098 +0.110 (3)

10 +0.158 (1) +0.157 (1) +0.159 +0.159 (1) +0.159 (3) +0.160 (4)

20 Newsgroups
5 +0.001 (2) +0.006 (7) –0.010 (2) +0.004 (3) –0.012 (1) +0.010 (5)

10 +0.021 (3) +0.045 (9) –0.010 +0.018 (2) +0.025 (2) +0.030 (4)

60

be fully labeled is unclear. This may be an artifact of the experimental setup, because L (which
comprises the query pool in this scenario) is so small. However, in many real-world applications
of MI active learning there may only be a handful of labeled bags available.

Another interesting result is that, for a handful of SIVAL subtasks, accuracy increases with the
first several queries but decreases again once nearly all bags have been queried. When the annota-
tors were manually labeling instances for this data set, we noticed that some of the image segments
did not clearly belong to the target object (e.g., part of the object and its shadow were lumped
together into a single segment). As a result, different annotators may have judged these borderline
segments differently, creating a certain amount of noise in the instance labels. I conjecture that
most of the observed decrease in accuracy is due to the learner trying to model this noise.

A final observation is that, for a few curves in the 20 Newsgroups subtasks, model accuracy
actually drops after four or five queries, and in rare cases (e.g., sci.crypt) does not recover. I
suspect that this is an artifact of the modifications that are made to the learning algorithm to account
for labels at mixed bag and instance granularity. If all instances in a bag are labeled, they are
uniformly weighted by the training algorithm, which means that each positive receives a weight
of≈ 1/50. Since positive instances are so sparse in this corpus, the training signal for these valuable
instances might actually be diminished relative to the case where only bags (which have a weight
of 1) are labeled. I have experimented with non-normalized variants of the training algorithm, but
such approaches tend to severely over-fit the bags that have been queried.

I argue that one lesson to be learned from these results is that fully labeling all instances in
a bag may not be appropriate for all problems. Not only is labeling all these instances the most
expensive query scenario I have considered, but doing so completely as in Scenario IV might force
the learning algorithm to (i) model a certain amount of inherent instance-level noise, or (ii) not
sufficiently weight the valuable positive instances when they are particularly sparse.

5.5.5 Comparison of Instance-Labeling Scenarios
Now let us take a comparative look at MI active learning Scenarios II, III, and IV, all of which

can obtain instance-level labels in an effort to reduce the inherent ambiguity of the MI representa-
tion. Figure 5.6 presents a comparison of the best learning curves for each of these three scenarios
for selected SIVAL, Handwritten Digits, and 20 Newsgroups subtasks. Note that the horizontal
axes represent the number of queries made, even though the number of actual label(s) obtained can
vary, i.e., the query instance (Scenario II), any positive instance in the query bag (Scenario III), or
all instances from the query bag (Scenario IV). The Scenario III and IV curves may not extend as
far as Scenario II, because for some tasks there are fewer positive instances or bags available to
query.

Scenarios II and III can be reasonably compared in terms of labeling cost, since they both label
a single positive instance per query. There are three main observations we can make regarding
the learning curves for these two approaches. First, the best query strategy for Scenario II is
consistently the MIU algorithm, whereas for Scenario III, it is variously BU, CBU, or even random.
Second, there is no clear “winner” between the two, although Scenario II dominates more often
(particularly for the 20 Newsgroups corpus, in which positives are most sparse). Second, even

61

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (CBU)
Scenario IV (CBU)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (random)
Scenario IV (random)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (BU)
Scenario IV (BU)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (random)
Scenario IV (random)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (random)

Scenario IV (TBGL)
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (BU)

Scenario IV (random)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (random)

Scenario IV (TBGL)
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (random)

Scenario IV (TBGL)
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Scenario II (MIU)
Scenario III (random)

Scenario IV (TBGL)

number of queries

AU
RO

C
AU

RO
C

AU
RO

C

number of queries number of queries

bluescrunge fabricsoftenerbox goldmedal

three seven nine

misc.forsale rec.autos sci.crypt

Figure 5.6: A comparison of the best learning curves for each scenario on several sample tasks.

in cases where Scenario III dominates, the curves are cut short in some domains, such as the
Handwritten Digits tasks. This is because Scenario III is limited to only labeling positive instances,
which may be exhausted before the learner is able to find a better set of parameters. Scenario II,
however, is able to continue asking questions about informative negative instances as well, and
ultimately surpass the accuracy of Scenario III approaches, e.g., for the seven and nine subtasks.

To see why querying negative instances can be important, consider Figure 5.7. This figure
shows the first six queries asked by the MIU algorithm in a run of the goldmedal SIVAL task. In
the first three queries, the learner requests labels for (1) a shadow near the medal, (2) a prominent
part of the ribbon, and (3) the medal itself against a background which is similar in color and
texture. The next three queries (and the majority thereafter) focus on the negative space near the
object—such as inside a loop of the ribbon—in a wide variety of different background settings.
In essence, the learner seems to have learned the general concept of a gold medal, and is now
verifying that all these near-misses are indeed part of the background. By doing this, it can better
avoid retrieving images from the repository that contain different objects in these same background
settings.

Scenario IV is somewhat difficult to compare to the other two in terms of labeling cost, since a
query in this scenario involves labeling all instances from a positive bag. However, we see that the

62

query 1 query 2 query 3

query 4 query 5 query 6

Figure 5.7: The first six queries in a Scenario II run of the goldmedal task, using the MIU strategy.

other scenarios are often superior even if we assume that the query types are of equal cost. In short,
labeling all instances is no better (and occasionally even worse) than labeling only one instance
per query. This is likely a benefit of using the MILR model, which is able to resolve the inherent
ambiguity of an entire bag with only a few instance labels.

I conclude that Scenario II is the preferable MI active learning approach in cases where in-
stance labels can be obtained. However, Scenario III has its advantages as well. In CBIR tasks, for
example, there is often little difference in accuracy between the two scenarios (possibly because
the ratio of positive instances is so high). It may be more natural for these tasks for a human anno-
tator to label segments that belong to the target object, instead of labeling particularly informative
segments that may or may not be positive, e.g., negative spaces in Figure 5.7. (In fact, CBIR tasks
may require little or no extra effort to label a single positive segment while labeling images, thus
mixed-granularity learning might also be leveraged for active learning with Scenario I.) For text
domains, on the other hand, Scenario II is clearly preferable because the annotator is only required
to read and label a single informative passage, rather than an entire document. Furthermore, if
real-world MI text classification tasks are as sparsely positive as the 20 Newsgroups corpus here
(as the TST-OHSUMED results from Section 5.5.1 seem to indicate), Scenario II is also likely to
produce better learning curves, and can do so with the known superior query strategy: the MIU
algorithm.

63

5.5.6 Active Learning with Diverse Density
I have also conducted some active learning experiments using the original formulation of

Diverse Density, which couples a Gaussian instance model with a noisy-or combining function
(Maron and Lozano-Perez, 1998). However, I do not report those results here. In my experience,
Diverse Density is much more prone to becoming trapped in local minima than MILR, thus adding
new query bags (or instances) to L often results in little or no change in the model or its accuracy.
One can get around this problem with a “N random restarts” approach after each query is made,
allowing the algorithm to better utilize the newly labeled parts of the instance space and achieve
learning curves similar to MILR. However, this tactic is very slow and computationally expen-
sive in practice. I find that MILR learns faster, and is often more accurate on these data sets than
Diverse Density (a comparison is provided in the Appendix).

5.6 Summary and Future Work

In this chapter, I presented multiple-instance active learning, a novel framework for reducing
the labeling burden by acquiring labels at a coarse granularity, and then allowing the learner to
selectively query the data at potentially finer levels. This approach is useful when bag labels are
easily acquired, and instance labels can be obtained but are more expensive. I have formulated,
implemented, and compared query strategies designed for four different MI active learning sce-
narios, in which: (i) unlabeled bags may be queried, (ii) unlabeled instances in positive bags may
be queried, (iii) any positive instance label may be obtained from a labeled, positive query bag,
or (iv) all instance labels may be obtained from a positive query bag. Specific conclusions of this
work can be summarized as follows:

• These active learning scenarios can, each in their own way, reduce the inherent ambiguity of
the MI representation while keeping label costs low. Specifically, obtaining instance-level
labels through active learning is beneficial in several real-world problem domains, including
content-based image retrieval and text classification.

• Scenario II, in which an active learner may query specific instances in labeled positive bags,
shows the most promise for learning with mixed levels of granularity. In particular, the MIU
query strategy is well-suited to MI active learning. This scenario appears to be especially
useful in domains where positive bags contain few positive instances.

• Scenario I, in which an active learner queries unlabeled bags from a pool, appears to be most
useful in domains where positive bags contain many positive instances.

Future work in MI active learning might include investigating other ways to combine bag-level
and instance-level queries for MI problem domains. One possibility requires that, when labels are
obtained for positive bags, at least one positive instance label be provided as well. For many tasks
such as content-based image retrieval, this extra labeling step requires little or no additional effort
for the annotator, and is likely of great value to the learner. Another setting of particular interest

64

is where some bags are initially labeled and others are not, and the learner is allowed to query on
(i) unlabeled bags, (ii) unlabeled instances from positively labeled bags, or (iii) some combination
thereof. I hypothesize that this family of active learning approaches can even further reduce the
labeling effort for many real-world multiple-instance learning applications. Vijayanarasimhan and
Grauman (2009) have recently extended my active learning framework to support vector machines,
and demonstrated that such mixed-granularity queries can be effective in content-based image
retrieval tasks.

Finally, I have argued that instance labels are more expensive to acquire than bag labels. An-
other key direction of future work in MI active learning (and active learning in general) involves
quantifying those differences in cost and evaluating the tradeoffs between these mixed granulari-
ties. In the next chapter, I consider ways of quantifying and predicting one such real-world labeling
cost: annotation time.

65

Chapter 6

Accounting for Real-World Annotation Costs

This chapter addresses the issue of active learning with variable annotation costs. Most research
in active learning to date has assumed that the cost of acquiring labels is the same for all queries.
However, there are many problem domains in which labeling costs may vary, and reducing the
number of labeled instances may not guarantee a reduction in cost. To better understand the nature
of active learning with actual labeling costs, I present a detailed empirical study of annotation costs
in four real-world domains involving human annotators. Much of this work has been previously
published (Settles et al., 2008a).

6.1 Introduction

Most previous work in active learning has assumed a fixed cost for acquiring each label, i.e., all
queries are equally expensive for the oracle. However, consider the information extraction tasks
from Chapters 3 and 4: the sentences in these corpora can vary considerably in length and the
complexity of language used. These variables most likely affect the amount of work required to
label different instances. Also consider that the queries that are most valuable to the learner may
be the most difficult or ambiguous cases, and therefore the most expensive for an oracle to label
accurately. These issues have serious implications for using active learning in practice. I argue
that, in order to truly reduce the labeling cost required to build an accurate model, the notion of
annotation cost must be better understood and incorporated into the active learning process.

In some problem domains, the cost required to label an instance is known before the learner
makes a query. For example, if labels are acquired by executing a biological experiment, then the
cost of a query might be the price of the materials used (King et al., 2004), which is presumably
fixed and available to the learner. In this work, I am primarily concerned with reducing costs that
are not known in advance. Specifically, I investigate the nature of reducing the annotation time for
tasks involving human annotators. Time is the natural currency for labeling costs in such domains,
since the scarce resource is usually the time available for annotators to label instances.

The vast majority active learning research has not considered that instances may vary in label-
ing cost. Some methods have been developed for the situation in which an active classifier may in-
cur a cost to obtain additional feature values at classification time (Greiner et al., 2002). This work,
in contrast, is focused on settings in which unlabeled instances (and their feature descriptions) are
readily available, but the labeling process incurs a cost at training time. One proposed approach

66

for reducing human annotation effort in active learning involves using the current learned model
to assist in the labeling of query instances in structured learning tasks like parsing (Baldridge and
Osborne, 2004) or information extraction (Culotta and McCallum, 2005). However, these methods
do not actually represent or reason about costs. Instead, they attempt to reduce the number of
annotation actions required for a query that has already been selected.

The prior work that is most closely related to the present chapter is a group of approaches
that explicitly account for varying label costs in active learning. One such cost-sensitive query
selection algorithm was proposed by Margineantu (2005), but differs from ours in that labeling
costs are assumed to be known for each instance, and the paper does not provide any empirical
evaluation using real-world data sets. Kapoor et al. (2007) have developed a related approach
that takes into account both labeling costs and estimated misclassification costs. In this setting,
each candidate query is evaluated by summing the labeling cost for the instance and the expected
future misclassification costs that would be incurred if the instance were added to the training
set. Kapoor et al. applied their method in a voicemail classification task, but instead of using
real cost information, their experiments make the simplifying assumption that the cost of labeling
a voicemail message is a linear function of its length (e.g., ten cents per second). King et al.
(2004) present the only work that, to my knowledge, uses active learning in an attempt to reduce
real labeling costs. They describe a “robot scientist” which can execute a series of autonomous
biological experiments to discover metabolic pathways, with the objective of minimizing the cost
of materials used. In contrast to the tasks I consider, the labeling cost of each instance in this
previous work is known prior to querying the instance.

This chapter presents a detailed analysis of four data sets for which I have measured the an-
notation cost (labeling time, and in some cases labeling actions) incurred by humans annotators.
This investigation attempts to answer several important questions about the role of such annotation
costs in real-world active learning. Are annotation times variable for a given task or domain? Do
these times change from one annotator to the next? Are they stationary, or do they change over
time? How stochastic are they? Can the annotation times, if not known or trivially estimated, be
accurately predicted? And finally, can we produce better active learning systems by incorporating
cost information into the query selection process?

6.2 Data Sets and Annotation Methodology

Because most active learning research has not been concerned with reducing real annotation
cost, I am not aware of any data sets with real cost information. I contacted the organizers for
at least five benchmark efforts involving human annotators to try to obtain cost data for their
respective data sets. While some could provide rough estimates about the average annotation time
per instance, none of them logged actual annotation times (or any other form of cost) for individual
instances. Therefore, I conducted several annotation experiments of my own in which these costs
are recorded.

67

Figure 6.1: A screenshot of the CKB labeling interface. Article text appears in the window on
the left, where annotators can highlight entities and label them with a word-processor
style formatting menu. As the entities are labeled, candidate relations among them are
dynamically generated in the window to the right, grouped by paragraph. Users then
click on these relations to indicate which ones are true (in dark grey).

6.2.1 CKB News Corpus
This work was partially motivated by a collaborative project called Community Knowledge

Base (CKB), headed by Lewis Friedland at the University of Wisconsin-Madison Department of
Journalism and Mass Communication. The goal of the project is to build a software system for
local newsrooms that can monitor local and regional news feeds, automatically extract information,
and maintain a database of key players in the local community. The system provides access to a
structured model of the community’s social network for journalists researching news stories.

For an initial version of the CKB system, I focused on learning to extract four entities (actor,
role, organization, location) and six binary relations among them (actor:actor, actor:role, ac-
tor:organization, role:organization, organization:organization, and organization:location). I

68

began by training a CRF to extract named entities using the CoNLL03 corpus (Sang and DeMeul-
der, 2003), augmented with a small set of articles annotated for the additional role entity (which is
not part of that corpus). For this version of the system, I was able to collaborate with the Reynolds
Journalism Institute at the University of Missouri. Textual sources consisted of articles published
over a year in the Columbia Missourian, a working daily newspaper published by the school. After
filtering documents for text encoding errors and outliers in length (keeping all articles between 200
and 600 words), the final pool consisted of 1,984 articles. The CRF described above was then used
to automatically pre-annotate this pool of articles.

Each article was then labeled by one of five University of Missouri undergraduate journalism
students. Figure 6.1 shows the interactive web-based annotation system used for (i) adding entity
annotations or editing automatic pre-annotations and (ii) adding relation annotations. Articles were
selected from the pool in a random order and each was presented to one annotator, thus no two
annotators labeled the same article. The annotation system logged both the time elapsed during the
labeling process, and the number of labeling “actions” taken for each article (label an entity, clear
an incorrect entity, mark a putative relation as positive, etc.). The resulting corpus consists of 358
labeled articles.

6.2.2 SIVAL Image Repository
In Chapter 5, I presented a framework for active learning in multiple-instance (MI) problem

domains. An important aim of that research was to study the value of actively selecting finer-
granularity labels for objects in an MI representation. One application for MI active learning
is content-based image retrieval (CBIR), in which images are represented as bags and instances
correspond to processed, segmented regions of the image. MI active learning, therefore, would
allow the learner to query image segments that correspond to parts of an object of interest.

Since no MI data sets with instance-level labels existed, I augmented the SIVAL repository
by manually adding instance labels (see Section 5.4). Figure 6.2 shows the web-based interface I
developed for the annotation process. This interface allows users to visually select which image
segments belong to the indicated object, such as the WD40 can shown on the right-hand side of
the screen. This repository consists of 1500 images, which were all manually labeled by three
members of the machine learning research group at the University of Wisconsin, Madison. The
annotations were done in an arbitrary order, and annotation times for each image were logged. As
in the CKB corpus, images were not redundantly labeled by multiple annotators.

6.2.3 Speculative Text Corpus
There has been a growing interest recently in handling subjectivity in natural language tasks.

Following previous work (Light et al., 2004), I annotated a corpus of biomedical abstracts for state-
ments that use speculative vs. definite language. Consider the following excerpts from various
PubMed1 abstracts (with ID numbers):

1http://www.ncbi.nlm.nih.gov/pubmed/

http://www.ncbi.nlm.nih.gov/pubmed/

69

Figure 6.2: A screenshot of the SIVAL labeling interface. Annotators move the cursor over seg-
ments in the processed image on the left, clicking on those belonging to the target
object. In this example, the highlighted segment belongs to the product label of a
WD40 can. An original reference image is shown on the right.

1. “LBF4 has a molecular mass of 105 kDa and is probably unrelated to PU.1.” (95074873)

2. “These observations suggest that de novo EBV infection of thymocytes differs from infection
of B cells.” (95266275)

3. “This study illustrates the almost complete tolerance of mice for human TCF-1 and demon-
strates that this tolerance is readily broken by gene knock-out.” (96030053)

Sentences 1 and 2 represent scientific conclusions that are speculative in nature. That is,
they do not necessarily follow directly from observed data, but are expressed by the authors with
some reserved degree of belief. Sentence 3 is definite, however, asserting quite firmly the author’s
belief in the results. For the speculative text corpus, I followed the guidelines used in previous
work (Light et al., 2004) with two exceptions. First, since they found no significant inter-annotator
agreement between “high” and “low” levels of speculation, I treated this as a binary classifica-
tion task. Second, sentences were annotated individually to simulate queries being made at the
granularity level of a single sentence.

I randomly selected 100 PubMed abstracts from the GENIA corpus (Kim et al., 2003) for man-
ual annotation. Since previous work indicates that many speculative statements appear toward the

70

end of abstracts, all abstracts truncated for length by PubMed were excluded. All 850 resulting
sentences were then labeled by three members of the machine learning research group using a sim-
ple web-based interface, and annotation times for each sentence were logged. Unlike the previous
two data sets, all sentences were redundantly labeled by all three annotators in order to gather data
on inter-annotator agreement. The ordering of instances was randomized, and annotators saw the
instances in the same sequence.

6.2.4 SigIE Email Corpus
I also created a new corpus for the task of extracting contact details from email signature

lines. For this, I randomly selected 250 signatures from the Sig+Reply corpus and manually added
annotations for twelve address book fields such as name, phone, jobtitle, and postal address
information. All annotations were performed in a random order, using a modified version of the
CKB labeling interface. As with CKB, both annotation times and actions were logged. This is the
same SigIE data set used in experiments from Chapter 3.

6.3 Analysis and Experiments

In this section, I consider six questions that are aimed at understanding how real annotation
costs can be learned and exploited by active learning systems.

6.3.1 Are Annotation Times Variable for a Given Task or Domain?
If the goal of active learning is to reduce the total time required to train an accurate model,

then this first question is critical. If times are approximately constant, the goal can be achieved by
simply minimizing the number of labeled instances, as most work in active learning has done. If
these times vary significantly, however, then these differences should be taken into account by the
learner.

The answer to this question, however, is complicated. Figure 6.3 shows histograms that char-
acterize the distribution of annotation times for each domain. For the CKB corpus, the majority
of articles took from 56 seconds to just over 16 minutes (≈1000 seconds), but ranged up to 1.73
hours (6275 seconds). SIVAL appears to have two peaks in its distribution, possibly because some
objects such as apple are simple (with fewer segments to be labeled), while others like wd40can
are more complex (composed of many segments, requiring more time). Most of these images re-
quired less than a minute, but some took as long as 3.4 minutes (204 seconds). The Spec corpus
went very quickly, with only 7.6 seconds on average and no sentence requiring more than a minute.
The distribution of SigIE is similar to SIVAL, but with a single mode and fewer apparent outliers.
For all data sets, the standard deviation is more than half the mean (in the case of CKB, even
greater), suggesting a fairly large degree of variability. But where does this variance come from?
Is it dependent on the annotator, the nature of the task, or is it simply due to random noise? The

71
fre

qu
en

cy

0 1K 2K 3K 4K 5K 6K

0
20

40
60

80 CKB
μ = 492.2
σ = 593.5

0 50 100 150 200

0
50

10
0

15
0

20
0 SIVAL

μ = 31.9
σ = 17.3

0 10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Spec
μ = 7.6
σ = 6.1

0 20 40 60 80

0
5

10
15

20
25

30
35 SigIE

μ = 27.0
σ = 14.7

annotation time (secs)

Figure 6.3: Histograms illustrating the distribution of annotation times for each data set in this
study. The mean annotation time µ and standard deviation σ for each data set is also
reported.

rest of this section is aimed at better understanding this variance and, more importantly, how it can
be utilized by the active learner.

6.3.2 Do Times Vary from One Annotator to the Next?
Figure 6.4 provides a more detailed look at the annotation time distributions for each annotator.

Individual annotators are identified by a unique ID, e.g., CKB1 and CKB2 are both annotators for
the CKB corpus. At a glance, we can see that some annotators look quite different from their
neighbors. Some are generally faster or slower, some have a larger spread of annotation times, and
some appear more prone to outliers.

I conduct two-sided Kolmogorov-Smirnov (KS) significance tests to see if these apparent dif-
ferences are real. For the CKB corpus, four distribution pairs result in statistically significant
differences at the 95% level: CKB1/CKB2, CKB1/CKB3, CKB2/CKB4, and CKB2/CKB5. (Af-
ter Bonferroni correction, however, only CKB1/CKB2 remains significant.) For the SIVAL and
Spec data sets, all differences are significant. We can conclude from these results that annotation
behavior can indeed vary substantially from one annotator to the next. If we wish to leverage anno-
tation cost information into the active learning process, and annotators exhibit these unique trends,
then perhaps annotation cost should be modeled on a per-annotator basis (I return to this idea in
Section 6.3.5).

6.3.3 Are Annotation Times Stationary?
It is possible that annotator behavior changes over time. If this is the case, any modeling of an-

notation time should be able to account for this variation. Figure 6.5 plots each annotator’s average
labeling time per instance as a function of the number of instances labeled thus far (all instances are
considered in the order they were actually labeled). As the figure shows, most annotators are able
to work somewhat faster as they progress, although the most significant gains seem to be during

72

CKB5

CKB4

CKB3

CKB2

CKB1

●●

●●

●● ●● ● ● ●● ●●

● ●●●● ●

●●●●● ●● ●● ●●

0 1000 2000 3000 4000 5000 6000

SIVAL3

SIVAL2

SIVAL1

●●●●●

●●●●● ●●●● ●● ● ● ●

●●● ●● ●●

0 50 100 150 200

Spec3

Spec2

Spec1

●● ●● ● ●●● ●●● ● ●● ● ●● ● ● ● ●●●● ●● ● ●● ● ● ●● ●● ●●● ●●● ● ●● ●●●●● ●● ●●● ●● ●●● ●●● ●●●● ● ● ● ●● ●

●● ● ● ● ●● ● ● ●● ● ●●●●●● ●● ●● ●●● ●●●● ●● ● ●● ● ●

●● ●● ●● ● ●● ● ●●● ●●●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●●● ●● ●●●● ●●● ●●●

0 10 20 30 40 50 60

annotation time (secs)

● ●●

0 20 40 60 80

SigIE

Figure 6.4: Box plots showing per-annotator labeling time distributions for each data set. A box
represents the middle 50% of annotation times, and the median is marked with a thick
black line. Box heights are scaled in proportion to the number of instances labeled.
Whiskers on either side span the 1st and 4th quartiles of each distribution, up to 1.5
times the inner-quartile range (i.e., box width). Circles indicate possible outliers. Note
that the range of the horizontal axis varies across data sets.

73
m

ea
n

an
no

ta
tio

n
tim

e
(s

ec
s)

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120
number of articles labeled

CKB1
CKB2
CKB3
CKB4
CKB5

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300
number of images labeled

SIVAL1
SIVAL2
SIVAL3

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100 150 200 250 300 350 400
number of sentences labeled

Spec1
Spec2
Spec3

Figure 6.5: Average annotation time per instance versus the number of instances labeled. SigIE is
omitted here, but exhibits a similar pattern.

the first few annotations. Presumably, this is because they are unfamiliar with both the task and
the annotation interface early on, but are able to adapt quickly. The notable exception of SIVAL1
slowing down is because the annotator’s first few images depicted simple objects that generally
took less time than more typical images. CKB1 and CKB4 decelerate slightly as well, although
they remain much faster on average than at the beginning. These data suggest that, while most
annotators demonstrate a rapid speed-up early during labeling, the “burn-in” period is brief, and
annotation times are relatively stationary thereafter.

6.3.4 How Stochastic Are Annotation Times?
There are two kinds of noise one might encounter when measuring annotation time. The first,

which I call jitter, is the cumulative effect of small human and/or machine delays, such as mo-
mentary fatigue or network latency. If the same instance were labeled multiple times under similar
conditions, we would expect to see minor differences in annotation time due jitter. The second type
of noise, which I call pause, arises from unexpected interruptions such as a phone call or taking a
long email break. Labeling times subject to pause should be faster under normal circumstances.

I consider two analyses to try to determine the extent to which jitter and pause factor into two
of the data sets in this study. First, since each instance in the Spec corpus was labeled by all three
annotators, we can assess how well their labeling times correlate with one another. One might think
of these redundant labelings as a surrogate for instances being labeled multiple times under similar
conditions (although the annotator does vary). Figure 6.6(a) shows a 3D scatterplot of annotation
times for this corpus among the three annotators. Although there are positive correlations between
the annotators, the correlation is not strong (pairwise correlation coefficients are between 0.258
and 0.328). This result suggests that jitter has a fairly large effect on labeling times for this data
set. This is probably because labeling times are very quick in this domain, leaving more room for
such stochastic effects.

74

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

CKB1
CKB2
CKB3

(a) (b)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0
5
10

15
20

25
30

Spec2 (secs)

Sp
ec

1
(s

ec
s)

Spec3
(secs)

an
no

ta
tio

n
tim

e
(s

ec
s)

number of annotation actions

Figure 6.6: Stochastic artifacts of annotation time. (a) 3D scatterplot of the Spec corpus. Each
point represents a sentence, plotted in a 3D space whose axes correspond to labeling
times for each annotator. (b) Annotation time vs. actions in the CKB corpus. Each
point is an article, and the shape of each point indicates the annotator (only three
shown, for clarity).

The second analysis considers the relationship between annotation time and the number of
annotation actions performed for each query in the CKB corpus, as shown in Figure 6.6(b). If
we assume that the time required to annotate an article is proportional the the number of label-
ing actions, we would expect a strong correlation between them. Indeed, there is a fairly linear
relationship. However, a few articles took much longer than the number of actions would imply,
suggesting that the annotator was somehow distracted for an extended period. I argue that these
large departures from the expected annotation time are indicative of pause. Note that some an-
notators seem more prone to pause than others. For example, CKB1 and CKB3 annotated all of
the extreme points in the above figure (as well as the extreme outliers for the CKB corpus in Fig-
ure 6.4). The correlation coefficient between actions and time for both of these annotators is only
0.108, whereas the other three annotators are all between 0.624 and 0.744.

In practice, there is little that can be done to correct for jitter, and I conjecture that its effect
on annotation time is minimal anyway. However, if we wish to reason about annotation time and
utilize this information in the active learning process, then the methods we use should be able to
detect and remain robust to pause.

75

6.3.5 Can Annotation Times Be Accurately Predicted?
To reduce the total annotation cost in active learning, I argue that query costs should be taken

into account by the learner. Unlike the forms of cost previously considered by others (Kapoor et al.,
2007; King et al., 2004), knowledge about the labeling time for each instance in these domains is
not available to the learner at query time. Therefore, I consider whether or not these unknown
annotation times can be accurately predicted.

This problem can be approached as a regression learning task (i.e., the predicted label is a real-
valued number, rather than from a discrete class distribution). The annotation time can be predicted
for each query candidate based on a few simple numerical input features. For the CKB corpus, I
use seven features, such as the number of words, entities, candidate relations, paragraphs, etc. Note
that some of these features depend on other quantities which are unknown at query time, such as the
number of entities or relations in an article. To handle this, I use the current task-model predictions
to estimate these quantities (details for task models, which are trained alongside the regression
cost-models, are given in Section 6.3.6). For SIVAL, using five features: the min, max, mean, and
standard deviation of the image segment sizes (in pixels), plus the task model’s predicted number
of positive segments. For Spec, I use four features: the number of ASCII characters, words, and
unique features used by the classification task model (I use a “bag of words” representation, subject
to stop-word removal and stemming), plus this model’s uncertainty about the class label (in these
experiments, entropy). For SigIE, I use four features: the number of entities, lines, and characters,
plus the percentage of characters that are non-alphanumeric. I emphasize that, for all domains, I
made little effort to “engineer” these features. Predicting annotation times could valuable if it can
be done with few training examples, and with a minimum of human effort. Therefore, I run these
experiments using my initial intuitions about easy-to-compute, domain-independent features.

After using a variety of regression learning algorithms, I have found the SMO algorithm (Smola
and Schölkopf, 1998) for support vector regression to be most accurate for the representations I
consider here. The accuracy of a cost-model’s prediction p against the true annotation time t
can be evaluated using the correlation coefficient r =

P
i(pi−µp)(ti−µt)

(n−1)σpσt
and relative absolute error

E = 100% ×
P

i |pi−ti|P
i |ti−µt| , where µt and σt are the mean and standard deviation of t, respectively. I

plot learning curves averaged using ten-fold cross-validation (five-fold for CKB). As with previous
work on the SIVAL data set, experiments in that domain are done on a binary per-class basis and
averaged over 20 independent runs. In each run, half the positive images are used for training
and the other half are held aside for evaluation. Note that MI active learning in these experiments
corresponds to Scenario IV from Chapter 5, since the learner queries an image, and the annotator
labels all segments.

Learning curves for the annotation-time prediction experiments are shown in Figure 6.7. These
plots show that, in general, annotation times appear to be quite learnable. In particular, the CKB2
cost-model achieves a correlation coefficient of 0.626 and error of 63%. The combined Spec cost-
model also does well, reaching 0.587 correlation and 63% error. The SigIE cost-model is the most
accurate by far, ultimately achieving error below 45% and correlation of 0.852. I also emphasize
that where annotation times are learnable, they appear to be learnable from only a few instances.

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

CKB2
CKB1

CKB (all)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Spec (combined)
Spec1
Spec2
Spec3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

SigIE

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100 120 140 160

CKB2
CKB1

CKB (all)

 0
 20
 40
 60
 80

 100
 120
 140

 0 50 100 150 200 250 300

Spec (combined)
Spec1
Spec2
Spec3

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100 120 140 160

SigIE

number of articles labeled

co
rre

lat
ion

 co
eff

ici
en

t
re

lat
ive

 a
bs

olu
te

 e
rro

r (
%

)

number of sentences labeled number of emails labeled

Figure 6.7: Learning curves for predicting annotation time in terms of (top) correlation coefficient
and (bottom) relative absolute error. CKB plots show three curves: all annotator times
pooled together, plus annotator-specific models for CKB1 and CKB2. Spec plots in-
clude a model that predicts the combined annotation time for all annotators, compared
to each annotator-specific model.

To show that these learned models are better than simple linear functions of length (as con-
sidered by Kapoor et al. (2007)), I report correlation coefficients between annotation time and the
document length (in characters) for the following: CKB2 = 0.291, SPEC(combined) = 0.572, and
EMAIL = 0.455. Other simple estimators (e.g., number of words, lines, or sentences) produce
almost identical results. This demonstrates that at least the CKB2 and SigIE cost-models produce
significantly more accurate estimates of cost than a simple heuristic approach.

We can also see that the CKB2-specific cost-model is more accurate at predicting annotation
times than the one tailored to CKB1, or for all annotators pooled together. Recall from Sec-
tion 6.3.2 that labeling behavior varies greatly from one annotator to the next. We can also con-
clude that these differences can have an acute impact on how learnable that labeling behavior is.
In Section 6.3.4, I noted that CKB1 was prone to a type of noise called pause, while CKB2 is
not. This probably widens the gap in accuracy between their two models: since the CKB1-specific
cost-model does not detect and handle pause, it may be prone to try and learn from this noise. We
see some variation in learnability among SPEC annotators as well, though it is far less profound.
Interestingly, the cost-model that aims to predict the combined annotation time of all SPEC anno-
tators is the most accurate. I hypothesize that this is because the combined annotation time factors
out some of the effects of jitter, the other type of noise.

Annotation times for SIVAL tasks, on the other hand, seem generally unlearnable using the
representation described here. For most objects tested, error is greater than 100% and correlation

77

is near zero. Recall from Figure 6.3 that the distribution of SIVAL labeling times appears multi-
modal, and I hypothesized that some objects simply require more or less time to label than others.
To confirm this, I conduct KS tests between all these distributions, and find that 65% (37% after
Bonferroni correction) are significantly different. This is evidence that most of the cost differences
in the SIVAL repository are object-specific, and there is little other variation (other than noise or
general annotator speed) within a particular class.

6.3.6 Can We Improve Active Learning by Utilizing Cost Information?
So far, this chapter has presented an extensive analysis of the nature and learnability of anno-

tation time as a labeling cost in four problem domains. I now consider whether or not predicted
annotation times can benefit an active learner by reducing the amount of time required to achieve a
certain level of accuracy. To do this, I consider cost-sensitive variants of entropy-based uncertainty
sampling to query informative but inexpensive instances.

For the CKB corpus, I use a CRF trained using a typical feature set to extract entities from
newswire text (i.e., the same features used for the CoNLL03 corpus throughout this thesis2). The
CRF parses one sentence at a time, and dynamically generates a set of candidate relations based
on the predicted entities. These relations are described with contextual features (e.g., entity labels
and the “bag of words” between them), and then classified with a MaxEnt model. I treat relation
extraction as a seven-label classification task: the six legal relations plus null-relation. Unlike
the typical active learning setting, a query in the CKB domain is an article, which in fact is a set
of instances: an entity sequence (plus several candidate relations) per sentence. For simplicity, I
treat each instance in article X as independent, thus the article uncertainty is given by φ(X) =∑

x∈X φ(x), the sum of all its instance entropies. For the Spec corpus, I train a MaxEnt model
using a “bag of words” feature set subject to stop-word filtering and stemming. Since a query in this
domain corresponds to a single instance x, estimating the uncertainty for φ(x) is straightforward.
For SigIE, I use the same feature set as in CKB (minus syntactic features, such as part-of-speech
tags). A query for this task is a single sequence x, thus estimating φ(x) is straightforward; for these
experiments I use theN -best sequence entropy approach (Section 3.2.1) to estimate the uncertainty
of sequences.

I compare standard entropy-based uncertainty sampling with a simple “bang for your buck”
cost-sensitive heuristic approach, where entropy is divided by the predicted labeling time for an
instance. I employ the cost-models from Section 6.3.5, which are trained alongside these task-
models (using only the labeled instances) to predict the labeling time. I also compare against two
baselines: the cost-sensitive method using known annotation times, and random sampling. The
task-models are evaluated using F1 learning curves, using ten-fold cross-validation (five-fold for
CKB).

Results for these active learning experiments are shown in Figure 6.8. For the CKB and SigIE
corpora, the standard entropy query scheme does not reduce the time required to achieve the same

2Syntactic features, such as part-of-speech tags and phrasal boundaries, are predicted using an syntactic parser for
English available from http://nlp.stanford.edu/software/lex-parser.shtml.

http://nlp.stanford.edu/software/lex-parser.shtml

78

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5000 10000 15000 20000

predicted costs
known costs

uncertainty sampling
random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2000 4000 6000 8000 10000 12000

predicted costs
known costs

uncertainty sampling
random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400

predicted costs
known costs

uncertainty sampling
random

annotation cost (secs)

F1
 m

ea
su

re

annotation cost (secs) annotation cost (secs)

CKB2:relations Spec SigIE

Figure 6.8: Active learning curves. Cost-sensitive variants using predicted and known annota-
tion times are compared to standard entropy-based uncertainty sampling and a random
sampling baseline. Note that the horizontal axis represents actual annotation cost.

accuracy as random sampling. However, it is important to note that when these curves are instead
plotted as a function the number of queries (not shown), entropy does produce better learning
curves. This indicates that naı̈ve uncertainty sampling is prone to select informative, but time-
consuming queries in these domains, resulting in no net reduction in cost.

While this cost-sensitive approach using predicted annotation times does not outperform the
random baseline for CKB, we do see significant gains when the annotation time is known. This
suggests that better learning curves can be achieved if labeling time can be predicted accurately and
utilized appropriately. I note that, while I only report the CKB2 relation subtask here, results for
CKB1 and both their entity subtasks are nearly identical. For the Spec corpus, standard entropy-
based active learning does produce better curves, and in this case the cost-sensitive variants are
roughly equivalent. I surmise that this is because annotation times are indeed approximately con-
stant (with observed variations being due to jitter), thus cost information is of little value. Curves
for the SigIE task are interesting because cost-sensitive active learning with known costs actu-
ally performs worse than random. I suspect that this is because, in this domain, shorter instances
actually contain less valuable information. For example, a brief email signature may only con-
tain name and email fields and therefore be very quick and easy to annotate, but lacks important
rare fields such as jobtitle or phone. This result underscores the importance of understanding the
relationship between the annotation cost of an instance and its overall value to the learner.

6.4 Summary and Future Work

To date, most research in active learning has assumed that the cost of acquiring a label is the
same for all instances. Some recent work has considered cases where labeling costs are vari-
able, but these have either assumed that the cost is known for each instance (King et al., 2004;
Margineantu, 2005) or can be approximated using a simple estimator (Kapoor et al., 2007). In
this chapter, I have presented an extensive empirical study of annotation costs in four real-world
text and image domains. To my knowledge, this is the first empirical investigation of annotation

79

costs in a real setting. This analysis provides several conclusions that have implications for active
learning in domains where labeling is done by human annotators:

• In most of the domains considered here, annotation costs are not (approximately) constant
across instances, and can instead vary considerably.

• Consequently, active learning approaches which ignore cost information may perform no
better than random instance labeling. However, improved learning curves are achievable if
an active learner can take these variable costs into account appropriately.

• In some domains, the cost for annotating an instance may not be intrinsic, but instead vary
according to the person doing the annotation.

• In some domains, the measured cost for an annotation may include a stochastic component.
The effects of this seem to depend, in part, on the typical time required to label an instance,
and the proficiency of the annotators.

• In some domains, we can accurately learn to predict annotation costs, even after seeing only
a few training instances. Moreover, these learned cost-models can be significantly more
accurate than heuristics (e.g., document length).

This last result suggests that, even when annotation costs are not known before querying, an
active learner may be able to profitably reason about them. I have attempted to exploit this by
training a cost-model to predict annotation costs while simultaneously training the actual task-
model. However, the simple “bang for your buck” cost-sensitive approach considered here does
not appear to capture the necessary aspects of the problem. A main focus in future work will be to
investigate cost-sensitive active learning strategies that are more robust when given approximate,
predicted annotation costs.

80

Chapter 7

Active Learning Literature Survey

This chapter provides a general review of the literature on active learning. There have been a
host of algorithms and applications for learning with queries over the years. This review is by no
means a comprehensive look at active learning, as the field (like so many subfields in computer
science) is evolving rapidly. I apologize in advance for any omissions or inaccuracies, and welcome
comments or corrections at bsettles@cs.wisc.edu. To make this survey more useful in the long
term, an expanded, online version will be maintained and updated indefinitely at:

http://pages.cs.wisc.edu/~bsettles/active-learning/

7.1 What is Active Learning?

Active learning (also called “query learning,” or sometimes “experimental design” in the statis-
tics literature) is a subfield of machine learning and, more generally, artificial intelligence. The key
hypothesis is that a learning algorithm can achieve greater accuracy with fewer labeled training in-
stances in cases where it is allowed to selectively choose the data from which is learns. An active
learner is allowed to ask queries in the form of unlabeled instances to be labeled by an oracle (e.g.,
a human annotator). Active learning is well-motivated in many modern machine learning problems
where data may be abundant but labels are scarce or expensive to obtain. Note that this kind of
active learning is related in spirit, though not to be confused, with instructional techniques of the
same name in the education literature (Bonwell and Eison, 1991).

7.2 Scenarios

Generally speaking, active learning is an iterative process. A learner first requests a label of
the oracle, who labels the query and adds it to the learner’s training set, the learner re-trains, and
the process repeats. Once a query has been made, there are usually no additional assumptions on
the part of the learning algorithm. The new labeled instance is simply added to the labeled set L,
and the learner proceeds from there in a standard supervised way. There are a few exceptions to
this, such as when the learner is allowed to make alternative types of queries (Section 7.9), or when
active learning is combined with semi-supervised learning (Section 7.10.1).

http://pages.cs.wisc.edu/~bsettles/active-learning/

81

There are several different problem scenarios in which the learner may be able to ask queries.
The three main settings that have been considered in the literature so far are (i) membership query
synthesis, (ii) stream-based selective sampling, and (iii) pool-based active learning. The remainder
of this section provides an overview of these three active learning scenarios.

7.2.1 Membership Query Synthesis
One of the first active learning scenarios to be investigated is learning with membership queries

(Angluin, 1988). In this setting, the learner may request labels for any unlabeled instance in the
input space, including (and typically assuming) queries that the learner generates de novo, rather
than those sampled from some underlying natural distribution. Efficient query synthesis is of-
ten tractable and efficient for finite problem domains (Angluin, 2001). The idea of synthesizing
queries has also been extended to regression learning tasks, such as learning to predict the absolute
coordinates of a robot hand given the joint angles of its mechanical arm as inputs (Cohn et al.,
1996).

Query synthesis is reasonable for many problems, but labeling such arbitrary instances can
be awkward if the oracle is a human annotator. For example, Baum and Lang (1992) employed
membership query learning with human oracles to train a neural network to classify handwritten
characters. They encountered an unexpected problem: many of the query images generated by
the learner contained no recognizable symbols, only artificial hybrid characters that had no natural
semantic meaning. Similarly, one could imagine that membership queries for natural language
processing tasks might create streams of text or speech that amount to gibberish. The stream-based
and pool-based scenarios (described below) have been proposed to address these limitations.

However, King et al. (2004) describe an innovative and promising real-world application of
the membership query scenario. They employ a “robot scientist” which can execute a series of
autonomous biological experiments to discover metabolic pathways in yeast. Here, an instance is
a mixture of chemical solutions that constitute a growth medium, as well as a particular yeast (Sac-
charomyces cerevisiae) mutant. A label, then, is whether or not the mutant thrived in the growth
medium. All experiments are autonomously synthesized using an active learning approach based
on inductive logic programming, and physically performed using a laboratory robot. This active
method results in a three-fold decrease in the cost of experimental materials compared to naı̈vely
running the least expensive experiment, and a 100-fold decrease in cost compared to randomly
generated experiments. In domains where labels come not from human annotators, but from ex-
periments such as this, query synthesis may be a promising direction for automated scientific
discovery.

7.2.2 Stream-Based Selective Sampling
An alternative to synthesizing queries is selective sampling (Cohn et al., 1994). The key as-

sumption is that obtaining an unlabeled instance is free (or inexpensive), so it can first be sampled
from the actual distribution, and then the learner can decide whether or not to request its label.
This approach is sometimes called stream-based or sequential active learning, as each unlabeled

82

instance is typically drawn one at a time from the data source, and the learner must decide whether
to query or discard it. If the input distribution is uniform, selective sampling may well behave
like membership query learning. However, if the distribution is non-uniform and (more impor-
tantly) unknown, we are guaranteed that queries will still be sensible, since they come from a real
underlying distribution.

The decision whether or not to query an instance can be framed several ways. One approach
is to evaluate samples using some “informativeness measure” or “query strategy” (see Section 7.3
for examples) and make a biased random decision, such that more informative instances are more
likely to be queried (Dagan and Engelson, 1995). Another approach is to compute an explicit
region of uncertainty (Cohn et al., 1994), i.e., the part of the instance space that is still ambiguous
to the learner, and only query instances that fall within it. A naı̈ve way of doing this is to set
a minimum threshold on an informativeness measure which defines the region. Instances whose
evaluation is above this threshold are to be queried. Another more principled approach is to define
the region that is still unknown to the overall model class, i.e., to the set of hypotheses consistent
with the current labeled training set called the version space (Mitchell, 1982). In other words, if
any two models of the same model class (but different parameter settings) agree on all the labeled
data, but disagree on some unlabeled sample, then that sample lies within the region of uncertainty.
Calculating this region completely and explicitly is computationally expensive, however, and it
must be maintained after each new query. As a result, approximations are used in practice (Cohn
et al., 1994; Dasgupta et al., 2008).

The stream-based scenario has been studied in several real-world tasks, including part-of-
speech tagging (Dagan and Engelson, 1995), sensor scheduling (Krishnamurthy, 2002), and learn-
ing ranking functions for information retrieval (Yu, 2005). Fujii et al. (1998) employ selective
sampling in active learning for word sense disambiguation, e.g., determining if the word “bank”
means land alongside a river or a financial institution in a given context (only they study Japanese
words in their work). The approach not only reduces annotation effort, but also limits the size of
the database used in nearest-neighbor learning, which in turn expedites the classification algorithm.

It is worth noting that some authors (e.g., Thompson et al., 1999; Moskovitch et al., 2007) use
“selective sampling” to refer to the pool-based scenario described in the next subsection. Under
this interpretation, the term merely signifies that queries are made with select instances sampled
from a real data distribution. However, in most of the literature selective sampling refers to the
stream-based scenario discussed here.

7.2.3 Pool-Based Active Learning
For many real-world learning problems, large collections of unlabeled data can be gathered

at once. This motivates pool-based active learning (Lewis and Gale, 1994), which assumes that
there is a small set of labeled data L and a large pool of unlabeled data U available. Queries
are selectively drawn from the pool, which is usually assumed to be closed (i.e., static or non-
changing), although this is not strictly necessary. Typically, instances are queried in a greedy
fashion, according to an informativeness measure used to evaluate all instances in the pool (or,
perhaps if U is very large, some subsample thereof).

83

The pool-based scenario has been studied for many real-world problem domains in machine
learning, such as text classification (Lewis and Gale, 1994; McCallum and Nigam, 1998b; Tong
and Koller, 2000; Hoi et al., 2006a), information extraction (Thompson et al., 1999; Settles and
Craven, 2008), image classification and retrieval (Tong and Chang, 2001; Zhang and Chen, 2002),
video classification and retrieval (Yan et al., 2003; Hauptmann et al., 2006), speech recognition
(Tur et al., 2005), and cancer diagnosis (Liu, 2004) to name a few.

The main difference between stream-based and pool-based active learning is that the former
scans through the data sequentially and makes query decisions individually, whereas the latter
evaluates and ranks the entire collection before selecting the best query. While the pool-based
scenario appears to be much more common among application papers, one can imagine settings
where the stream-based approach is more appropriate. For example, when memory or processing
power may be limited, as with mobile and embedded devices.

7.3 Query Strategy Frameworks

All active learning scenarios involve evaluating the informativeness of unlabeled instances,
which can either be generated de novo or sampled from a given distribution. There have been
many proposed ways of formulating such query strategies in the literature. This section provides
an overview of the general frameworks used to date. From this point on, I use the notation φ(·) to
represent a query strategy, which is a function used to evaluate the informativeness of a query. The
“best” query instance x is the one which maximizes this function.

7.3.1 Uncertainty Sampling
Perhaps the simplest and most commonly used query framework is uncertainty sampling (Lewis

and Gale, 1994). In this framework, an active learner queries the instances about which it is least
certain how to label. This approach is often straightforward for probabilistic learning models. For
example, when using a probabilistic model for binary classification, an uncertainty sampling strat-
egy simply queries the instance whose posterior probability of being positive is nearest 0.5 (Lewis
and Gale, 1994; Lewis and Catlett, 1994).

A more general uncertainty sampling strategy uses entropy (Shannon, 1948) as an uncertainty
measure:

φENT (x) = −
∑
i

P (yi|x) logP (yi|x),

where yi ranges over all possible labelings. For binary classification, entropy-based uncertainty
sampling is identical to choosing the instance with posterior closest to 0.5. However, the entropy-
based approach can be generalized easily to probabilistic multi-label classifiers and probabilistic
models for more complex structured instances, such as sequences (Settles and Craven, 2008) and
trees (Hwa, 2004). An alternative to entropy in these more complex settings involves querying the
instance whose best labeling is the least confident:

φLC(x) = 1− P (y∗|x),

84

where y∗ = argmaxP (y|x) is the most likely class labeling. This sort of strategy has been shown
to work well, for example, with conditional random fields or CRFs (Lafferty et al., 2001) for active
learning in information extraction tasks (Culotta and McCallum, 2005; Settles and Craven, 2008).

Uncertainty sampling strategies may also be employed with non-probabilistic models. One of
the first works to explore uncertainty sampling used a decision tree classifier (Lewis and Catlett,
1994) by modifying it to have probabilistic output. Similar approaches have been applied to active
learning with nearest-neighbor (a.k.a. “memory-based” or “instance-based”) classifiers (Fujii et al.,
1998; Lindenbaum et al., 2004), by allowing each neighbor to vote on the class label of x, with the
proportion of these votes representing the posterior label probability. Tong and Koller (2000) also
experiment with an uncertainty sampling strategy for support vector machines, or SVMs (Cortes
and Vapnik, 1995), that involves querying the instance closest to the linear decision boundary. This
last approach is analogous to uncertainty sampling with a probabilistic binary linear classifier, such
as logistic regression or naı̈ve Bayes.

7.3.2 Query-By-Committee
Another, more theoretically-motivated query selection framework is the query-by-committee

(QBC) algorithm (Seung et al., 1992). The QBC approach involves maintaining a committee C
of models which are all trained on the current labeled set L, but represent competing hypotheses.
Each committee member is then allowed to vote on the labelings of query candidates. The most
informative query is considered to be the instance about which they most disagree.

The fundamental premise behind the QBC framework is minimizing the version space, which
is (as mentioned in Section 7.2.2) the set of hypotheses that are consistent with the current labeled
training data L. If we view machine learning as a search for the “best” model within the version
space, then our goal in active learning is to constrain the size of this space as much as possible (so
that the search can be more precise) with as few labeled instances as possible. This is exactly what
QBC does, by querying in controversial regions of the version space.

To use the QBC framework, one must (i) construct a committee of models that approximate
different regions of the version space and (ii) have some measure of disagreement among them.
Seung et al. (1992) accomplish the first task simply by sampling a committee of two random hy-
potheses that are consistent with L. For generative model classes, this can be done more generally
by randomly sampling models from some posterior distribution P (θ|L). For example, McCallum
and Nigam (1998b) do this for naı̈ve Bayes by using the Dirichlet distribution over model pa-
rameters, whereas Dagan and Engelson (1995) sample HMMs by using the Normal distribution.
For other model classes, such as discriminative or non-probabilistic models, Abe and Mamitsuka
(1998) have proposed query-by-boosting and query-by-bagging, which employ the well-known
ensemble learning methods boosting (Freund and Schapire, 1997) and bagging (Breiman, 1996)
to construct committees. Melville and Mooney (2004) propose another ensemble-based method
which encourages diversity among committee members. For measuring the degree of disagree-
ment, two main approaches have been proposed: vote entropy (Dagan and Engelson, 1995) and
average KL-divergence (McCallum and Nigam, 1998b). There is no consensus on the appropriate
committee size to use, which may in fact vary by model class or application. However, even small

85

committee sizes (e.g., two or three) have been shown to work well in practice (Seung et al., 1992;
McCallum and Nigam, 1998b; Settles and Craven, 2008).

Aside from the QBC framework, several other query strategies attempt to minimize the version
space as well. For example, Cohn et al. (1994) describe a related selective sampling algorithm for
neural networks using a combination of the “most specific” and “most general” models, which lie
at two extremes the version space given the current labeled examples in the training set L. Tong
and Koller (2000) propose a pool-based query strategy that tries to minimize the version space for
support vector machine classifiers directly. The membership query algorithms of Angluin (1988)
and King et al. (2004) can also be interpreted as synthesizing de novo instances that limit the size
of the version space. However, Haussler (1994) shows that the size of the version space can grow
exponentially with the size of L. This means that, in general, the version space of an arbitrary
model class cannot be explicitly represented in practice. The QBC framework, rather, uses a
committee which is a subset-approximation of the full version space.

7.3.3 Expected Model Change
Another general active learning framework is to query the instance that would impart the great-

est change to the current model if we knew its label. An example query strategy in this framework
is the “expected gradient length” (EGL) approach for discriminative probabilistic model classes.
This strategy was introduced by Settles et al. (2008b) for active learning in the multiple-instance
setting (Dietterich et al., 1997), and has also been applied to probabilistic sequence models like
CRFs (Settles and Craven, 2008).

Since discriminative probabilistic models are usually trained using gradient-based optimiza-
tion, the “change” imparted to the model can be measured by the length of the training gradient
(i.e., the vector used to re-estimate parameter values). In other words, the learner should query the
instance x which, if labeled and added to L, would result in the new training gradient of the largest
magnitude. Let ∇`(L; θ) be the gradient of the objective function ` with respect to the model pa-
rameters θ. Now let ∇`(L ∪ 〈x, y〉; θ) be the new gradient that would be obtained by adding the
training tuple 〈x, y〉 to L. Since the query algorithm does not know the true label y in advance, we
must instead calculate the length as an expectation over all possible labelings:

φEGL(x) =
∑
i

P (yi|x; θ)
∥∥∥∇`(L ∪ 〈x, yi〉; θ)∥∥∥,

where ‖ · ‖ is the Euclidean norm of each resulting gradient vector. Note that, at query time,
‖∇`(L; θ)‖ should be nearly zero since ` converged at the previous round of training. Thus, we
can approximate ∇`(L ∪ 〈x, yi〉; θ) ≈ ∇`(〈x, yi〉; θ) for computational efficiency, because the
training instances are assumed to be independent.

The intuition behind this framework is that will prefer instances that are likely to most influence
the model (i.e., have greatest impact on its parameters), regardless of the resulting query label. This
approach has been shown to work well in empirical studies, but can be computationally expensive
if both the feature space and set of labelings are very large.

86

7.3.4 Variance Reduction and Fisher Information Ratio
Cohn et al. (1996) propose one of the first statistical analyses of active learning, demonstrating

how to synthesize queries that minimize the learner’s future error by minimizing its variance. They
describe a query strategy for regression learning problems, in which the output label is a real-valued
number (rather than from discrete set of class labels). They take advantage of the result by Geman
et al. (1992) showing that a learner’s expected future generalization error can be decomposed in
the following way:

ET
[
(o− y)2|x

]
= E

[
(y − E[y|x])2

]
+ (EL[o]− E[y|x])2

+ EL
[
(o− EL[o])2

]
,

where EL[·] is an expectation over some labeled set L of a given size, E[·] is an expectation over
the conditional density P (y|x), and ET is an expectation over both. Here also o = g(x; θ) is
shorthand for the model’s predicted output for a given instance x, while y indicates the true label.

The first term on the right-hand side of this equation is the noise, i.e., the variance of the true
label y given only x, which does not depend on the model or training data. Such noise may result
from stochastic effects of the method used to obtain the true labels, for example, or because the
feature representation is inadequate. The second term is the bias, which represents the error due to
the model class itself, e.g., if a linear model is used to learn a function that is only approximately
linear. This component of the overall error is invariant given a fixed model class. The third term is
the model’s variance, which is the remaining component of the learner’s mean squared error with
respect to the true regression function. Minimizing the variance, then, is guaranteed to minimize
the future generalization error of the model (since the learner itself can do nothing about the noise
or bias components).

Cohn et al. (1996) then use the estimated distribution of the model’s output to estimate σ̃2
o ,

the expected variance of the learner after querying some new instance x̃. They show that this
can be done in closed-form for neural networks, Gaussian mixture models, and locally-weighted
linear regression models. In particular, for neural networks the output variance is approximated by
(MacKay, 1992):

σ2
o ≈ S(L; θ)

(
∂o

∂θ

)T(
∂2

∂θ2
S(L; θ)

)−1(
∂o

∂θ

)
, (7.1)

where S(L; θ) = 1
L

∑L
l=1(o

(l) − y(l))2 is the mean squared error of the current model θ on the
training set L. In the equation above, the second and last terms are computed using the gradient of
the model’s predicted output with respect to model parameters θ. The middle term is the inverse
of a covariance matrix representing a second-order expansion around the objective function S with
respect to θ. A closed-form expression for σ̃2

o can then be derived, given the assumptions that ∂o
∂θ

is locally linear (true for most network configurations) and that variance is Gaussian and constant
for all x; further details are given by Cohn (1994). Since the equation is a smooth function and
differentiable with respect to any query x̃ in the input space, gradient methods can be used to

87

search for the best possible query that minimizes future variance, and therefore future error. This
approach is derived from statistical theories of optimal experimental design (Federov, 1972).

However, the approach of Cohn et al. (1996) applies only to regression tasks, and synthesizes
new queries de novo. For many learning problems like text classification, this technique cannot
be used. More recently, though, Zhang and Oles (2000) have proposed an analogous approach
for selecting optimal queries in a pool-based setting for discriminative classifiers based on Fisher
information. Formally, Fisher information I(θ) is the variance of the score, which is the partial
derivative of the log-likelihood function with respect to model parameters θ (Schervish, 1995).
Fisher information is given by:

I(θ) = −
∫
x

P (x)

∫
y

P (y|x; θ)
∂2

∂θ2
logP (y|x; θ), (7.2)

and can be interpreted as the overall uncertainty about an input distribution P (x) with respect to
the estimated model parameters. For a model with multiple parameters, Fisher information takes
the form of a covariance matrix. The optimal instance to query, then, is the one which optimizes
what I call the Fisher information ratio (FIR):

φFIR(x) = −tr(Ix(θ)−1IU(θ)), (7.3)

where Ix(θ) is the Fisher information matrix for an unlabeled query candidate x ∈ U , and IU(θ)
is the matrix integrated over the entire unlabeled pool U . The trace function tr(·) is the sum of
the terms along the principal diagonal of a matrix, thus φFIR provides us with a ratio given by the
inner product of Ix(θ)’s inverse matrix and IU(θ). The minus sign in front is simply to ensure that
φFIR acts as a maximizer.

The key idea behind the Fisher information ratio is that Ix(θ) will tell us not only how uncertain
the model is about query instance x (e.g., the magnitude of the matrix diagonal), but it also tells us
which model parameters are most responsible for this uncertainty, as it is encoded in the matrix.
Likewise, IU(θ) can tell us the same information about the entire unlabeled pool. By minimizing
the ratio in Equation 7.3, the learner will query the instance whose model variance is most similar
to the overall input distribution approximated by U . A more formal explanation as to why this is the
optimal approach stems from the Cramér-Rao lower-bound on asymptotic efficiency, as explained
by Zhang and Oles (2000). They apply this method to text classification using binary logistic
regression. Hoi et al. (2006a) extend this approach to active text classification in the batch-mode
setting (see Section 7.7) in which a set of queries Q is selected at once in an attempt to minimize
the ratio between IQ(θ) and IU(θ). Settles and Craven (2008) have also generalized the Fisher
information ratio approach to probabilistic sequence models such as CRFs.

The query strategies of variance reduction (Cohn et al., 1996) and Fisher information ratio
(Zhang and Oles, 2000), while designed for different tasks and active learning scenarios, are
grouped together here because they can be viewed as strategies under a more general variance min-
imization framework. Both are grounded in statistics, and both select the optimal query to reduce
model variance given the assumptions. There are some practical disadvantages to these methods,
however, in terms of computational complexity. In both strategies, estimating the variance requires

88

inverting a K × K matrix for each new example, where K is the number of parameters in the
model θ, resulting in a time complexity of O(UK3), where U is the size of the query pool U .
This quickly becomes intractable for large K, which is a common occurrence in, say natural lan-
guage tasks. For variance estimation with neural networks, Paass and Kindermann (1995) propose
a sampling approach based on Markov chains to address this problem. For inverting the Fisher
information matrix, Hoi et al. (2006a) use principal component analysis to reduce the dimension-
ality of the parameter space. Alternatively, Settles and Craven (2008) approximate the matrix with
its diagonal vector, which can be inverted in only O(K) time. However, these methods are still
empirically much slower than simpler query strategies like uncertainty sampling.

7.3.5 Estimated Error Reduction
Query strategies that attempt to minimize generalization error directly have also been consid-

ered in the literature. The algorithms in the previous section minimize error indirectly by reducing
model variance, however, this cannot be done in closed form for all model classes. We can instead
estimate the expected future error that would result if we labeled some new instance x and added
it to L, and select the instance that minimizes that expectation. The idea is similar in spirit to
the EGL strategy (Section 7.3.3), but differs in that we want to query for minimal expected future
error, as opposed to maximal expected model change.

Roy and McCallum (2001) first proposed the estimated error reduction framework for text clas-
sification using naı̈ve Bayes. Zhu et al. (2003) combined this framework with a semi-supervised
learning approach (Section 7.10.1), resulting in a drastic improvement over random or uncertainty
sampling. Guo and Greiner (2007) employ an “optimistic” variant that also biases the expecta-
tion toward the most likely label1. This strategy has the dual advantage of being near-optimal and
not dependent on the model class. All that is required is an appropriate loss function and a way to
estimate posterior label probabilities. For example, strategies in this framework have been success-
fully used with a variety of models including naı̈ve Bayes (Roy and McCallum, 2001), Gaussian
random fields (Zhu et al., 2003), logistic regression (Guo and Greiner, 2007), and support vector
machines (Moskovitch et al., 2007).

Unfortunately, estimated error reduction may also be the most prohibitively expensive query
selection framework. Not only does it require estimating the expected future error over U for each
query, but a new model must be incrementally re-trained for each possible query labeling, which in
turn iterates over the entire pool. This leads to a dramatic increase in computational cost. For some
model classes such as Gaussian random fields (Zhu et al., 2003), the incremental training procedure
is efficient and exact, making this approach fairly practical. For a many other model classes, this
is not the case. For example, a binary logistic regression model would require O(ULG) time
complexity simply to choose the next query, where U is the size of the unlabeled pool U , L is the
size of the current training set L, and G is the number of gradient computations required by the
by optimization procedure until convergence. A classification task with three or more labels using

1Guo and Greiner refer to their strategy as maximizing “mutual information.” However, their formulation is, in
fact, equivalent to minimizing the expected future log-loss.

89

a MaxEnt model would require O(M2ULG) time complexity, where M is the number of class
labels. For a sequence labeling task using CRFs, the complexity explodes to O(TMT+2ULG),
where T is the length of an input sequence. Because of this, the applications of the estimated error
reduction framework have mostly only considered simple binary classification tasks. Moreover,
because the approach is often still impractical, some researchers have resorted to subsampling the
pool U when selecting queries (Roy and McCallum, 2001) or using only approximate training
techniques (Guo and Greiner, 2007).

7.3.6 Density-Weighting Methods
The information density (ID) framework presented by Settles and Craven (2008), and further

analyzed in Chapter 4 of this thesis, is a density-weighting technique. The main idea is that in-
formative instances should not only be those which are uncertain, but also those which are “repre-
sentative” of the input distribution (i.e., inhabit dense regions of the input space). The formulation
considered in this thesis was first published in Settles and Craven (2008), however it is not the
first strategy to consider density and representativeness in the literature. McCallum and Nigam
(1998b) also developed a density-weighted QBC approach for text classification with naı̈ve Bayes,
which is a special case of information density. Fujii et al. (1998) also explored a query strategy
for nearest-neighbor methods that selects queries that are (i) unlike the labeled instances already in
L, and (ii) most similar to the unlabeled instances in U . Nguyen and Smeulders (2004) have also
proposed a density-based approach that first clusters instances and tries to avoid querying outliers
by propagating label information to instances in the same cluster. Similarly, Xu et al. (2007) use
clustering to construct sets of queries for batch-mode active learning (Section 7.7) with SVMs.
Reported results in all these approaches are superior to methods that do not consider density or
representativeness measures. Furthermore, Settles and Craven (2008) show that if densities can be
pre-computed and estimated efficiently, the time required to select the next query is essentially no
different than the base informativeness measure (e.g., uncertainty sampling).

7.4 Empirical Analysis

An important question is: does active learning actually work? Most empirical results in the
literature suggest yes (e.g., Cohn et al., 1994; Thompson et al., 1999; Tong and Koller, 2000; Tur
et al., 2005; Settles and Craven, 2008), however, there are caveats. First, consider that a training
set built in cooperation with an active learner is inherently tied to the learning model that was
used to generate it (i.e., the model selecting the queries). Therefore, the labeled instances are not
drawn i.i.d. from the underlying data distribution. If one were to change models—as we often
do in machine learning when the state of the art advances—this training set may no longer be as
useful to the new model class. Baldridge and Osborne (2004) study these effects for several natural
language parsers and suggest some techniques for better model generalization. Schein and Ungar
(2007) also show that active learning can sometimes require more labeled instances than “passive”
supervised learning for the same model, in their case logistic regression. Guo and Schuurmans

90

(2008) demonstrate that general active learning strategies, when employed in a batch-mode setting
(Section 7.7) are also often much worse than random i.i.d. sampling. Anecdotally, however, active
learning does reduce the number of labeled instances required to achieve a given level of accuracy
in most reported cases (though this may be due to the publication bias).

7.5 Theoretical Analysis

A theoretical case for why and when active learning should work remains somewhat elusive,
although there have been some recent advances. In particular, it would be nice to have some sort
of bound on the number of queries required to learn a sufficiently accurate model for a given task,
and theoretical guarantees that this number is less than in the passive supervised setting. Consider
the following toy learning task to illustrate the potential of active learning. Suppose instances
are points lying on a one-dimensional line, and our model class is a simple binary thresholding
function g parameterized by θ:

g(x; θ) =

{
1 if x > θ, and
0 otherwise.

According to the probably approximately correct (PAC) learning model (Valiant, 1984), if the
underlying data distribution can be perfectly classified by some hypothesis θ, then it is enough to
draw O(1/ε) random labeled instances, where ε is the maximum desired error rate. Now consider
an active learning setting, in which we can acquire the same number of unlabeled instances from
this distribution for free. If we arrange these points on the real line, their (unknown) labels are
a sequence of zeros followed by ones, and our goal is to quickly discover the location at which
the transition occurs. By conducting a simple binary search through these unlabeled instances, a
classifier with error less than ε can be achieved with a mere O(log 1/ε) queries—since all other
labels can be inferred—resulting in an exponential reduction in the number of labeled instances
required. Of course, this is a one-dimensional, perfectly separable, noiseless, binary toy learning
task. Generalizing this phenomenon to more interesting and realistic problem settings is the focus
of much theoretical work in active learning.

Unfortunately, little more is known. There have been some fairly strong theoretical results for
the membership query scenario, in which the learner is allowed to create query instances de novo
and acquire their labels (Angluin, 1988, 2001). However, such instances can be difficult for humans
to annotate (Baum and Lang, 1992) and may result in querying outliers, because they are not
created according to an underlying natural distribution. Since a great many applications for active
learning assume that unlabeled data (drawn from some natural distribution) are available, these
results also have limited practical impact.

The main theoretical result to date in the stream-based and pool-based scenarios seems to be
an analysis of the query-by-committee (QBC) algorithm by Freund et al. (1997). They show that,
under certain assumptions, it is possible to achieve generalization error ε after seeing O(d/ε) unla-
beled instances, where d is the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis,
1971) of the model space, and requesting only O(d log 1/ε) labels. This, like the toy example

91

above, is an exponential improvement over the typical O(d/ε) sample complexity of the super-
vised setting. This result is tempered somewhat by the computational complexity of the QBC
algorithm in practice, although Gilad-Bachrach et al. (2006) suggest some improvements by limit-
ing the version space via kernel functions.

Dasgupta et al. (2005) propose a variant of the perceptron update rule which can achieve the
same sample complexity bounds as reported for QBC, but for a single linear classifier. In earlier
work, Dasgupta (2004) also provided a variety of theoretical upper and lower bounds for active
learning in more general pool-based settings. In particular, if using linear classifiers the sample
complexity can explode to O(1/ε) in the worst case, which offers no improvement over standard
supervised learning, but is also no worse. However, Balcan et al. (2008) also show that, under an
asymptotic setting, active learning is always better than supervised learning in the limit.

Most of these results have used theoretical frameworks similar to the standard PAC model,
and necessarily assume that the learner knows the correct concept class in advance. Put another
way, they assume that some model in our hypothesis class can perfectly classify the instances, and
that the data are also noise-free. To address these limitations, there has been some more recent
theoretical work in agnostic active learning (Balcan et al., 2006), which only requires that the
unlabeled instances be drawn i.i.d. from a fixed distribution, and even noisy distributions are al-
lowed. Hanneke (2007) extends this work by providing upper bounds on query complexity for the
agnostic setting, and Dasgupta et al. (2008) propose a somewhat more efficient query selection al-
gorithm. Cesa-Bianchi et al. (2005) have also shown that active learning is possible in the “regret”
framework, also known as online adversarial learning.

However, most positive theoretical results to date have been based on intractable algorithms,
or methods otherwise too prohibitively complex and particular to be used in practice. The few
analyses performed on efficient algorithms have been with respect to uniform or near-uniform input
distributions (Balcan et al., 2006; Dasgupta et al., 2005), or severely restricted hypothesis spaces.
Furthermore, these studies have largely only been for simple (often binary) classification problems,
with few implications for more complex models (e.g., that label structured instances like sequences
and trees), which are central to many large-scale information extraction and management tasks
addressed by the machine learning community today.

7.6 Structured Outputs

Active learning for classification tasks has been widely studied (Cohn et al., 1994; Zhang and
Oles, 2000; Guo and Greiner, 2007). However, several important learning problems involve pre-
dicting structured outputs on instances, such as sequences and trees. Settles and Craven (2008)
present and evaluate a large number of active learning algorithms for sequence labeling tasks using
probabilistic sequence models like CRFs. Most of these algorithms can be generalized for use
with other probabilistic sequence models, such as HMMs (Dagan and Engelson, 1995; Scheffer
et al., 2001) and probabilistic context-free grammars (Baldridge and Osborne, 2004; Hwa, 2004).
Thompson et al. (1999) also propose sampling strategies for structured tasks like semantic parsing
and information extraction using inductive logic programming methods.

92

7.7 Batch-Mode Active Learning

In most of the active learning research, queries are selected in serial, i.e., one at a time. How-
ever, sometimes the training time required to induce a model is slow or expensive, as with large
ensemble methods and many structured prediction tasks (see Section 7.6). Consider also that
sometimes a distributed, parallel labeling environment may be available, e.g., multiple annotators
working on different machines at the same time on a network. In both of these cases, selecting
queries in serial may be inefficient. By contrast, batch-mode active learning allows the learner to
query instances in groups, which is better suited to parallel labeling environments or models with
slow training procedures.

Myopically querying the “N -best” queries according to a given instance-level query strategy
often does not work well, since it fails to consider the overlap in information content among the
“best” instances. To address this, a few batch-mode active learning algorithms have been proposed.
Brinker (2003) considers an approach for SVMs that explicitly incorporates diversity among in-
stances in the batch. Xu et al. (2007) propose a similar approach for SVM active learning, which
also incorporates a density measure. Specifically, they query cluster centroids for instances that lie
close to the decision boundary. Hoi et al. (2006a,b) extend the Fisher information framework (Sec-
tion 7.3.4) to the batch-mode setting for binary logistic regression. Most of these approaches use
greedy heuristics to ensure that instances in the batch are both diverse and informative, although
Hoi et al. (2006b) exploit the properties of submodular functions to find near-optimal batches.
Alternatively, Guo and Schuurmans (2008) treat batch construction for logistic regression as a dis-
criminative optimization problem, and attempt to construct the most informative batch directly.
For the most part, these approaches show improvements over random batch sampling, which in
turn is generally better than simple “N -best” batch construction.

7.8 Active Learning With Costs

In some learning problems, the cost of acquiring labeled data can vary from one instance to
the next. If our goal in active learning is to minimize the overall cost of training an accurate
model, then reducing the number of labeled instances does not necessarily guarantee a reduction
in overall labeling cost. One proposed approach for reducing annotation effort in active learning
involves using the current trained model to assist in the labeling of query instances by pre-labeling
them in structured learning tasks like parsing (Baldridge and Osborne, 2004) or information extrac-
tion (Culotta and McCallum, 2005). However, such methods do not actually represent or reason
about labeling costs. Instead, they attempt to reduce cost indirectly by minimizing the number of
annotation actions required for a query that has already been selected.

Another group of cost-sensitive active learning approaches explicitly accounts for varying la-
bel costs in active learning. Kapoor et al. (2007) propose one approach that takes into account
both labeling costs and estimated misclassification costs. In this setting, each candidate query
is evaluated by summing the labeling cost for the instance and the expected future misclassifica-
tion costs that would be incurred if the instance were added to the training set. Instead of using
real costs, however, their experiments make the simplifying assumption that the cost of labeling a

93

voicemail message is a linear function of its length (e.g., ten cents per second). King et al. (2004)
use a similar active learning approach in an attempt to reduce actual labeling costs. They describe
a “robot scientist” which can execute a series of autonomous biological experiments to discover
metabolic pathways, with the objective of minimizing the cost of materials used (i.e., the cost of an
experiment plus the expected total cost of future experiments until the correct hypothesis is found).

In both of the settings above, however, the cost of annotating an instance is assumed to be
fixed and known to the learner before querying. Settles et al. (2008a) propose a novel approach to
cost-sensitive active learning in settings where annotation costs are variable and not known, e.g.,
when the labeling cost is elapsed annotation time. They learn a regression cost-model alongside
the active task-model which tries to predict the real (unknown) annotation cost based on a few
simple “meta features” on the instances. Experiments show that such cost-models can learn to
predict annotation times accurately, however further work is warranted to determine how such
approximate, predicted labeling costs can be utilized effectively.

7.9 Alternative Query Types

To date, most work in active learning has assumed that a query unit is of the same type as the
target concept to be learned. For example, if the task is to assign class labels to documents, the
learner must query a document and obtains its label. What other forms might a query take?

Settles et al. (2008b) explore alternative query scenarios in the context of multiple-instance
active learning. Here, the learner is sometimes allowed to query for labels at a finer granularity
than the target concept, e.g., querying passages rather than entire documents, or segmented image
regions rather than entire images. These experiments focus on active learning with the MI logistic
regression model. Vijayanarasimhan and Grauman (2009) have extended this idea to SVMs for an
image retrieval task, and also explore an approach that interleaves queries at these two granularities.

Raghavan et al. (2006) have explored a related idea called tandem learning, in which the learner
is allowed to query for the labels of features as well as entire instances. They report not only that
interleaving document- and word-level queries are very effective for a text classification problem,
but also that words (features) are often much easier for human annotators to label in user studies.

7.10 Related Research Areas

Research in active learning is driven by two key ideas: (i) the learner should be allowed to ask
questions, and (ii) unlabeled data are often readily available or easily obtained. There are a few
related research areas with rich literature as well.

7.10.1 Semi-Supervised Learning
Active learning and semi-supervised learning (for a good introduction, see Zhu, 2005b) both

traffic in making the most out of unlabeled data. As a result, there are a few conceptual overlaps
between the two areas that are worth considering. For example, a very basic semi-supervised

94

technique is self-training (Yarowsky, 1995), in which the learner is first trained with a small amount
of labeled data, and then used to classify the unlabeled data. Typically the most confident unlabeled
instances, together with their predicted labels, are added to the training set, and the process repeats.
A complementary technique in active learning is uncertainty sampling (see Section 7.3.1), where
the instances about which the model is least confident are selected for querying.

Similarly, multi-view learning (de Sa, 1994) and co-training (Blum and Mitchell, 1998) use
ensemble methods for semi-supervised learning. Initially, separate models are trained with the
labeled data (usually using separate, conditionally independent feature sets), which then classify
the unlabeled data, and “teach” the other models with a few unlabeled examples (with predicted
labels) about which they are most confident. This helps to reduce the size of the version space, i.e.,
the models must agree on the unlabeled data as well as the labeled data. Query-by-committee (see
Section 7.3.2) is an active learning compliment here, as the committee represents different parts of
the version space, and is used to query the unlabeled instances about which they disagree.

Through these illustrations, we begin to see that active learning and semi-supervised learning
try to attack the same problem from different directions. Semi-supervised learning exploits what
the learner thinks it already knows about the unlabeled data, and active learning attempts to explore
the unknown aspects. It is therefore natural to think about combining the two. Some example
formulations of semi-supervised active learning include McCallum and Nigam (1998b), Muslea
et al. (2000), Zhu et al. (2003), Zhou et al. (2004b), and Tur et al. (2005).

7.10.2 Reinforcement Learning
In reinforcement learning (Sutton and Barto, 1998), the learner interacts with the world via

“actions,” and tries to find an optimal policy of behavior with respect to “rewards” it receives
from the environment. For example, consider a machine that is learning how to play chess. In
a supervised setting, one might provide the learner with board configurations from a database
of chess games along with labels indicating which moves ultimately resulted in a win or loss.
In a reinforcement setting, however, the machine actually plays the game against real or simulated
opponents (Baxter et al., 2001). Each board configuration (state) allows for certain moves (actions),
which result in rewards that are positive (e.g., capturing the opponent’s queen) or negative (e.g.,
having its own queen taken). The learner aims to improve as it plays more games.

The relationship with active learning is that, in order to perform well, the learner must be
proactive. It is easy to converge on a policy of actions that have worked well in the past but are
sub-optimal or inflexible. In order to improve, a reinforcement learner must take risks and try out
actions for which it is uncertain about the outcome, just as an active learner requests labels for
instances it is uncertain how to label. This is often called the “exploration-exploitation” trade-off
in the reinforcement learning literature. Furthermore, Mihalkova and Mooney (2006) consider
an explicitly active reinforcement learning approach with aims to reduce the number of actions
required to find an optimal policy.

95

7.10.3 Equivalence Query Learning
Another closely related research area is learning with equivalence queries (Angluin, 1988).

Similar to membership query learning (see Section 7.2.1), here the learner is allowed to synthesize
queries de novo. However, instead of generating instances to be labeled by the oracle, the learner
instead generates a hypothesis of the target concept class, and the oracle either confirms or denies
that the hypothesis is correct. If it is incorrect, the oracle should provide a counter-example, i.e.,
an instance that would be labeled differently by the true concept and the query hypothesis.

There seem to be few practical applications of equivalence query learning, because the oracle
often does not know (or cannot provide) an exact description of the concept class for real-world
problems. Otherwise, it would be sufficient to create an “expert system” by hand and machine
learning is not required. However, it is an interesting intellectual exercise, and learning from
combined membership and equivalence queries is in fact the basis of a popular inductive logic
game titled Zendo2.

7.10.4 Active Class Selection
Active learning assumes that instances are freely or inexpensively obtained, and it is the label-

ing process that incurs a cost. Imagine the opposite scenario, however, where a learner is allowed
to query a known class label, and obtaining each instance incurs a cost. This fairly new problem
setting is known as active class selection. Lomasky et al. (2007) propose several active class se-
lection query algorithms for an “artificial nose” task, in which a machine learns to discriminate
between different vapor types (the class labels) which must be chemically synthesized (to generate
the instances). Some of their approaches show significant gains over uniform class sampling, the
“passive” learning equivalent.

7.10.5 Active Feature Acquisition and Classification
In some learning domains, instances may have incomplete feature descriptions. For example,

many data mining tasks in modern business are characterized by naturally incomplete customer
data, due to reasons such as data ownership, client disclosure, or technological limitations. Con-
sider a credit card company that wishes to model its most profitable customers; the company has
access to data on client transactions using their own cards, but no data on transactions using cards
from other companies. Here, the task of the model is to classify a customer using incomplete
purchase information as the feature set. Similarly, consider a learning model used in medical diag-
nosis which has access to some patient symptom information, but not other symptoms that require
complex or expensive procedures. Here, the task of the model is to suggest a diagnosis using
incomplete symptom information as the feature set.

In these domains, active feature acquisition (Zheng and Padmanabhan, 2002; Melville et al.,
2004) seeks to alleviate these problems by allowing the learner to request more complete feature
information. The assumption is that some additional features can be obtained at a cost, such as

2http://www.wunderland.com/icehouse/Zendo/

http://www.wunderland.com/icehouse/Zendo/

96

leasing transaction records from other credit card companies, or running additional diagnostic
procedures. The goal in active feature acquisition is to select the most informative features to
obtain, rather than randomly or exhaustively acquiring all new features for all training instances.
The difference between this learning setting and typical active learning is that these models request
salient feature values rather than instance labels. Similarly, work in active classification (Greiner
et al., 2002) considers the case in which features may be obtained during classification rather than
training.

7.10.6 Model Parroting and Compression
Different machine learning algorithms possess different properties. In some cases, it is desir-

able to induce a model using one type of model class, and then “transfer” that model’s knowledge
to a model of a different class with another set of properties. For example, artificial neural networks
have been shown to achieve better generalization accuracy than decision trees for many applica-
tions. However, decision trees represent symbolic hypotheses of the learned concept, and are there-
fore much more comprehensible to humans, who can inspect the logical rules and understand what
the model has learned. Craven and Shavlik (1996) propose the TREPAN (Trees Parroting Net-
works) algorithm to extract highly accurate decision trees from trained artificial neural networks
(or other incomprehensible model classes), providing comprehensible, symbolic interpretations.
Buciluǎ et al. (2006) have adapted this idea to “compress” very large and computationally expen-
sive model classes, such as complex ensembles, into smaller and more efficient model classes, such
as neural networks.

These approaches can be thought of as active learning methods where the oracle is in fact
another machine learning model (i.e., the one being parroted or compressed) rather than, say,
a human annotator. In both cases, the “oracle model” can be trained using a small set of the
available labeled data, and the “parrot model” is allowed to query the the oracle model for (i) the
labels of any unlabeled data that is available, or (ii) synthesize new instances de novo. These two
model parroting and compression approaches correspond to the pool-based and membership query
scenarios for active learning, respectively.

97

Chapter 8

Additional Work in Biomedical Natural Language Processing

This chapter discusses other published original research that I have conducted during my grad-
uate studies (Settles, 2004, 2005; Settles and Craven, 2005; Brow et al., 2006). While this work
does not include active learning, it does involve machine learning and natural language processing
for the biomedical literature using structured instance representations. Much of this other work
helped motivate the active learning research previously described in this thesis.

8.1 Biomedical Named Entity Recognition

Recent efforts to organize the wealth of knowledge in biomedical literature have resulted in
hundreds of databases and other resources (Bateman, 2008), providing scientists with access to
structured biological information. However, with nearly half a million new research articles added
to PubMed annually (Soteriades and Falagas, 2005), the sheer volume of publications and com-
plexity of the knowledge to be extracted is beyond the means of most manual database curation
efforts. As a result, many of these resources struggle to remain current. Automated information ex-
traction, or at least automated assistance for such extraction tasks, seems a natural way to overcome
these information management bottlenecks.

Named entity recognition (NER) is a subtask of information extraction, focused on finding
mentions of various entities that belong to semantic classes of interest. In the biomedical domain,
entities of interest are usually references to genes, proteins, cell types, and the like. Accurate
NER systems are an important first step for many larger information management goals, such
as automatic extraction of biologically relevant relationships (e.g., protein-protein interactions or
sub-cellular location of gene products), biomedical document classification and retrieval, and ulti-
mately the automatic maintenance of biomedical databases.

In order to facilitate and encourage research in the area of biomedical NER, several “bake-off”
style competitions have been organized, in particular the NLPBA shared task (Kim et al., 2004) and
the BioCreative challenges (Yeh et al., 2005; Smith et al., 2008). For these events, several research
teams rapidly design, build, and submit results for machine learning systems using benchmark
annotated text collections. Submissions are peer-reviewed, and the systems selected for publication
showcase a variety of approaches to the problem, providing insight into what sorts of models and
features are most effective.

98

Figure 8.1: A screenshot of ABNER’s graphical user interface.

8.1.1 The ABNER Software Tool
ABNER1 stands for A Biomedical Named Entity Recognizer, which is a software tool that I

developed for the named entity task in biomedical domains. I first released ABNER (Settles, 2005)
in July 2004 as a demonstrational graphical user interface (GUI) for the system I developed as part
of the NLPBA shared task challenge (Settles, 2004). In March 2005, a revised, open-source version
of the software was released with some performance improvements and a new Java application
programming interface (API). The goal is to encourage others to write custom interfaces to the core
NER software, allowing it to be integrated into other, more sophisticated biomedical information
management systems. ABNER also supports training new models on corpora labeled for different
knowledge domains (e.g., specific model organisms, since gene naming conventions vary from
species to species).

Figure 8.1 shows a screenshot of the intuitive GUI when ABNER is run as a stand-alone appli-
cation. Text can be typed in manually or loaded from a file (top window), and then automatically
tagged for multiple entities in real time (bottom window). Each entity type is highlighted with a
unique color for easy visual reference, and tagged documents can be saved in a variety of anno-
tated file formats. The application also has options for processing plain text documents on the file
system in batch mode offline. ABNER has built-in functionality for tokenizing and segmenting
sentences, which is fairly robust to line breaks and biomedical abbreviations (users can choose
to bypass these features in favor of their own text preprocessing as well). The bundled ABNER

1http://pages.cs.wisc.edu/~bsettles/abner/

http://pages.cs.wisc.edu/~bsettles/abner/

99

pr
ec

isi
on

pr
ec

isi
on

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
recall

ABNER
sequence model

other approach

NLPBA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
recall

ABNER*
sequence model

other approach

BioCreative

Figure 8.2: ABNER yields state-of-the-art results: (left) recall-precision points (over all entities)
for ABNER vs. other published sequence-model and non-sequence approaches on the
NLPBA corpus, (right) a similar comparison on the BioCreative corpus. A perfect
system would be in the upper-right corner of the plot. For the BioCreative plot, other
published systems are given credit for partial matches, whereas my evaluation of AB-
NER does not. The second, “better” point for ABNER is based on an extrapolation for
better comparison with these systems.

application is implemented in Java and is therefore platform-independent, and has been tested on
Linux, Solaris, Mac OS X, and Windows.

The basic ABNER distribution includes two built-in entity-tagging models trained on the NLPBA
and BioCreative corpora. The first is a modified version of the GENIA corpus (Kim et al., 2003),
containing five entity types (protein, DNA, RNA, cell-line and cell-type) labeled for 18,546 train-
ing sentences and 3,856 evaluation sentences. The latter corpus contains only one entity type that
subsumes both genes and gene products labeled for 7,500 training sentences and 2,500 evaluation
sentences. The underlying machine learning technology is based on a linear-chain CRF using the
same feature set as the experiments in Chapters 3 and 4 on these corpora.

8.1.2 Experiments
Figure 8.2 presents recall-precision plots for the two built-in models compared against the re-

sults of other systems published as part of these task challenges, using the official training/evaluation
splits of the data. ABNER ranked third in the official NLPBA evaluation in terms of F1 measure.
ABNER’s accuracy is still roughly state-of-the-art today. To my knowledge, only two systems with
published results have outperformed ABNER on the NLPBA corpus (Friedrich et al., 2006; Zhou
and Su, 2004), and neither is freely available. Comparisons to published results on the BioCreative
corpus are more difficult to interpret, as the ABNER results in Figure 8.2 reflect only perfectly
accurate entity predictions (i.e., exact word-boundary matches), whereas the official BioCreative

100

evaluation gave some “partial credit” to incomplete entity extractions (Yeh et al., 2005). When
adjusted for this, ABNER is competitive with the leading systems on this corpus as well, and is
again the only freely available open-source system among them.

Third-party research also indicates that ABNER is among the most accurate publicly avail-
able NER tools for biomedical text. Kabiljo et al. (2007) performed a comparative analysis of
three systems: ABNER (using the BioCreative model), GAPSCORE (Chang et al., 2004), and
NLProt (Mika and Rost, 2004) on a new benchmark corpus called ProSpecTome, which is a subset
of NLPBA re-annotated with more stringent labeling conventions. They found ABNER to be the
most accurate on this new corpus by a significant margin. Lam et al. (2006) also conducted an
informal comparison of ABNER (using the NLPBA model) to PowerBioNE (Zhou et al., 2004a)
when deciding which to use as a component in their automated database maintenance system, and
found ABNER to be consistently the best. Furthermore, most other systems are only available as
web services or platform-specific compiled binaries, whereas ABNER is designed to be portable,
flexible, and integrated into third-party biomedical NLP applications.

8.1.3 Beyond Named Entities
Accurate NER systems are an important first step for many larger information management

goals. This subsection briefly discusses the impact ABNER has had in field the biomedical text
processing by summarizing some of the published work by other researchers who use ABNER as
a part of larger systems. These applications generally fall into three main categories: higher-level
information extraction, text classification and information retrieval, and the automatic maintenance
or curation of biological databases.

Higher-level information extraction
ABNER solves a basic subtask of more general information extraction needs, as it focuses only

on finding entity mentions in text. Naturally, the next step is identifying the relationships among
such entities directly from text. For example, in mining the biomedical literature this can mean
extracting protein-protein interactions or identifying the sub-cellular localization of gene products.

Madkour et al. (2007) developed an extraction system for protein-protein interactions that em-
ploys ABNER in the protein identification phase. After proteins are annotated, the articles are
mined using an unsupervised mutual reinforcement algorithm to rank textual patterns indicating
an interaction relationship. They report an F1 score of 0.55 on a corpus of MEDLINE abstracts,
which appears to be near the current state-of-the-art for this formulation of the problem. To fa-
cilitate further progress in the area of extracting protein-protein interactions, a few variants of the
task were proposed as part of the BioCreative2 challenge, and ABNER was also chosen as an NER
component in at least four of the competing approaches (Abi-Haidar et al., 2007; Figueroa and
Neumann, 2007; Gonzalez et al., 2007; Huang et al., 2007). BioCreative2 results are somewhat
mixed, however, and substantially lower than those reported by Madkour et al.

Bethard et al. (2008) propose another interesting information extraction task that involves ex-
tracting semantic role arguments for protein transport predicates. Consider the following sentence:

101

“IRS-3 expression blocked glucose/IGF-1 induced IRS-2 translocation from the cytosol to the
plasma membrane.” They developed a system that attempts to automatically extract relational
predicate records like TRANSLOCATION(IRS-2, cytosol, plasma membrane) from such passages
of the biomedical literature. The extracted predicate name represents the type of protein transport,
and the arguments correspond to the target protein and the sub-cellular source and destination lo-
cations of the transport action, respectively. The authors employ ABNER’s protein predictions as
part of the predicate extraction system, resulting in F1 = 0.792 (compared to F1 = 0.841 if protein
mentions are already perfectly known).

Text classification and information retrieval
Most information retrieval systems aim to retrieve documents that are relevant to the user’s

particular information needs. Recently, however, interest has grown in developing systems that
combine retrieval (particularly in the biomedical domain) with text classification and information
extraction, attempting to answer user questions or put them in context, while providing supple-
mentary information and linking to the original sources (Hersh et al., 2007).

Several researchers who work on these more sophisticated information retrieval systems have
found that utilizing named entity predictions can improve their accuracy. For example, Tari et al.
(2007) employ ABNER to process query topics in a “question and answer” style document retrieval
system. The extracted entities are then matched against synonym lists in gene databases as part
of a query-expansion step to improve recall. Another task, part of the Text Retrieval Conference
(TREC) 2005 genomics track, involves filtering a set of documents for those which are appropriate
for manual curation in four different biological databases. Several systems developed to solve this
task (Li et al., 2007; Yang et al., 2006; Yu et al., 2006) use ABNER’s entity predictions to enhance
the feature set in this classification problem. Similarly, ABNER is used effectively by information
retrieval systems designed to filter passages of text for mentions of protein-protein interactions
(Abi-Haidar et al., 2007; Figueroa and Neumann, 2007; Huang et al., 2007).

Automatic maintenance of biological databases
Biological researchers often rely on specialized databases to maintain an in-depth repository of

domain knowledge. For example, a database may only catalog information on a single, organism-
specific genome, or functionally classified toxins and other chemicals. However, as indicated in
the introduction, the rate of growth for new information to be mined from the primary literature or
filtered from larger, general-purpose databases each year far eclipses the ability of curators to keep
things up-to-date manually, even with a focused and specialized scope of interest.

Lam et al. (2006) present a novel system to address some of these issues, combining ABNER
with a protein sequence motif extractor to automatically update special-interest databases. Entities
are extracted from the textual fields of target database records (e.g., titles and abstracts or reference
articles), and motifs are likewise extracted from the protein sequence fields (i.e., the actual amino
acid sequences). The entity keywords and sequence motifs are then combined to generate queries
for more general-purpose databases in the public domain, such as GenBank or SwissProt. The idea

102

is to filter the records from these broader interest databases and automatically extract the records
that are relevant to the special-interest resources at hand. Their experiments in automatically main-
taining a snake venom database achieve an F1 = 0.800 using both ABNER keywords and sequence
motifs (as opposed to F1 = 0.045 and F1 = 0.410, respectively, using either one in isolation).

Cakmak and Ozsoyoglu (2007) present another system that uses ABNER to extract gene men-
tions from the literature, and infer new function annotations from the Gene Ontology (GO Consor-
tium, 2004) that may have been overlooked. The GO is a standardized vocabulary for molecular
function of gene products used in most model organism genome databases. The resulting GO
annotations can be appended to the extracted genes’ database records automatically. They report
F1 scores of 0.66, 0.66, and 0.64 for the Biological Process, Molecular Function, and Cellular
Component sub-ontologies, respectively.

8.1.4 Summary
The ABNER system, which I developed, is an efficient, accurate, cross-platform software tool

for finding named entities in biomedical text. It has been demonstrated to perform at or near the
state-of-the-art on multiple benchmark corpora, and remains one of the few high-accuracy NER
systems available freely and under an open-source license at the time of this writing. It also ships
with its own API, allowing users to re-train the underlying machine learning system for specific
tasks, or to integrate it into larger, more sophisticated information management systems. ABNER
has been used as a vital component in several such systems, including applications for higher-level
information extraction, document classification and retrieval, and the automatic maintenance of
biological databases.

However, the models ABNER ships with are trained with very large labeled corpora (e.g.,
10,000+ sentences) that represent hundreds if not thousands of man-hours to annotate. Building
accurate NER models for other knowledge domains, such as diseases, chemical compounds, or
even gene products in other model organisms present significant annotation challenges. This is
because such tasks often require building domain-specific training sets. As evidenced by Figure 8.2
(and a wealth of the related literature), approaches based on sequence models are state-of-the-art
for these sorts of tasks. Thus, the need for understanding which active learning query strategies are
most effective for such sequence models was the main motivation for the research in Chapter 3.

8.2 Document-Passage Relationships in Biomedical Text Classification

In some natural language processing tasks, such as text classification and information retrieval
for certain knowledge domains, only a portion of the text is relevant to the task at hand. For
example, most model organism databases such as the Mouse Genome Informatics (MGI) database
(Eppig et al., 2005) employ teams of PhD-level biologists to read the scientific literature and then
manually enter relevant information into the databases. It is our conjecture that curating genes for
functional activity likely depends on a small set of passages rather than an entire document.

103

fin
al

pr
ed

ict
ion

s

1. zoning and
text preprocessing

2. feature vector
encoding

3. zone-level
classification

4. document-level
classification

gene: desmin

... study of H2K myoblasts and ...
... of the desmin intermediate ...
... be important for maintaining ...

. .
 .

.

. .
 .

.

. .
 .

.

BP, CC, MF, X
naïve Bayes

. .
 .

.

CC
MaxEnt

BP
MaxEnt

MF
MaxEnt

Figure 8.3: A two-tier system for the TREC 2004 classification task.

The Genomic Track portion of the Text Retrieval Conference (TREC) in 2004 and 2005 con-
tained text classification tasks aimed at investigating methods that might help human curators filter
the scientific literature and identify articles relevant to the curation process. In 2004, this task in-
volved taking document-gene tuples 〈d, g〉 and annotating them with functional information from
the Gene Ontology (GO Consortium, 2004). Specifically, systems had to determine which, if any,
of the three GO subdomains—Biological Process (BP), Cellular Component (CC), and Molecular
Function (MF)—are applicable to gene g according to the text in document d. Note that these
labels are not mutually exclusive. In 2005, the classification task involved taking the full text of
a scientific article and triaging them in to pools to be curated for each four categories: GO an-
notation (GO), the Alleles and Phenotypes category of the Mouse Genome Database (Allele), the
Gene Expression Database (Expression), and the Mouse Tumor Biology Database (Tumor). Again,
these categories are not mutually exclusive, thus an article may be classified into any number of
categories from zero (should not be curated for any database) to four (should be curated for them
all).

In both tasks, labels are provided at a document-level resolution. My approaches to these tasks
have been methods that involve (i) basing classifications on selected passages from articles, and
(ii) adjusting the classifier training process such that certain putatively relevant passages affect the
learned model more than other passages. I consider baseline methods that make classifications by
considering the entire text of each article, and that are trained by equally weighting all parts of all
training articles.

8.2.1 TREC 2004 Experiments
For the TREC 2004 task (functional document-gene GO annotation), the classification ap-

proach consists of four main steps (Settles and Craven, 2005). First, each document d is parti-
tioned into six sections: title, abstract, introduction, methods, results, and discussion. Sentences
with mentions of gene g are identified (using regular expressions and MGI gene/protein synonym
lists) within each section. Second, feature vectors for each section are constructed using only the

104

sentences where gene g is mentioned. Third, label predictions are made for each section indepen-
dently by a multi-class multinomial naı̈ve Bayes model (McCallum and Nigam, 1998a) trained for
four labels: BP, CC, MF, and null. These posterior probabilities are then concatenated to cre-
ate a secondary document-level feature vector with 24 features (4 labels × 6 document sections).
Finally, predictions for each GO domain annotation are made by three binary MaxEnt classifier
models (Berger et al., 1996): one for each domain. Features for the second step consist of words
as well as syntactic rules (patterns) and “informative terms” that are statistically induced from the
training texts. An illustration of the system is presented in Figure 8.3.

During the development of this system, I ran several experiments using four-fold cross-validation
on the training set (correct labels for the evaluation data were not provided until after the confer-
ence). Official evaluation for the system is in terms of precision, recall, and F1. First, I investigated
the validity of using (localized) section information in classification. The left side of Figure 8.4
compares recall-precision curves for three systems: (i) a baseline naı̈ve Bayes model trained on
words from the entire document and ranked by posterior probability, (ii) a similar model divided
into zones (each zone submitting a “vote” for classification weighted by its posterior probability),
and (iii) the two-tier classification illustrated in Figure 8.3. From this we can see that moving from
a full-text classification model to a simple voting system that incorporates local section information
has a slight impact: sacrificing precision at low levels of recall, but maintaining higher precision at
high levels of recall. However, moving on to the two-tier system significantly improves precision
across the whole recall spectrum. The right side of Figure 8.4 compares our two-tier system (using
various feature sets) with all other runs submitted for evaluation. Our system performed quite well
and the best run achieved an F1 score of 51.38 (the official metric of comparison), which ranked it
second best among all participating systems.

The accuracy of our two-tier system, our first venture into incorporating localized decisions, is
promising. The major goals of this study were to investigate the value of (i) section information,
and (ii) advanced features not often used in such text classification tasks (specifically syntactic
features and GO-specific informative terms; see Settles and Craven (2005) for more details). This
early work suggests that both facets can offer substantial gains over our baseline approach for this
problem.

8.2.2 TREC 2005 Experiments
For the TREC 2005 task2—which requires triaging documents for curation in the Allele, Ex-

pression, GO, or Tumor databases—we experimented with several different methods for making
localized classification decisions (Brow et al., 2006). We investigated three main approaches: the
first two augment the classification procedure to exploit document-passage relationships, while the
third augments the training procedure.

In the first approach, we segment full-text scientific articles into individual paragraphs and
classify them individually. The posterior probabilities of each paragraph belonging to the positive

2This subsection describes joint work with Thomas Brow.

105
pr

ec
isi

on

pr
ec

isi
on

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
recall

my systems
other submitted systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
recall

two-tier system / zones
weighted vote / zones

full-text

Figure 8.4: TREC 2004 results in recall-precision space: (left) curves comparing use of zone in-
formation in various ways, (right) official evaluation results for four variants of my
system vs. all other submitted systems.

class are then aggregated into a document-level classification by taking the N -best most probable
paragraphs and averaging them.

Representing the collection of paragraph-level probabilities by their mean discards information
about the distribution of those probabilities. We hypothesize that the shape of the paragraph-
probability distribution on individual documents can be recognized as belonging to positive or
negative instances. To take advantage of this difference in distributions, we train a secondary
statistical model to discriminate the two. The feature vector for this “metaclassifier” is generated by
using an integer-valued feature to represent each bin in a discrete representation of the distribution
(i.e., a histogram). The value of the feature is the count of paragraphs that have probabilities in the
corresponding interval.

Another way of localizing the classifier is to focus the model’s attention to important passages
during the training process itself. One way of accomplishing this is by employing the expectation-
maximization (EM) algorithm (Dempster et al., 1977), which is an approach to finding likelihood
estimates for parameters in probabilistic settings with hidden variables. In our setting, the hid-
den variables represent the extent to which individual paragraphs should be treated as positive
instances during training (i.e., an instance weight). We employ one hidden variable for each para-
graph in positive documents. (We assume that all paragraphs in a negative document really are
negative, and thus there are no hidden variables for these cases.) In the E-step, we use the current
model to estimate the probability that each paragraph in a given document is positive (contains text
relevant to the document being positive), and assign weights to paragraph instances equal to the
model’s output. Occasionally, there may be no paragraphs that appear positive for a given training
document that is known to be positive. To test and correct for this, we sum the model’s output for
all paragraphs in a document. If the sum is less than some threshold δ, we re-normalize weights

106

0.0

0.2

0.4

0.6

0.8

1.0

TumorGOExpressionAllele

no
rm

ali
ze

d
ut

ilit
y

all paragraphs5-best paragraphsfull-text meta: 4-bestmeta: all5-best paragraphs

no
rm

ali
ze

d
ut

ilit
y

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TumorGOExpressionAllele
0.4

0.5

0.6

0.7

0.8

0.9

1.0

4-best paragraphs
full-text

0 1 2 3 4 5 6 7 8 9 10

no
rm

ali
ze

d
ut

ilit
y

number of EM Iterations

(a) (b) (c)

Figure 8.5: TREC 2005 results. (a) Results for models that make classifications with the
paragraph-based approach. (b) Metaclassifier results compared to simply averaging
the N -best. (c) The effects of ten EM iterations on utility for the Allele task (similar
results for the other categories). Classifiers are trained using EM-weighted paragraphs
and evaluated against both full-text and N -best paragraphs.

to sum to δ. The assumption here is that a positive document has at least δ paragraphs that are
relevant to its class.

Experiments during system development employ MaxEnt classifiers (Berger et al., 1996) and
use four-fold cross-validation on the training data. Features that describe paragraph/article text
consist simply of words (or the “bag of words” representation). As in the official TREC evaluation,
we measure classifier performance by computing normalized utility = η(fp) + ε(tp), where fp
and tp are the counts of false positives and true positives, respectively (see Section 2.3 for an
explanation of these numbers). The coefficients η and ε are category-specific weights (or “relative
utilities”) defined to account for the varying number of positive instances across categories. These
weights are defined η = −1 and ε = an

ap
, where an and ap are the total counts of actual negative

and positive instances, respectively.
Figure 8.5(a) presents the results for the paragraph-level classifier approach. Here, we see

that the N -best classifier approaches provide better utility than the baseline models for all tasks.
This result supports our hypothesis that only certain passages are relevant. The results for the
all-paragraphs control (e.g., N -best with N equal to the total number of paragraphs) indicate that
success of the N -best method is due to its focus on a small number of paragraphs, rather than
some other aspect of its paragraph-based representation. Figure 8.5(b) compares the performance
of the metaclassifier approach, both with and without paragraph selection, to the simple mean N -
best paragraphs approach. The distribution metaclassifier does not result in higher utility scores,
suggesting that the metaclassifier approach is susceptible to over-fitting. Figure 8.5(c) shows the
classification utility realized by the N -best and full-text classification methods as a function of
the number of EM training iterations (with normalization threshold δ = 2). Utility generally
drops immediately after EM re-weighting begins, and while subsequent iterations show gradual
improvement, the models appear to converge before reaching even the initial model’s utility. This
result indicates that the EM algorithm, as used here, either is not effective at identifying the most

107

Table 8.1: MILR vs. the two best classifiers from our TREC 2005 experiments. Reported is the
utility score of each approach. For each subtask, the best result is shown in bold.

Task Allele Expression GO Tumor
MILR 0.8462 0.7725 0.4181 0.9103
5-best 0.8636 0.7617 0.5023 0.8774
full-text 0.8323 0.6107 0.4407 0.7325

relevant paragraphs or that there is no benefit in doing so. We also note that the N -best method of
evaluation outperforms the full-text method in this context as well.

Our first hypothesis was that we can achieve more accurate classifications by basing decisions
on selected paragraphs in test articles. This was well supported by our experiments. The second
hypothesis was that we could achieve more accurate classifications by employing a rich representa-
tion of predicted paragraph-level class probabilities. The third hypothesis was that we could learn
more accurate models by having the training process put more emphasis on some paragraphs than
others. Neither of these latter two hypotheses were supported by our experimental results.

Notice, however, that our assumptions in the EM-based training procedure are consistent with
the multiple-instance (MI) problem setting presented in Section 2.2.2 and explored in detail in
Chapter 5. As an alternative to EM training, I have subsequently run additional experiments on
these four subtasks using MI logistic regression (MILR). Table 8.1 compares utility scores for
MILR against the two best methods from our TREC 2005 paper: the 5-best paragraph model, and
the baseline full-text model. Here we see that MILR is the best method for two of the four subtasks,
and outperforms the full-text baseline on the Allele task. We can conclude from these results that,
even though passage-focused learning was not beneficial using the EM approach described above,
it can be useful when representing the problem in the MI setting.

8.2.3 Summary
Our experiments in both TREC 2004 and 2005 indicate that not all parts of a document are

relevant to certain text classification tasks, and that exploiting passage-level information can yield
more accurate models. Additionally, I have shown that the MI learning representation is well-suited
to passage-level learning in TREC 2005 classification tasks. However, ambiguity still remains
about which passages are most relevant to the task at hand during training. This is partially what
motivated the work in MI active learning discussed in Chapter 5.

108

Chapter 9

Conclusion

In today’s information-rich digital world, supervised machine learning approaches are used
extensively to solve real-world challenges in organizing, extracting, and retrieving information
from large data sources. However, these learning algorithms have a non-trivial limitation: they
require labeled training data which is often difficult, time-consuming, or expensive to obtain. For
many of these tasks, inputs take the form of structured instances which can make the labeling and
learning tasks more complicated.

This thesis has focused on effective active learning approaches for such problem domains,
in which instances take structured form and labeling costs may vary. The methods introduced
in this thesis aim to reduce the overall cost of acquiring labeled data by allowing the learner to
effectively choose the instances on which it is trained. In this final chapter, I summarize the specific
contributions (and limitations) of this work, and discuss several open research directions aimed at
better utilizing data and labeling resources for machine learning problems through active learning.

9.1 Summary of Contributions

This thesis has made several contributions to the state of the art in active learning. Specific
contributions include:

• An analysis of active learning with sequences. One contribution of this thesis is a large-scale
analysis of active learning strategies for sequence labeling tasks like information extrac-
tion. The empirical study presented in Chapter 3 expands the frontier of query selection
strategies designed for sequence models into new and previously unexplored active learning
frameworks. These results reveal which approaches are most effective and computationally
feasible (for interactive settings), including the information density algorithm, which was
introduced in this work. Additionally, my results show that query strategies should con-
sider each sequence as a whole, rather than aggregating token-level information, and that
informativeness measures should not be normalized for sequence length (as it has often been
previously assumed).

109

• Multiple-instance active learning. Another major contribution of this work is a novel ap-
proach to active learning in multiple-instance (MI) learning domains. The methods pio-
neered in this thesis allow MI learners to reduce the inherent ambiguity of the MI repre-
sentation by learning from labels at mixed levels of granularity: both bag-level (coarse, but
inexpensive) and instance-level (fine, but more expensive). The query algorithms introduced
in Chapter 5 can be used to reduce overall annotation costs by actively querying the most
informative instances from positive bags. These results have implications for several real-
world learning applications, such as classifying and retrieving text documents and images.
Future work in this area includes exploring alternate scenarios, such as interleaving queries
at various levels of granularity.

• A new approach to cost-sensitive active learning. The study presented in Chapter 6 answers
several important questions about the nature of real-world annotation costs that are unknown
to the learner when selecting queries, a setting that has not been previously considered in the
literature. Specifically, I show that (i) the labeling time required by human annotators is often
not (approximately) constant from one instance to the next, (ii) that it can vary significantly
from one annotator to another, and that (iii) it sometimes contains a stochastic component.
I reason about the causes and implications of these findings, and demonstrate that in some
cases we can learn to accurately predict future unknown annotation costs, even after only a
few queries have been labeled. While the actual utility of these cost predictions is thus far
inconclusive, this approach to active learning holds promise for reducing actual annotation
costs in domains where they are not known. Developing robust cost-sensitive active learning
approaches given approximate, predicted cost information is a key direction for future work.

• Two new general active learning frameworks. I have proposed two novel approaches to
pool-based active learning: the information density algorithm, and the expected gradient
length (EGL) framework. The information density algorithm improves upon a simple “base”
strategy by selecting queries that are not only informative, but also representative of the
input distribution. I present formulations for both sequence labeling (Chapters 3 and 4) and
classification (Chapter 4) tasks. Extensive evaluation demonstrates that information density
is a state-of-the-art strategy for both problem settings. Future work includes developing
fast and accurate approximations to the density calculation, improved similarity measures
for sequence tasks, and generalizations to batch-mode active learning. The EGL framework
differs in that it attempts to select queries based on how much they will influence the model if
we knew their instance labels. I show that this approach can be effective in sequence labeling
(Chapter 3) and multiple-instance (Chapter 5) applications. However, for more complex
problems this method may require approximations or be prohibitively slow in practice.

• State-of-the-art approaches to biomedical natural language processing. In Chapter 8, I pre-
sented ABNER, a state-of-the-art named entity recognition system I have developed and
released as an open-source tool for the biomedical natural language processing community,
which (at the time of this writing) has generated more than 4,000 downloads and over 150
citations to date. Many researchers in related areas of biomedical information extraction,

110

information retrieval, and automatic database curation use ABNER to improve and enhance
their own machine learning systems. I also demonstrated that biomedical text classifica-
tion systems can often do better by making decisions at, and learning from, the granularity
of passages. This result may be further exploited by the multiple-instance active learning
presented here.

9.2 Open Problems and Future Work

Throughout my work on active learning, I have encountered many practical challenges and
interesting empirical results, which have inspired several ideas for novel ways of looking at active
learning. This section introduces some of these ideas and problem settings, which I feel are fruitful
directions for future work.

• Multi-task active learning. The vast majority of active learning research has assumed that
there is only one learner trying to solve a single task. Consider the CKB system from Chap-
ter 6, however, which actually comprises two learners solving two subtasks: entity recog-
nition and relation extraction. For many real-world problems, the same data can be labeled
multiple ways for different subtasks. In such cases, it is likely most economical to label a
single instance for all subtasks simultaneously. Therefore, multi-task active learning algo-
rithms should assume that a single query will be labeled for multiple tasks, and assess the
“informativeness” of an instance with respect to all the learners involved. In the case of the
CKB corpus, the two tasks are related (i.e., the relations take entities as arguments) but they
need not be. Consider a database of film reviews, which we might use to build a system that
(i) extracts the names of key actors and production crew, (ii) classifies the film by genre, and
(iii) predicts a rating based on the text. Such a system would probably employ three indepen-
dent learners: a sequence model for entity extraction, a classifier for genres, and a regression
model to predict ratings. Effectively selecting queries that benefit all three of these learners
is an open and potentially important direction for active learning.

• Alternative query types. Results from Chapter 5 show that it is possible (and indeed ben-
eficial) for multiple-instance active learners to request labels at the instance granularity as
well as bags, which is the typical unit of labeling. Recently, methods have been developed
to combine unlabeled data with “domain knowledge” in the form of feature labels (Druck
et al., 2008) or known label distributions (Mann and McCallum, 2007a). Combining such
approaches with active learning holds much promise for reducing overall labeling costs in-
volving human annotators. Consider an active text classifier that, instead of querying the
annotator with documents to be labeled, queries instead with words. These words may even
be “softly” labeled, e.g., GAME as a feature might indicate the baseball class 60% of the
time and the hockey class 40% of the time, but autos and motorcycles none of the time.
Similarly, the learner might ask the annotator if he or she knows roughly what the distribu-
tion of class labels in the overall corpus should be. As we develop new forms of supervision
in machine learning, we also open the door to alternative forms of active learning.

111

• Interactive learning. Much of the work in this thesis has been focused on systems that learn
interactively. For example, Chapter 3 provides a run-time analysis of query strategies to
determine which methods are most practical when the oracle provides immediate feedback.
The work presented in Chapter 6 attempts to predict the amount of time a specific annotator
will require to label queries, with the goal of exploiting that knowledge in real-time. An-
other direction for interactive learning is to combine active query strategies with novel label
acquisition methods such as “games with a purpose” (von Ahn and Dabbish, 2008), which
aim to gather instance labels through Internet-enabled community games. A major limita-
tion for many learning tasks today is the time and availability of domain experts. However,
there is some recent evidence that aggregating redundant labelings from non-experts can be
equally effective for machine learning (Snow et al., 2008). Thus, acquiring multiple, inex-
pensive, non-expert labels via online games for instances that have been actively selected by
the learner is a promising new direction for active learning.

• Active transfer learning. It is often the case that large training sets are available for one
learning task, but not for a different (but similar) task. For example, the BioCreative corpus
from Chapters 3 and 4 is annotated for gene and protein mentions in the genomics literature
involving human cells. To my knowledge, however, no such training sets exist for the rat
or mouse genomics literature. Transfer learning (Torrey and Shavlik, 2009) is a subfield of
machine learning that involves transferring knowledge from one domain to expedite learning
in another, e.g., taking what is known about information extraction in the human genomics
literature and applying it to rat or mouse knowledge domains. Combining this approach with
active learning holds the potential for active, rapid adaptation of mature “source” learning
problems to new “destination” problem domains.

9.3 Last Words

In this thesis, I have explored active learning in a variety of real-world problem domains char-
acterized by complex structured instances and potentially varied annotation costs. This work has
helped to answer outstanding questions about active learning in some of these applications, e.g.,
“what methods are best for sequence labeling tasks?” and “do annotation times vary among in-
stances or annotators?” At the same time, this work has also introduced several new ways of think-
ing about active learning in other domains, e.g., mixed-granularity queries for multiple-instance
learning, and predicting unknown future annotation costs for cost-sensitive active learning. It is
my hope that the research findings I have presented here will serve as a foundation for future work
in active learning applied to real-world learning problems.

112

Bibliography

N. Abe and H. Mamitsuka. Query learning strategies using boosting and bagging. In Proceedings
of the International Conference on Machine Learning (ICML), pages 1–9. Morgan Kaufmann,
1998.

A. Abi-Haidar, J. Kaur, A. Maguitman, P. Radivojac, A. Retchsteiner, K. Verspoor, Z. Wang, and
L.M. Rocha. Uncovering protein-protein interactions in the bibliome. In Proceedings of the
BioCreative2 Workshop, pages 247–255, 2007.

S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance
learning. In Advances in Neural Information Processing Systems (NIPS), volume 15, pages
561–568. MIT Press, 2003.

D. Angluin. Queries revisited. In Proceedings of the International Conference on Algorithmic
Learning Theory, pages 12–31. Springer-Verlag, 2001.

D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

M.F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In Proceedings of the
International Conference on Machine Learning (ICML), pages 65–72. ACM Press, 2006.

M.F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In
Proceedings of the Conference on Learning Theory (COLT), pages 45–56. Springer, 2008.

J. Baldridge and M. Osborne. Active learning and the total cost of annotation. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9–16.
ACL Press, 2004.

A. Bateman. Editorial. Nucleic Acids Research, 36(Database issue):D1, 2008.

E.B. Baum and K. Lang. Query learning can work poorly when a human oracle is used. In
Proceedings of the IEEE International Joint Conference on Neural Networks, 1992.

J. Baxter, A. Tridgell, and L. Weaver. Reinforcement learning and chess. In J. Furnkranz and
M. Kubat, editors, Machines that Learn to Play Games, pages 91–116. Nova Science Publishers,
2001.

A.L. Berger, V.J. Della Pietra, and S.A. Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, 1996.

113

S. Bethard, Z. Lu, J.H. Martin, and L. Hunter. Semantic role labeling for protein transport predi-
cates. BMC Bioinformatics, 9:277, 2008.

F.R. Blattner, G. Plunkett, C.A. Bloch, N.T. Perna, V. Burland, M. Riley, J. Collado-Vides, J.D.
Glasner, C.K. Rode, G.F. Mayhew, J. Gregor, N.W. Davis, H.A. Kirkpatrick, M.A. Goeden, D.J.
Rose, B. Mau, and Y. Shao. The complete genome sequence of Escherichia coli K-12. Science,
277:1453–1474, 1997.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings
of the Conference on Learning Theory (COLT), pages 92–100. Morgan Kaufmann, 1998.

C. Bonwell and J. Eison. Active Learning: Creating Excitement in the Classroom. Jossey-Bass,
1991.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

K. Brinker. Incorporating diversity in active learning with support vector machines. In Proceedings
of the International Conference on Machine Learning (ICML), pages 59–66. AAAI Press, 2003.

T. Brow, B. Settles, and M. Craven. Classifying biomedical articles by making localized decisions.
In Proceedings of the Text Retrieval Conference (TREC), 2006.

C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the
International Conference on Knowledge Discovery and Data Mining (KDD), pages 535–541.
ACM Press, 2006.

A. Cakmak and G. Ozsoyoglu. Annotating genes using textual patterns. In Proceedings of the
Pacific Symposium on Biocomputing (PSB), volume 12, pages 221–232. World Scientific Press,
2007.

V.R. Carvalho and W. Cohen. Learning to extract signature and reply lines from email. In Pro-
ceedings of the Conference on Email and Anti-Spam (CEAS), 2004.

N. Cesa-Bianchi, C. Gentile, A. Tironi, and L. Zaniboni. Worst-case analysis of selective sampling
for linear-threshold algorithms. In Advances in Neural Information Processing Systems (NIPS),
volume 17, pages 233–240. MIT Press, 2005.

J.T. Chang, H. Schütze, and R.B. Altman. GAPSCORE: finding gene and protein names one word
at a time. Bioinformatics, 20(2):216–225, 2004.

O. Chapelle, P. Haffner, and V.N. Vapnik. Support vector machines for histogram-based image
classification. IEEE Transactions on Neural Networks, 10(5):1055–1064, 1999.

D. Cohn. Neural network exploration using optimal experiment design. In Advances in Neural
Information Processing Systems (NIPS), volume 6, pages 679–686. Morgan Kaufmann, 1994.

114

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learn-
ing, 15(2):201–221, 1994.

D. Cohn, Z. Ghahramani, and M.I. Jordan. Active learning with statistical models. Journal of
Artificial Intelligence Research, 4:129–145, 1996.

C. Cortes and V.N. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

M. Craven and J. Shavlik. Extracting tree-structured representations of trained networks. In Ad-
vances in Neural Information Processing Systems (NIPS), volume 8, pages 24–30. MIT Press,
1996.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery. Learn-
ing to extract symbolic knowledge from the world wide web. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 509–516. AAAI Press, 1998.

A. Culotta and A. McCallum. Reducing labeling effort for stuctured prediction tasks. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI), pages 746–751. AAAI Press,
2005.

I. Dagan and S. Engelson. Committee-based sampling for training probabilistic classifiers. In
Proceedings of the International Conference on Machine Learning (ICML), pages 150–157.
Morgan Kaufmann, 1995.

S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information
Processing Systems (NIPS), volume 16, pages 337–344. MIT Press, 2004.

S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning. In Pro-
ceedings of the Conference on Learning Theory (COLT), pages 249–263. Springer, 2005.

S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In Advances
in Neural Information Processing Systems (NIPS), volume 20, pages 353–360. MIT Press, 2008.

V.R. de Sa. Learning classification with unlabeled data. In Advances in Neural Information Pro-
cessing Systems (NIPS), volume 6, pages 112–119. MIT Press, 1994.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, 39:1–38, 1977.

T. Dietterich, R. Lathrop, and T. Lozano-Perez. Solving the multiple-instance problem with axis-
parallel rectangles. Artificial Intelligence, 89:31–71, 1997.

G. Druck, G. Mann, and A. McCallum. Learning from labeled features using generalized expec-
tation criteria. In Proceedings of the ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 595–602. ACM Press, 2008.

R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-Interscience, 2001.

115

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge
University Press, 1998.

J.T. Eppig, C.J. Bult, J.A. Kadin, J.E. Richardson, J.A. Blake, and the members of the Mouse
Genome Database Group. The Mouse Genome Database (MGD): from genes to mice–
a community resource for mouse biology. Nucleic Acids Research, 33:D471–D475, 2005.
http://www.informatics.jax.org.

V. Federov. Theory of Optimal Experiments. Academic Press, 1972.

A. Figueroa and G. Neumann. Identifying protein-protein interactions in biomedical publications.
In Proceedings of the BioCreative2 Workshop, pages 217–225, 2007.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective samping using the query by committee
algorithm. Machine Learning, 28:133–168, 1997.

C.M. Friedrich, T. Revillion, M. Hofmann, and J. Fluck. Biomedical and chemical named entity
recognition with conditional random fields: The advantage of dictionary features. In Proceed-
ings of the International Symposium on Semantic Mining in Biomedicine (SMBM), pages 85–89,
2006.

A. Fujii, T. Tokunaga, K. Inui, and H. Tanaka. Selective sampling for example-based word sense
disambiguation. Computational Linguistics, 24(4):573–597, 1998.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neu-
ral Computation, 4:1–58, 1992.

R. Gilad-Bachrach, A. Navot, and N. Tishby. Query by committee made real. In Advances in
Neural Information Processing Systems (NIPS), volume 18, pages 443–450. MIT Press, 2006.

The GO Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids
Research, 32:D258–D261, 2004. http://www.geneontology.org.

T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh,
J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander. Molecular classification of cancer:
Class discovery and class prediction by gene expression monitoring. Science, 286:531–537,
1999.

G. Gonzalez, L. Tari, A. Gitter, R. Leaman, S. Nikkila, R. Wendt, A. Zeigler, and C. Baral. Inte-
grating knowledge extracted from biomedical literature: Normalization and evidence statements
for interactions. In Proceedings of the BioCreative2 Workshop, pages 227–235, 2007.

R. Greiner, A. Grove, and D. Roth. Learning cost-sensitive active classifiers. Artificial Intelligence,
139:137–174, 2002.

116

Y. Guo and R. Greiner. Optimistic active learning using mutual information. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), pages 823–829. AAAI Press,
2007.

Y. Guo and D. Schuurmans. Discriminative batch mode active learning. In Advances in Neural
Information Processing Systems (NIPS), number 20, pages 593–600. MIT Press, Cambridge,
MA, 2008.

S. Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of the
International Conference on Machine Learning (ICML), pages 353–360. ACM Press, 2007.

A. Hauptmann, W. Lin, R. Yan, J. Yang, and M.Y. Chen. Extreme video retrieval: joint maximiza-
tion of human and computer performance. In Proceedings of the ACM Workshop on Multimedia
Image Retrieval, pages 385–394. ACM Press, 2006.

D. Haussler. Learning conjunctive concepts in structural domains. Machine Learning, 4(1):7–40,
1994.

W. Hersh, A.M. Cohen, P. Roberts, and H.K. Rekapalli. Trec 2006 genomics track overview. In
Proceedings of the Text Retrieval Conference (TREC), 2007.

W.R. Hersh, C. Buckley, T.J. Leone, and D.H. Hickam. OHSUMED: An interactive retrieval eval-
uation and new large test collection for research. In Proceedings of the ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 192–201. ACM Press, 1994.

S.C.H. Hoi, R. Jin, and M.R. Lyu. Large-scale text categorization by batch mode active learning.
In Proceedings of the International Conference on the World Wide Web, pages 633–642. ACM
Press, 2006a.

S.C.H. Hoi, R. Jin, J. Zhu, and M.R. Lyu. Batch mode active learning and its application to med-
ical image classification. In Proceedings of the International Conference on Machine Learning
(ICML), pages 417–424. ACM Press, 2006b.

D. Hoiem, A. Efros, and M. Hebert. Putting objects in perspective. In Proceedings of the Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 2137–2144. IEEE Press,
2006.

A. Huang, S. Ding, H. Wang, and X. Zhu. Mining physical protein-protein interactions from
literature. In Proceedings of the BioCreative2 Workshop, 2007.

J. Hull. A database for handwriting recognition research. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(5):550–554, 1994.

R. Hwa. Sample selection for statistical parsing. Computational Linguistics, 30(3):73–77, 2004.

117

R Kabiljo, D Stoycheva, and AJ Shepard. ProSpecTome: A new tagged corpus for protein named
entity recognition. In Proceedings of the ISMB BioLINK, pages 24–27. Oxford University Press,
2007.

A. Kapoor, E. Horvitz, and S. Basu. Selective supervision: Guiding supervised learning with
decision-theoretic active learning,. In Proceedings of International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 877–882. AAAI Press, 2007.

J. Kim, T. Ohta, Y. Teteisi, and J. Tsujii. GENIA corpus—a semantically annotated corpus for
bio-textmining. Bioinformatics, 19(suppl. 1):i180–i182, 2003.

J. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Collier. Introduction to the bio-entity recognition
task at JNLPBA. In Proceedings of the International Joint Workshop on Natural Language
Processing in Biomedicine and its Applications (NLPBA), pages 70–75, 2004.

S. Kim, Y. Song, K. Kim, J.W. Cha, and G.G. Lee. MMR-based active machine learning for
bio named entity recognition. In Proceedings of Human Language Technology and the North
American Association for Computational Linguistics (HLT-NAACL), pages 69–72. ACL Press,
2006.

R.D. King, K.E. Whelan, F.M. Jones, P.G. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell, and
S.G. Oliver. Functional genomic hypothesis generation and experimentation by a robot scientist.
Nature, 427(6971):247–52, 2004.

V. Krishnamurthy. Algorithms for optimal scheduling and management of hidden markov model
sensors. IEEE Transactions on Signal Processing, 50(6):1382–1397, 2002.

S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathematical Statistics,
22:79–86, 1951.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings of the International Conference on
Machine Learning (ICML), pages 282–289. Morgan Kaufmann, 2001.

K. Lam, J.L.Y. Koh, B. Veeravalli, and V. Brusic. Incremental maintenance of biological databases
using association rule mining. In S. Istrail, P. Pevzner, and M. Waterman, editors, Pattern
Recognition in Bioinformatics, pages 140–150. Springer, 2006.

K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the International Conference
on Machine Learning (ICML), pages 331–339. Morgan Kaufmann, 1995.

K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language, 4:35–56, 1990.

L. Lee. Measures of distributional similarity. In Proceedings of the Association for Computational
Linguistics (ACL), pages 25–32. ACL Press, 1999.

118

D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learning. In Proceed-
ings of the International Conference on Machine Learning (ICML), pages 148–156. Morgan
Kaufmann, 1994.

D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In Proceedings of the
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 3–12.
ACM/Springer, 1994.

D. Lewis and M. Ringuette. A comparison of two learning algorithms for text categorization. In
Proceedings of the Symposium on Document Analysis and Information Retrieval, pages 81–93,
1994.

T. Li, M. Ogihara, and Q. Li. A comparative study on content-based music genre classification.
In Proceedings of the ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 282–289. ACM Press, 2003.

Y. Li, H. Lin, and Z. Yang. Two approaches for biomedical text classification. In Proceedings
of the International Conference Bioinformatics and Biomedical Engineering (ICBBE), pages
310–313. IEEE Press, 2007.

M. Light, X.Y. Qiu, and P. Srinivasan. The language of bioscience: Facts, speculations, and
statements in between. In Proceedings of the ISMB BioLINK, pages 17–24. ACM Press, 2004.

M. Lindenbaum, S. Markovitch, and D. Rusakov. Selective sampling for nearest neighbor classi-
fiers. Machine Learning, 54(2):125–152, 2004.

D.C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization
methods. Mathematical Programming, 45:503–528, 1989.

Y. Liu. Active learning with support vector machine applied to gene expression data for cancer
classification. Journal of Chemical Information and Computer Sciences, 44:1936–1941, 2004.

R. Lomasky, C.E. Brodley, M. Aernecke, D. Walt, and M. Friedl. Active class selection. In Pro-
ceedings of the European Conference on Machine Learning (ECML), pages 640–647. Springer,
2007.

D. MacKay. Information-based objective functions for active data selection. Neural Computation,
4(4):590–604, 1992.

A. Madkour, K. Darwish, H. Hassan, A. Hassan, and O. Emam. BioNoculars: Extracting protein-
protein interatctions from biomedical text. In BioNLP 2007: Biological, translational, and
clinical language processing, pages 89–96. ACM Press, 2007.

O. Mangasarian, W.N. Street, and W. Wolberg. Breast cancer diagnosis and prognosis via linear
programming. Operations Research, 43(4):570–577, 1995.

119

G. Mann and A. McCallum. Simple, robust, scalable semi-supervized learning via expectation
regularization. In Proceedings of the International Conference on Machine Learning (ICML),
pages 593–600. ACM Press, 2007a.

G. Mann and A. McCallum. Efficient computation of entropy gradient for semi-supervised con-
ditional random fields. In Proceedings of the North American Association for Computational
Linguistics (NAACL), pages 109–112. ACL Press, 2007b.

C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT
Press, 1999.

D. Margineantu. Active cost-sensitive learning. In Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI), pages 1622–1623. AAAI Press, 2005.

O. Maron and T. Lozano-Perez. A framework for multiple-instance learning. In Advances in
Neural Information Processing Systems (NIPS), volume 10, pages 570–576. MIT Press, 1998.

A. McCallum and K. Nigam. A comparison of event models for naive bayes text classification. In
Proceedings of the AAAI Workshop on Learning for Text Categorization, pages 41–48, 1998a.

A. McCallum and K. Nigam. Employing EM in pool-based active learning for text classification.
In Proceedings of the International Conference on Machine Learning (ICML), pages 359–367.
Morgan Kaufmann, 1998b.

P. Melville and R. Mooney. Diverse ensembles for active learning. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), pages 584–591. Morgan Kaufmann, 2004.

P. Melville, M. Saar-Tsechansky, F. Provost, and R. Mooney. Active feature-value acquisition for
classifier induction. In Proceedings of the IEEE Conference on Data Mining (ICDM), pages
483–486. IEEE Press, 2004.

L. Mihalkova and R. Mooney. Using active relocation to aid reinforcement learning. In Proc-
cedings of the Florida Artificial Intelligence Research Society (FLAIRS), pages 580–585. AAAI
Press, 2006.

S. Mika and B. Rost. Protein names precisely peeled off free text. Bioinformatics, 20(suppl 1):
I241–I247, 2004.

T. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.

T. Mitchell. Machine Learning. McGraw-Hill, 1997.

R. Moskovitch, N. Nissim, D. Stopel, C. Feher, R. Englert, and Y. Elovici. Improving the detection
of unknown computer worms activity using active learning. In Proceedings of the German
Conference on AI, pages 489–493. Springer, 2007.

120

I. Muslea, S. Minton, and C.A. Knoblock. Selective sampling with redundant views. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI), pages 621–626. AAAI Press,
2000.

H.T. Nguyen and A. Smeulders. Active learning using pre-clustering. In Proceedings of the
International Conference on Machine Learning (ICML), pages 79–86. ACM Press, 2004.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.

M. Nyffenegger, J.C. Chappelier, and E. Gaussier. Revisiting Fisher kernels for document similari-
ties. In Proceedings of the European Conference on Machine Learning (ECML), pages 727–734.
Springer, 2006.

G. Paass and J. Kindermann. Bayesian query construction for neural network models. In Advances
in Neural Information Processing Systems (NIPS), volume 7, pages 443–450. MIT Press, 1995.

F. Peng and A. McCallum. Accurate information extraction from research papers using condi-
tional random fields. In Proceedings of Human Language Technology and the North American
Association for Computational Linguistics (HLT-NAACL), pages 329–336. ACL Press, 2004.

F. Provost, T. Fawcett, and R. Kohavi. Building the case against accuracy estimation for comparing
induction algorithms. In Proceedings of the International Conference on Machine Learning
(ICML), pages 445–453. Morgan Kaufmann, 1998.

L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

H. Raghavan, O. Madani, and R. Jones. Active learning with feedback on both features and in-
stances. Journal of Machine Learning Research, 7:1655–1686, 2006.

R. Rahmani and S.A. Goldman. MISSL: Multiple-instance semi-supervised learning. In Proceed-
ings of the International Conference on Machine Learning (ICML), pages 705–712. ACM Press,
2006.

L.A. Ramshaw and M.P. Marcus. Text chunking using transformation-based learning. In Proceed-
ings of the ACL Workshop on Very Large Corpora, 1995.

S. Ray and M. Craven. Supervised versus multiple instance learning: An empirical comparison.
In Proceedings of the International Conference on Machine Learning (ICML), pages 697–704.
ACM Press, 2005.

N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error
reduction. In Proceedings of the International Conference on Machine Learning (ICML), pages
441–448. Morgan Kaufmann, 2001.

121

E.F.T.K. Sang and F. DeMeulder. Introduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings of the Conference on Natural Language
Learning (CoNLL), pages 142–147, 2003.

T. Scheffer, C. Decomain, and S. Wrobel. Active hidden Markov models for information extrac-
tion. In Proceedings of the International Conference on Advances in Intelligent Data Analysis
(CAIDA), pages 309–318. Springer-Verlag, 2001.

A.I. Schein and L.H. Ungar. Active learning for logistic regression: An evaluation. Machine
Learning, 68(3):235–265, 2007.

M. Schena, D. Shalong, R. Davis, and P.O. Brown. Quantitaive monitoring of gene expression
patterns with a complimentary DNA microarray. Science, 270:467–470, 1995.

M.J. Schervish. Theory of Statistics. Springer, 1995.

R. Schwartz and Y.-L. Chow. The N -best algorithm: an efficient and exact procedure for finding
the N most likely sentence hypotheses. In Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pages 81–83. IEEE Press, 1990.

B. Settles. ABNER: An open source tool for automatically tagging genes, proteins, and other entity
names in text. Bioinformatics, 21(14):3191–3192, 2005.

B. Settles. Biomedical named entity recognition using conditional random fields and rich feature
sets. In Proceedings of the International Joint Workshop on Natural Language Processing in
Biomedicine and its Applications (NLPBA), pages 104–107, 2004.

B. Settles and M. Craven. An analysis of active learning strategies for sequence labeling tasks.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1069–1078. ACL Press, 2008.

B. Settles and M. Craven. Exploiting zone information, syntactic features, and informative terms
in gene ontology annotation from biomedical documents. In Proceedings of the Text Retrieval
Conference (TREC), 2005.

B. Settles, M. Craven, and L. Friedland. Active learning with real annotation costs. In Proceedings
of the NIPS Workshop on Cost-Sensitive Learning, pages 1–10, 2008a.

B. Settles, M. Craven, and S. Ray. Multiple-instance active learning. In Advances in Neural
Information Processing Systems (NIPS), volume 20, pages 1289–1296. MIT Press, 2008b.

H.S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the ACM
Workshop on Computational Learning Theory, pages 287–294, 1992.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of Human
Language Technology and the North American Association for Computational Linguistics (HLT-
NAACL), pages 213–220. ACL Press, 2003.

122

C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:
379–423,623–656, 1948.

L. Smith, L.K. Tanabe, R.J. Ando, C.J. Kuo, I.F. Chung, C.N. Hsu, Y.S. Lin, R. Klinger, C.M.
Friedrich, K. Ganchev, M. Torii, H. Liu, B. Haddow, C.A. Struble, R.J. Povinelli, A. Vlachos,
W.A. Baumgartner Jr, L. Hunter, B. Carpenter, R.T. Tsai, H.J. Dai, F. Liu, Y. Chen, C. Sun,
S. Katrenko, P. Adriaans, C. Blaschke, R. Torres, M. Neves, P. Nakov, A. Divoli, M.M. López,
J. Mata, and W.J. Wilbur. Overview of BioCreative II gene mention recognition. Genome
Biology, 9(Suppl 2):S2, 2008.

A.J. Smola and B. Schölkopf. A tutorial on support vector regression. Technical Report NC2-TR-
1998-030, NueroCOLT2 Technical Report Series, 1998.

R. Snow, B. O’Connor, D. Jurafsky, and A. Ng. Cheap and fast—but is it good? In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 254–
263. ACM Press, 2008.

E.S. Soteriades and M.E. Falagas. Comparison of amount of biomedical research originating from
th euriopean union and the united states. British Medical Journal, 331:192–194, 2005.

C. Sutton and A. McCallum. An introduction to conditional random fields for relational learning.
In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational Learning. MIT Press,
2006.

R. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Q. Tao, S.D. Scott, and N.V. Vinodchandran. SVM-based generalized multiple-instance learning
via approximate box counting. In Proceedings of the International Conference on Machine
Learning (ICML), pages 779–806. Morgan Kaufmann, 2004.

L. Tari, G. Gonzalez, R. Leaman, S. Nikkila, R. Wendt, and C. Baral. ASU at TREC 2006 genomics
track. In Proceedings of the Text Retrieval Conference (TREC), 2007.

C.A. Thompson, M.E. Califf, and R.J. Mooney. Active learning for natural language parsing and
information extraction. In Proceedings of the International Conference on Machine Learning
(ICML), pages 406–414. Morgan Kaufmann, 1999.

S. Tong and E. Chang. Support vector machine active learning for image retrieval. In Proceedings
of the ACM International Conference on Multimedia, pages 107–118. ACM Press, 2001.

S. Tong and D. Koller. Support vector machine active learning with applications to text classi-
fication. In Proceedings of the International Conference on Machine Learning (ICML), pages
999–1006. Morgan Kaufmann, 2000.

L. Torrey and J. Shavlik. Transfer learning. In E. Soria, J. Martin, R. Magdalena, M. Martinez,
and A. Serrano, editors, Handbook of Research on Machine Learning Applications. To appear,
2009.

123

G. Tur, D. Hakkani-Tür, and R.E. Schapire. Combining active and semi-supervised learning for
spoken language understanding. Speech Communication, 45(2):171–186, 2005.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M.N. Clark, J. Dolan, D. Duggins,
T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T.M. Howard, S. Kolski, A. Kelly,
M. Likhachev, M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski,
B. Salesky, Y.W. Seo, S. Singh, J. Snider, A. Stentz, W. Whittaker, Z. Wolkowicki, J. Ziglar,
H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble,
M. Taylor, M. Darms, and D. Ferguson. Autonomous driving in urban environments: Boss and
the urban challenge. Journal of Field Robotics, 25(8):425–466, 2008.

L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

V.N. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and Its Applications, 16:264–280, 1971.

S. Vijayanarasimhan and K. Grauman. Multi-level active prediction of useful image annotations
for recognition. In Advances in Neural Information Processing Systems (NIPS), volume 21. MIT
Press, 2009.

A. Vlachos. Evaluating and combining biomedical named entity recognition systems. In BioNLP
2007: Biological, translational, and clinical language processing, pages 199–206, 2007.

L. von Ahn and L. Dabbish. General techniques for designing games with a purpose. Communi-
cations of the ACM, 51(8):58–67, 2008.

D.G. Wang, J.B. Fan, C.J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghandour, N. Perkins,
E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie, T. Topaloglou, E. Hubbell, E. Robin-
son, M. Mittmann, M.S. Morris, N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T.J.
Hudson, R. Lipshutz, M. Chee, and E.S. Lander. Large-scale identification, mapping, and geno-
typing of single-nucleotide polymorphisms in the human genome. Science, 280(5366):1077–
1082, 1998.

Z. Xu, R. Akella, and Y. Zhang. Incorporating diversity and density in active learning for relevance
feedback. In Proceedings of the European Conference on IR Research (ECIR), pages 246–257.
Springer-Verlag, 2007.

R. Yan, J. Yang, and A. Hauptmann. Automatically labeling video data using multi-class active
learning. In Proceedings of the International Conference on Computer Vision, pages 516–523.
IEEE Press, 2003.

Z. Yang, H. Lin, Y. Li, B Liu, and Y. Lu. TREC 2005 genomics track experiments at DUTAI. In
Proceedings of the Text Retrieval Conference (TREC), 2006.

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In Proceed-
ings of the Association for Computational Linguistics (ACL), pages 189–196. ACL Press, 1995.

124

A. Yeh, A. Morgan, M. Colosimo, and L. Hirschman. Biocreative task 1a: gene mention finding
evaluation. BMC Bioinformatics, 6(Suppl 1):S2, 2005.

H. Yu. SVM selective sampling for ranking with application to data retrieval. In Proceedings of
the International Conference on Knowledge Discovery and Data Mining (KDD), pages 354–
363. ACM Press, 2005.

L. Yu, S.T. Ahmed, G. Gonzalez, B. Logsdon, M. Nakamura, S. Nikkila, K. Shah, L. Tari,
R. Wendt, A. Ziegler, and C Baral. Genomic information retrieval through selective extrac-
tion and tagging by the ASU-BoiAI group. In Proceedings of the Text Retrieval Conference
(TREC), 2006.

C. Zhang and T. Chen. An active learning framework for content based information retrieval. IEEE
Transactions on Multimedia, 4(2):260–268, 2002.

T. Zhang and F.J. Oles. A probability analysis on the value of unlabeled data for classification
problems. In Proceedings of the International Conference on Machine Learning (ICML), pages
1191–1198. Morgan Kaufmann, 2000.

Z. Zheng and B. Padmanabhan. On active learning for data acquisition. In Proceedings of the
IEEE Conference on Data Mining (ICDM), pages 562–569. IEEE Press, 2002.

G. Zhou and J. Su. Exploring deep knowledge resources in biomedical name recognition. In Pro-
ceedings of the International Joint Workshop on Natural Language Processing in Biomedicine
and its Applications (NLPBA), pages 96–99, 2004.

G.D. Zhou, J. Zhang, J. Su, D. Shen, and C.L. Tan. Recognizing names in biomedical texts: A
machine learning approach. Bioinformatics, 20(7):1178–1190, 2004a.

Z.H. Zhou, K.J. Chen, and Y. Jiang. Exploiting unlabeled data in content-based image retrieval.
In Proceedings of the European Conference on Machine Learning (ECML), pages 425–435.
Springer, 2004b.

X. Zhu. Semi-Supervised Learning with Graphs. PhD thesis, Carnegie Mellon University, 2005a.

X. Zhu. Semi-supervised learning literature survey. Computer Sciences Technical Report 1530,
University of Wisconsin–Madison, 2005b.

X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning
using Gaussian fields and harmonic functions. In Proceedings of the ICML Workshop on the
Continuum from Labeled to Unlabeled Data, pages 58–65, 2003.

125

APPENDIX
Implementation Notes

This appendix provides additional details on the implementation of the learning algorithms dis-
cussed in this thesis. Logistic regression, maximum entropy (MaxEnt) models, conditional random
fields (CRFs), and MI logistic regression (MILR) are all machine learning models in the exponen-
tial family. In all experiments, they are trained by maximizing log-likelihood `(L; θ) via gradient
optimization, using the quasi-Newton method L-BFGS (Liu and Nocedal, 1989). Additionally, I
use σ = 1 in the regularization term during training for all models.

CRFs, MaxEnt Models, and Naı̈ve Bayes

The implementations for CRFs (Chapters 3, 4, 6, and 8), MaxEnt models (Chapters 4, 6, and 8),
and naı̈ve Bayes (Chapter 8) used for experiments in this thesis come from a modified version
of MALLET1 (Machine Learning for Language Toolkit). This is an open-source library of Java
code for various natural language tasks, which I have customized by implementing the necessary
methods for active learning strategies and passage-level classification and learning functions.

Logistic Regression and MILR

The implementations of simple logistic regression (Chapter 2) and MILR (Chapter 5) discussed
in this thesis use AMIL2 (Active Multiple-Instance Library). This is an open-source library of
Java code that I have written and released for multiple-instance learning, and MI active learning
in particular. This library was used for the Diverse Density (DD) results reported in Table A.1
as well. For simple binary logistic regression experiments, MILR was employed with data in a
multiple-instance representation, but using only one instance per bag.

Although the logarithm in the log-likelihood objective function ` alleviates most floating-point
machine precision errors, the instance-level or bag-level output probabilities for MILR and other
Diverse Density models can still occasionally be zero or one. This means that we are sometimes
faced with computing the log or inverse of zero. Following Maron and Lozano-Perez (1998), my
implementation smooths 0 ≡ 10−7 in such cases.

1http://mallet.cs.umass.edu/
2http://pages.cs.wisc.edu/~bsettles/amil/

http://mallet.cs.umass.edu/
http://pages.cs.wisc.edu/~bsettles/amil/

126

MILR Gradient Calculations
Here I discuss how to compute the gradient ∇` for training MILR, and for use with the “ex-

pected gradient length” family of query selection strategies. As stated in Section 5.3.1, the training
gradient ∇`(L; θ) = [∂`

∂θ0
, . . . , ∂`

∂θK
] is a vector whose components are the partial derivatives of the

log-likelihood objective function ` from Equation 2.5 with respect to each model parameter θk.
Using the chain rule, each partial derivative can be expressed as:

∂`

∂θk
=

L∑
l=1

∂`

∂o(l)

N∑
n=1

(
∂o(l)

∂on

∂on
∂θk

)
− θk
σ2
,

where o(l) is the output probability for the bag X (l) under the current model, N is the number
of instances in that bag, and on is the respective output probability for each instance xn ∈ X (l).
Hereafter, I drop the explicit (l) superscript to simplify the notation. The first term ∂`

∂o
is the

derivative of the composite log-likelihood (2.5), which yields:

∂`

∂o
=

o− y
o2 − o

=

{
o−1 if y = 1 (the bag is positive), and

(o− 1)−1 if y = 0 (the bag is negative).

The next term ∂o
∂on

is the derivative of the softmax combining function (2.4). This is also used as
the relevance-weighting term in the MIU query strategy (5.2), computed as follows:

∂o

∂on
=

(1 + α on − α o) exp(α on)∑N
i=1 exp(α oi)

.

The final term ∂on

∂θk
is the derivative of the instance-level logistic function (2.3), given by:

∂on
∂θk

= on(1− on)fk(xn).

Comparison of MI Learning Algorithms
Table A.1 presents a detailed empirical comparison of three MI learning algorithms on all of

the data sets described in Secion 5.4. MILR` is the formulation of MI logistic regression used
in the experiments from Section 5.5, optimizing the regularized log-likelihood objective function
(whose gradient calculations are given above). MILRS is the squared-loss formulation previously
considered in the literature (Settles et al., 2008b; Ray and Craven, 2005). DD refers to the origi-
nal Diverse Density algorithm formulation, which uses a Gaussian instance model with a noisy-or
combining function (Maron and Lozano-Perez, 1998). The results are averaged over 20 indepen-
dent runs, each using 20 bags (ten positive, ten negative) for training and the rest for evaluation.
Because MILRS and DD are more prone to becoming stuck in local optima, I report results for the
model that best fits the training data after ten random restarts. Note that MILR` is at an implicit
disadvantage, because its results are using only a single model (no restarts), yet it performs best on
over half the tasks and requires significantly less time to train.

127

Table A.1: Comparison of three MI learning algorithms: MILR` (MI logistic regression trained
using a regularized log-likelihood objective function), MILRS (trained using squared
loss), and DD (Diverse Density). AUROC scores are shown for each algorithm for
each task, with the best algorithm indicated in bold.

TASK MILR` MILRS DD TASK MILR` MILRS DD

zero 0.976 0.476 0.651 musk1 0.646 0.536 0.624
one 0.730 0.492 0.630 musk2 0.619 0.474 0.563
two 0.904 0.497 0.639
three 0.762 0.496 0.635 trx 0.618 0.581 0.667
four 0.890 0.486 0.646
five 0.811 0.487 0.632 tst1 0.922 0.941 0.693
six 0.897 0.485 0.637 tst2 0.652 0.728 0.612
seven 0.790 0.488 0.641 tst3 0.755 0.826 0.564
eight 0.551 0.489 0.632 tst4 0.771 0.851 0.638
nine 0.676 0.488 0.627 tst7 0.750 0.796 0.661

tst9 0.626 0.664 0.605
ajaxorange 0.653 0.559 0.573 tst10 0.786 0.820 0.645
apple 0.416 0.370 0.413
banana 0.534 0.419 0.447 alt.atheism 0.537 0.551 0.522
bluescrunge 0.616 0.350 0.321 comp.graphics 0.556 0.560 0.582
candlewithholder 0.664 0.692 0.486 comp.os.ms-windows 0.576 0.644 0.493
cardboardbox 0.452 0.409 0.494 comp.sys.ibm.pc.hardware 0.576 0.636 0.467
checkeredscarf 0.799 0.835 0.668 comp.sys.mac.hardware 0.482 0.535 0.567
cokecan 0.799 0.742 0.555 comp.windows.x 0.562 0.590 0.535
dataminingbook 0.504 0.430 0.485 misc.forsale 0.554 0.650 0.544
dirtyrunningshoe 0.724 0.773 0.594 rec.autos 0.546 0.691 0.565
dirtyworkgloves 0.617 0.488 0.476 rec.motorcycles 0.554 0.496 0.529
fabricsoftenerbox 0.680 0.482 0.588 rec.sport.baseball 0.553 0.567 0.542
feltflowerrug 0.787 0.783 0.586 rec.sport.hockey 0.634 0.634 0.459
glazedwoodpot 0.454 0.420 0.452 sci.crypt 0.671 0.560 0.532
goldmedal 0.690 0.481 0.479 sci.electronics 0.421 0.516 0.436
greenteabox 0.762 0.523 0.629 sci.med 0.531 0.568 0.568
juliespot 0.647 0.457 0.522 sci.space 0.592 0.579 0.547
largespoon 0.391 0.396 0.383 soc.religion.christian 0.686 0.688 0.474
rapbook 0.438 0.433 0.491 talk.politics.guns 0.544 0.626 0.512
smileyfacedoll 0.737 0.620 0.458 talk.politics.mideast 0.723 0.657 0.494
spritecan 0.758 0.715 0.526 talk.politics.misc 0.568 0.594 0.503
stripednotebook 0.493 0.446 0.501 talk.religion.misc 0.647 0.601 0.574
translucentbowl 0.749 0.492 0.475
wd40can 0.773 0.684 0.550
woodrollingpin 0.444 0.418 0.377

128

Index

F1 measure, 14

ABNER, 98
accuracy, 14
active learning, 2, 80
area under the ROC curve (AUROC), 14

batch-mode active learning, 37, 92

CKB news corpus, 67
classification, 1, 2, 34
conditional random fields (CRFs), 10, 125
correlation coefficient, 75
cost-sensitive active learning, 65, 92
cross-validation, 15

discriminative models, 7
Diverse Density, 63, 125
document segmentation, 26

entropy, 21
estimated error reduction, 88
expected gradient length (EGL), 23, 46, 85

Fisher information, 24, 87

generative models, 7

information density, 25, 33, 89
information extraction (IE), 2, 9, 26, 97

Kullback-Leibler (KL) divergence, 22, 33

learning curves, 17
logistic regression, 6, 125

maximum entropy (MaxEnt) models, 6, 125
membership queries, 81
MI logistic regression (MILR), 12, 125

multiple-instance (MI) learning, 11, 42

objective function, 6

pool-based active learning, 15, 82
precision, 14

query-by-committee (QBC), 22, 84

recall, 14
regression, 1, 75, 86
relative absolute error, 75

selective sampling, 81
sequence labeling, 9, 34, 91
similarity functions, 33
SIVAL image repository, 68
stemming, 8
stop-word filtering, 8
structured outputs, 91
supervised learning, 5
support vector regression, 75

uncertainty sampling, 16, 21, 46, 83

variance reduction, 86

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	 Introduction
	 Background
	 Active Learning for Sequence Labeling
	 More on the Information Density Algorithm
	 Multiple-Instance Active Learning
	 Accounting for Real-World Annotation Costs
	 Active Learning Literature Survey
	 Additional Work in Biomedical Natural Language Processing
	 Conclusion
	Bibliography
	 Implementation Notes

