
These shortcomings of PSSMs set the stage for a new kind of profile, 
based on Markov chains, called Hidden Markov models (HMMs)

‣ modeling positional dependencies
‣ recognizing pattern instances with indels
‣ modeling variable length patterns
‣ detecting boundaries



Markov chains

Markov chains are stochastic processes that undergo transitions between a 
finite series of states in a chainlike manner.

The system transverses states with probability  
         p(x1, x2, x3, ...) = p(x1) p(x2| x1) p(x3| x2) p(x4| x3)...

• i.e. Markov chains are memoryless: the probability that the chain is in state xi 
at time t, depends only on the state at the previous time step and not on the 
past history of the states visited before time t−1. 

• This specific kind of "memorylessness" is called the Markov property.

The Markov property states that the conditional probability distribution 
for the system at the next step (and in fact at all future steps) depends 
only on the current state of the system, and not additionally on the state 
of the system at previous steps.

x1 x2 x3 x4 x5



Markov chains...

Markov chains, and their extension hidden Markov models (HMMs), are commonly 
represented by state diagrams, which consist of states and connecting transitions

A transition probability parameter (aij) is associated with each transition (arrow) and 
determines the probability of a certain state (Sj) following another state (Si).

A T

C G

•E.g., A general Markov chain modeling DNA. 
Note that any sequence can be traced 
through the model by passing from one state 
to the next via the transitions.

A Markov chain is defined by:
• a finite set of states, S1, S2 ...SN
• a set of transition probabilities: aij = P(qt+1=Sj|qt=Si)
• and an initial state probability distribution, πi = P(q0=Si)



Simple Markov chain example for x={a,b}

Observed sequence: x = abaaababbaa

Model:

P(x) = 0.5 x 0.3 x 0.5 x 0.7 x 0.7 x 0.3 x 0.5 x 0.3 x 0.5 x 0.5 x 0.7

SStart 
probs

     a!0.5
     b!0.5πi

Prev! Next! Prob

  a!   a! 0.7

  a!   b! 0.3

  b!   a! 0.5

  b!   b! 0.5

aiji j
transition 
probabilities

initial state 
probability 
distribution

Q. Can you sketch the state diagram with labeled transitions for this model?



Typical questions we can ask with Markov chains include:
• What is the probability of being in a particular state at a particular time?

(By time here we can read position in our query sequence)

• What is the probability of seeing a particular sequence of states?
(I.e., the score for a particular query sequence given the model)

Q. What do Markov chains add over the traditional PSSM approach?
In particular how do Markov chains deal with the following PSSM weaknesses?

1.  Positional dependencies
2.  Pattern instances containing insertions or deletions
3.  Variable length patterns, and
4.  The detection boundaries (i.e. segmentation of sequences)



Markov chains:  1. Positional dependencies

The connectivity or topology of a Markov chain can easily be designed to capture 
dependencies and variable length motifs.

WEIRD
WEIRD
WEIQH
WEIRD
WEIQH

Recall that a PSSM for this motif would give the sequences WEIRD and WEIRH 
equally good scores even though the RH and QR combinations were not observed

M1 M2 M3

M’4 M’5

M4 M5

M6Mo

Start End



Markov chains:  2. Insertions and deletions

To address pattern instances with gaps and variable length motifs, we can 
construct a Markov chain to recognize a query sequences with insertions (via an 
extra insertion state) and deletions (via extra transitions (edges)) 

WETIRD
WE-IRD
WETIQH
WE-IRD
WE--QH

M1 M2 M3 M4 M5 M6Mo

Start End

I2  insertion state

deletions

 insertion state



Markov chains:  3. Boundary detection

Giving a sequence we wish to label each symbol in the sequence according to its 
class (e.g. transmembrane regions or extracellular/cytosolic)

Membrane
(hydrophobic)

Extracellular

Cytosol

Given a training set of labeled sequences we can begin by modeling each amino 
acid as hydrophobic (H) or hydrophilic (L) 
i.e. reduce the dimensionality of the 20 amino acids into two classes

E.g., A peptide sequence can be represented as a sequence of Hs and Ls.
e.g. HHHLLHLHHLHL...

tend to be hydrophobic in composition



Markov chains: boundary detection...

A simpler question: is a given sequence a transmembrane sequence?

A Markov chain for recognizing transmembrane sequences

• States: SH, SL 
• Σ={H,L}
• π(H) = 0.6, π(L) = 0.4

H L 0.30.7

0.7

0.3

P(HHLHH) = 0.6 x 0.7 x 0.7 x 0.3 x 0.7 x 0.7 = 0.043

Question: Is sequence HHLHH a transmembrane protein?

Problem: need a threshold,
threshold must be length dependent



Markov chains: boundary detection

We can classify an observed sequence (O = O1, O2, ...) by its log odds ratio

H L 0.30.7

0.7

0.3

In other words, it is more than twice as likely that HHLHH is a 
transmembrane sequence. The log-odds score is: log2(2.69) = 1.43

H L 0.50.5

0.5

0.5

transmembrane model null model

• π(H) = 0.6, π(L) = 0.4 • π(H) = 0.5, π(L) = 0.5

P(HHLHH | TM)     0.6 x 0.7 x 0.7 x 0.3 x 0.7 x 0.7     0.043
P(HHLHH | EC)     0.5 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5     0.016

= 2.69==

Extracellular/cytosolic (E/C)Transmembrane (TM)



Side note: Parameter estimation

Both initial probabilities (π(i))and transition probabilities (aij) are determined from 
known examples of transmembrane and non-transmembrane sequences. 

• initial probabilities π(H), π(L)
H L 0.30.7

0.7

0.3

aij =
Aij
Aij 'j '∑

• transition probabilities: aHH, aHL, aLH and aLL.

Given labeled sequences (TM and E/C), we determine the initial probabilities π(i) by 
counting the number of sequences that begin with residue i. 

To determine transition probabilities, aij, we first determine 
Aij (the number of transitions from state i to j in the training 
data, i.e. count the number of ij pairs in the training data). 
Then normalize by the number of i* pairs. 



Side note: Parameter estimation...

Both initial probabilities (π(i))and transition probabilities (aij) are determined from 
known examples of transmembrane and non-transmembrane sequences. 

H L 0.30.7

0.7

0.3

HHHLLHHHLLLHLHLLHLLLHLHHHL  
HHHLHHLHLLLLLHHHHLLLHHHHHL
HH... (AHL = 12,  AH* = 40)

aHL =
AHL

AHi
i
∑

    #HL pairs  . 

# H* pairs

• π(H) = 0.6, π(L) = 0.4

     12    . 

40

π(H) = # of sequences that begin with H,
normalized by the total # of training 
sequences



Boundary detection challenge

Given sequence of Hs and Ls, find all transmembrane regions:
• Using our Markov models we would still need to score successive overlapping 

windows along the sequence, leading to a fuzzy boundary (just as with a 
PSSM).

To approach this question we can construct a new four state model by adding 
transitions connecting the TM and E/C models

HM LM 0.20.6
0.6

0.4
HE/C LE/C0.4 0.4

0.4

0.2
0.10.1 0.1 0.1

Transitions between the M states and 
the E/C states indicate boundaries 
between membrane regions and 
cytosolic or extracellular regions.

However this is no longer a standard 
Markov chain! 



Boundary detection challenge...

In a Markov chain, there is a one-to-one correspondence between symbols and 
states, which is not true of our new merged four state, two symbol model. 

For example, both HM and HE/C are associated with hydrophilic residues. 
• - This four-state transmembrane model is a hidden Markov model.

HM LM 0.20.6
0.6

0.4
HE/C LE/C0.4 0.4

0.4

0.2
0.10.1 0.1 0.1



So whats hidden?

We will distinguish between the observed parts of the problem and the hidden 
parts
• In the Markov models we have considered previously it is clear which states 

account for each part of the observed sequence
• Due to the one-to-one correspondence between symbols and states

• In our new model, there are multiple states that could account for each part of 
the observed sequence

• i.e. we don’t know which state emitted a given symbol from knowledge of the 
sequence and the structure of the model

‣ This is the hidden part of the problem 

HM LM 0.20.6
0.6

0.4
HE/C LE/C0.4 0.4

0.4

0.2
0.10.1 0.1 0.1



For our Markov models 
• Given HLLH..., we know the exact state sequence (q0=SH, q1=SL, q2=SL, ...)

For our HMM
• Given HLLH..., we must infer the most probable state sequence
• This HMM state sequence will yield the boundaries between likely TM and E/C 

regions 

HM LM 0.20.6
0.6

0.4
HE/C LE/C0.4 0.4

0.4

0.2
0.10.1 0.1 0.1

HM, LM, LM, HM
HM, LM, LM, HE/C
HM, LM, LH/C, HM
HM, LM, LH/C, HE/C
HM, LE/C, LM, HM
HM, LE/C, LM, HE/C
HM, LE/C, LH/C, HM,
HM, LE/C, LH/C, HE/C,
HE/C, LM, LM, HM
HE/C, LM, LM, HE/C
HE/C, LM, LH/C, HM
HE/C, LM, LH/C, HE/C
HE/C, LE/C, LM, HM
HE/C, LE/C, LM, HE/C
HE/C, LE/C, LH/CM, HM
HE/C, LE/C, LH/CM, HE/C



Side note: HMM states as sequence emitters

It’s useful to imagine HMM states emitting symbols each time they are visited

In this way, transversing the model will “generate” a sequence with a certain 
probability (i.e. “score”). 

This probability is a product of the state path taken through the model 
That is, it depends on initial probabilities, transition probabilities and emission 
probabilities (the probability that a visited state emits a particular symbol) 
along the path

There may be many possible paths that can generate the same sequence 

An HMM is a full probabilistic model – the model parameters θ and the overall 
sequence “scores” P(x, S | HMM, θ) are all probabilities. As a result, we can use 
standard Bayesian probability theory to manipulate these numbers in powerful 
ways, including optimizing parameters, calculating confidence in predictions, and 
interpreting the statistical significance of scores.

The probability that residue i was emitted by state k is the sum of the 
probabilities of all the state paths that use state k to generate residue i 
(that is, i = k in the state path ), normalized by the sum over all possible 
state paths.



Hidden Markov models (HMMs)

Markov Chains
• States: S1, S2 ...SN

• Initial probabilities: πi

• Transition probabilities: aij

Hidden Markov Models
• States: S1, S2 ...SN

• Initial probabilities: πi

• Transition probabilities: aij

• Alphabet of emitted symbols, ∑
• Emission probabilities: ei(a)  

probability state i emits symbol a

One-to-one correspondence 
between states and symbols

Symbol may be emitted by more 
than one state

Similarly, a state can emit more 
than one symbol



Example three state HMM

In this example we will use only one state for the transmembrane segment (M) and 
use emission probabilities to distinguish between H and L residues. We will also 
add separate E & C states with distinct emission probabilities.

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

0.7 0.3 0

0.25 0.5 0.25

0 0.3 0.7

aij = 



Side note: Parameter estimation

As in the case of Markov chains, the HMM parameters can be learned from 
labeled training data 

Note that we now have to learn the initial probabilities, transition probabilities and 
emission probabilities 

aij =
Aij
Aij 'j '∑

ei (x) =
Ei (x)
Ei (x ')x

'∑

E M C

πi 0 0 1

ei(H) 0.2 0.9 0.3

ei(L) 0.8 0.1 0.7

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3



H H L L H

E

M

C

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

π(E) = 0 
π(M) = 0 
π(C) = 1



H H L L H

E 0x0.2
=0

M 0x0.9
=0

C 1x0.3
=0.3

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

π(E) = 0 
π(M) = 0 
π(C) = 1



H H L L H

E 0x0.2
=0

M 0x0.9
=0

C 1x0.3
=0.3

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

π(E) = 0 
π(M) = 0 
π(C) = 1



H H L L H

E 0x0.2
=0

-

M 0x0.9
=0

0.3x0.9x0.3
=0.081

C 1x0.3
=0.3

0.7x0.3x0.3
=0.063

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7



H H L L H

E 0x0.2
=0

-

M 0x0.9
=0

0.3x0.9x0.3
=0.081

C 1x0.3
=0.3

0.7x0.3x0.3
=0.063

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

-

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

-

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

0.7x0.2x0.009
=0.001

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

0.3x0.9x0.009
=0.002

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

- -

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

0.7x0.2x0.009
=0.001

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

0.3x0.9x0.009
=0.002

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

- -

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
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=0.001
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0.3x0.9x0.3
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0.25x0.7x0.081
=0.014

- -

START C

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

START



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
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0.25x0.7x0.081
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START C M
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E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
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ei
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L   0.8
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H   0.3
L   0.7



H H L L H
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START C M E
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0.3

C 0.7
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0.3
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L   0.8
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H   0.3
L   0.7



H H L L H
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H H L L H
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H H L L H
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H   0.3
L   0.7

Most Probable State Sequence



We have just used the Viterbi algorithm

The Viterbi algorithm finds the most probable “state path” (S*)  (i.e. sequence of 
hidden states) for generating a given sequence (x= x1, x2,...xN)

S* = argmax P(x,S)

This process is often called decoding because we “decode” the sequence of 
symbols to determine the hidden sequence of states
HMMs were original developed in the field of speech recognition, where speech is 
“decoded” into words or phonemes to determine the meaning of the utterance

Note that we could have used brute force by calculating P(x|S) for all paths but this 
quickly becomes intractable for longer sequences or HMMs with a large number of 
states

The Viterbi algorithm is guaranteed to find the most 
probable state path given a sequence and an HMM

See Durbin et al. Biological Sequence Analysis



Three key HMM algorithms

• Viterbi algorithm 
• Given observed sequence x and an HMM M, composed of states S, calculate 

the most likely state sequence, S*

‣ S* = argmax P(x,S)

• Forward algorithm  
• Given observed sequence x and an HMM composed of states S, calculate the 

probability of the sequence for the HMM,  P(x|M)

‣ F

• Baum-Welch algorithm
• Given many observed sequences, estimate the parameters of the HMM

‣ heuristic expectation maximization method to optimize of aij and ei(a) 

P(x) = P(x,S)
S
∑



The forward algorithm

Another important question is how well does a given sequence fit the HMM?

To answer this question we must sum over all possible state paths that are 
consistent with the sequence in question
(Because we don't know which path emitted the sequence)

The number of paths can quickly become intractable. The forward algorithm is a 
simple dynamic programing solution that makes use of the Markov property so 
that we don’t have to explicitly enumerate every path. 

The forward algorithm basically replaces the maximization step of the Viterbi 
algorithm with sums to calculate the probability of the sequence given a HMM.

P(x) = P(x,S)
S
∑

See Durbin et al. Biological Sequence Analysis



The Baum-Welch algorithm

The Baum-Welch algorithm is an heuristic optimization algorithm for learning 
probabilistic models in problems that involve hidden states 

If we know the state path for each training sequence (i.e. no hidden states with 
respect to the training sequences), then learning the model parameters is simple 
(just like it was for Markov chain models)
• count how often each transition and emission occurs
• normalize to get probabilities 

If we don’t know the path for each training sequence, we can use the Baum-
Welch algorithm, an expectation maximization method, which estimates counts 
by considering every path weighted by its probability
• start from a given initial guess for the parameters
• perform a calculation which is guaranteed to improve the previous guess
• run until there is little change in parameters between iterations

For sequence profile-HMMs we train from a MSA and hence we can estimate our 
probabilities from the observed sequences 

The HMM constructed will maximize the probability of producing all the 
sequences known to belong to a certain family

the only aspect we must estimate is which columns should be considered 
conserved, and which should be collapsed into an insert state of the 
preceding position.



Segmentation/boundary detection
Given:        A test sequence and a HMM with different sequence classes
Task:          Segment the sequence into subsequences, predicting the class of
                  each subsequence
Question:   What is the most probable “path” (sequence of hidden states) for
                  generating a given sequence from the HMM?
Solution:    Use the Viterbi algorithm

Classification/sequence scoring
Given:        A test sequence and a set of HMMs representing different
                  sequence classes
Task:          Determine which HMM/class best explains the sequence
Question:  How likely is a given sequence given a HMM?
Solution:   Use the Forward algorithm

Learning/parameterization
Given:       A model, a set of training sequences
Task:         Find model parameters that explain the training sequences
Question:  Can we find a high probability model for sequence characterization
Solution:   Use the Forward backward algorithm



Segmentation/boundary detection
Question:   What is the most probable “path” (sequence of hidden states) for
                  generating a given sequence from the HMM?
HMMER:   hmmalign   -  align sequences to our HMM

Classification/sequence scoring
Question:  How likely is a given sequence given a HMM?
HMMER:   hmmsearch  -  find sequences that match our HMM

Learning/parameterisation
Question:  Can we find a high probability model for sequence characterization
HMMER:   hmmbuild  -  setup our HMM parameters



Half time break...
• Questions:
• For what kinds of motifs are PSSMs not well suited?
• What is the Markov property?
• In what important ways do HMMs differ Markov chains?
• What is the Viterbi algorithm used for?
• How does the Forward algorithm differ from the Viterbi algorithm?



In what important ways do HMMs differ Markov chains?
HMMs differ from Markov chains in a number of ways:
• In HMMs, the sequence of states visited is hidden. Unlike Markov Chains, 

there is no longer a one-to-one correspondence between states and 
output symbols. 

• In a HMM the same symbol may be emitted by more than one state. 
• In a HMM a state can emit more than one symbol. 

What is the Markov property?
The Markov property states that the conditional probability distribution for the 
system at the next step (and in fact at all future steps) depends only on the 
current state of the system, and not additionally on the state of the system at 
previous steps.

For what kinds of motifs are PSSMs not well suited?
PSSMs are not well suited to pattern instances containing insertions or 
deletions, variable length patterns and those with positional dependencies.

What is the Viterbi algorithm used for?
The Viterbi algorithm is used to find the most probable state path given a 
sequence and an HMM



HMM network structure is hand tailored to the problem

No algorithm for the prediction of optimal HMM network structure and probabilities 
has yet been able to beat simple hand-built topologies

These topologies are tailored to the problem at hand - exon/intron detection, 
transmembrane regions, secondary structure elements, protein families...

I1

D1

M1 M2 M3 M4

I2 I3 I4

D2 D3 D4

BEGIN END



GenScan - gene-prediction HMM

Here, each circle or square 
represents a functional unit (a state) 
of a gene on its forward strand (for 
example, Einit is the 5' coding 
sequence (CDS) and Eterm is the 3' 
CDS, and the arrows represent the 
transition probability from one state 
to another. The GenScan HMM is 
trained by pre-computing the 
transition probabilities from a set of 
known gene structures.

See: Zhang et al. (2002) Nature 
Reviews Genetics 3, 698-709



TMHMM - transmembrane protein topology prediction
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Each box corresponds to one or 
more states in the HMM. Cyt. 
represents the cytoplasmic side of 
the membrane and non-cyt. the 
other side. (b) The detailed structure 
of the inside and outside loop 
models and helix cap models. (c) 
The structure of the model for the 
helix core modeling lengths between 
5 and 25, which translates to helices 
between 15 and 35 when the caps 
are included.

See: Krogh et al. (2001) JMB 305, 
567-580



SAMTOOLS - SNP calling in NextGen sequencing data

Application of HMMs in the area of 
SNP discovery from NextGen 
sequencing data, to greatly reduce 
false SNP calls caused by 
misalignments around insertions and 
deletions (indels). The central 
concept is per-Base Alignment 
Quality, which accurately measures 
the probability of a read base being 
wrongly aligned.

See: Li et al. (2011) Bioinformatics 
27, 1157–1158
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1 INTRODUCTION
One of the leading sources of errors in SNP discovery is errors
caused by indels (Li and Homer, 2010). Current solutions include
realignment and filtering SNPs around predicted indels. However,
realignment is computationally intensive; filtering SNPs around
predicted indels is hampered by indel discovery which itself is a
harder problem. This article aims to provide an effective and efficient
solution to sorting out SNPs caused by misalignments.

To begin with, we need to make a distinction between read
mapping and read alignment, which are often taken as synonymous.
I define the alignment of a read as the set of coordinate pairs of
read and reference bases that are placed together, while define the
mapping of a read as the coordinate interval between the first and the
last reference bases inclusive in the alignment. We say an alignment
is correct if all bases are aligned correctly and say a mapping is
correct if it overlaps the true mapping. Therefore, an alignment can
be wrong even if the underlying mapping is correct.

Wrong alignments are mostly caused by the ambiguity in the
presence of indels when we are unsure whether differences should
be explained by mismatches or by indels. They tend to reoccur in
the same context and deceive SNP callers into calling false SNPs.

To account for the intrinsic alignment ambiguity, I model the read
alignment with a profile HMM and compute a per-Base Alignment
Quality (BAQ) to directly evaluate the probability of misalignment
of each base. I will show that by replacing the original base quality
with the minimum between the base quality and BAQ we can
dramatically improve the SNP accuracy.

2 METHODS

2.1 The profile HMM for computing BAQ
Let the nucleotide reference sequence be x=r1r2 ...rL (in practice x is the
reference subsequence around a mapping) and the read sequence be y=
c0c1 ...clcl+1 where c0 ≡ ‘ˆ’ marks the start of the read and cl+1 ≡ ‘$’ marks

Fig. 1. The topology of the profile HMM for BAQ computation. It consists
of five types of states: alignment matches (M), insertions to the reference (I),
deletions (D), alignment start (S) and alignment end (E). The S state points
to every M and I state while every M and I points to E. States S and E are
plotted together to avoid excessive dotted lines in the figure.

the end. Let ϵi, i=1...l, be the substitution probability associated with ci,
which in practice is set to be the maximum between the scale mutation rate
and the sequencing error probability deduced from the base quality. We can
construct a profile HMM to simulate how to generate the read sequence y
from the reference x without considering introns (Fig. 1).

If we index the five types M, I , D, S and E by 0, 1, 2, 3 and 4, respectively,
the transition matrix between types of states is:

(aij)5×5 =

⎛

⎜⎜⎜⎜⎝

(1−2α)(1−γ) α(1−γ) α(1−γ) 0 γ

(1−β)(1−γ) β(1−γ) 0 0 γ

1−β 0 β 0 0
(1−α)/L α/L 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎠

where α is the site-independent gap open probability, β the gap extension
probability and γ =1/(2l) controls the average length of the read which does
not affect the computation of BAQ in practice, although a formal proof is
lacking. By default α and β are set to 0.001 and 0.1, respectively. They
should be adjusted based on the sequencing indel error rate.

As to emissions, the S state only emits the start symbol (‘ˆ’) and E emits
the end (‘$’). D are silent states that do not emit any symbols. The emission
probability from Ik is set to 0.25, and from M is a function of substitution
probabilities {ϵi}, which is, for i=1,...,l:

P(ci|Mk)=eki =
{

1−ϵi if rk =ci

ϵi/3 otherwise

2.2 The forward and the backward algorithms
The recurrence equations are given as follows where any undefined values
in the forward matrix f or the backward matrix b are assigned to zeros. The
initialization of the forward algorithm is (k =1,...,L):

f0,S =1, f1,Mk =ek1a30, f1,Ik =a31/4
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HMMER - protein homology detection and alignment 

Profile HMM architecture used in 
HMMER2, SAM and PFTOOLS 
protein homology detection and 
alignment packages. Match states 
carry position-specific emission 
probabilities for scoring residues at 
each consensus position. Insert 
states emit residues with emission 
probabilities identical to a 
background distribution. We will 
describe this in more detail shortly...

See: Eddy (1998) Bioinformatics 14, 
755–763



Building sequence profile-HMMs: Match states

How do the above HMMs relate to profiles? Let’s see how we can use the HMM 
framework to build profile HMMs that describe families of related sequences.

In the last lecture, we built a profile for the alignment:

Ignoring the “background” frequencies for now, a profile for this alignment can be 
viewed as a simple HMM with one “match” state for each column, where 
consecutive match states are separated by transitions of probability 1.

Q. Why is this not a Markov chain?

Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/sequences.fa
Seaview [blocks=18 fontsize=18 LETTER] on Wed Oct 12 11:48:40 2011 

    1
s1  LEVK
s2  LDIR
s3  LEIK
s4  LDVE

M1 M2 M3 M4BEGIN END

Pr(L)=1

Pr(E)=0.5
Pr(D)=0.5

Pr(V)=0.5
Pr(I)=0.5

Pr(K)=0.5
Pr(R)=0.25
Pr(E)=0.25



Building profile-HMMs: Insert states

Introduce insert states (Ij), which will model inserts after the jth column in our 
alignment.

Typically, the output probabilities for insert states are set equal to the background 
probabilities. Note that we can have different probabilities for entering different 
insert states, and this models the fact that insertions may be less well-tolerated in 
certain portions of the alignment. 

I1

M1 M2 M3 M4

I2 I3 I4

BEGIN END

Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/sequences_insert.fa
Seaview [blocks=18 fontsize=18 LETTER] on Wed Oct 12 12:18:42 2011 

        1
s1      LE-VK
s2      LD-IR
s3      LE-IK
s4      LD-VE
query1  LDAVK



Building profile-HMMs: Insert states + affine gaps

For any particular insert state, we may have different transition probabilities for 
entering it for the first time vs. staying in the insert state; this models affine gap 
penalties.

I1

M1 M2 M3 M4

I2 I3 I4

BEGIN END

Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/sequences_insert.fa
Seaview [blocks=18 fontsize=18 LETTER] on Wed Oct 12 12:17:17 2011 

        1
s1      LE---VK
s2      LD---IR
s3      LE---IK
s4      LD---VE
query1  LDA--VK
query2  LDAAAVK



Building profile-HMMs: Delete states

One could model deletions with additional transitions between match states. 
However, arbitrarily long gaps would introduce lots of transitions in the model. 
Instead, we will introduce delete states that do not emit any symbols

 

D1

M1 M2 M3 M4

D2 D3 D4

BEGIN END

Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/sequences_insert.fa
Seaview [blocks=18 fontsize=18 LETTER] on Wed Oct 12 12:25:30 2011 

        1
s1      LEVK
s2      LDIR
s3      LEIK
s4      LDVE
query3  L-VK

M1 M2 M3 M4BEGIN END



Building profile-HMMs

Putting it all together we get a complete profile HMM topology with match, insert 
and delete states.

However we still need to decide how many states our HMM has, what the 
transition probabilities are, etc.

I1

D1

M1 M2 M3 M4

I2 I3 I4

D2 D3 D4

BEGIN END

Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/sequences_insert.fa
Seaview [blocks=18 fontsize=18 LETTER] on Wed Oct 12 12:15:52 2011 

        1
s1      LE---VK
s2      LD---IR
s3      LE---IK
s4      LD---VE
query1  LDA--VK
query2  LDAAAVK
query3  L----VK



Example profile-HMM building

How do we pick transition probabilities?
• We let the transition probability of going from state i to state j, aij be equal to:

Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/sequences2.fa
Seaview [blocks=18 fontsize=18 LETTER] on Wed Oct 12 13:06:07 2011 

    1
s1  VGA--NAGRPY
s2  VG---NVDKPV
s3  VGA--NVAHPH
s4  VAA------PH
s5  VGS--TYEKPS
s6  FGA--NFEKPH
s7  IGAADNGARPY

bm1(V) = 5/7
bm1(F) = 1/7
bm1(I) = 1/7

     No. of transitions from state i to state j     
No. of transitions from state i to any other state

aM2M3(V) = 6/7   
aM2D3(F) = 1/7
aM2I2(I) = 0/7

No. of matches (=6)
No. of gaps (=1)
No. of insertions (=0)

• How do we pick the length of the HMM? 
• Common heuristic is to include only those 

columns that have > 50% occupancy 

• How do we pick emission probabilities for 
match states?



Fundamentals of
Bioinformatics

A.3A.7

Current Protocols in Bioinformatics Supplement 18

Figure A.3A.4 Legend at left.

From: Schuster-Bockler et al.
 “Current Protocols in Bioinformatics” 

Supplement 18. 



Side note: Weighting the training sequences 

If there is a high degree of redundancy in our initial MSA (i.e. it contains a large 
group of very closely related sequences and a small number of more distantly 
related sequences) the resulting HMM will over represent the similar sequences 
and adversely effect our ability to detect distantly related sequences when 
searching databases

Sequences weighting attempts to compensate for this sequence sampling bias 
by differentially weighting sequences to reduce redundancy prior to model building

By default HMMER uses a sequence clustering tree as a guide to weight each 
sequence by its distance to other sequences. This approach will effectively down-
weight the influence of redundant sequences. 

A number of other approaches have been developed (Voronoi algorithm, maximum 
entropy, etc.)

See: Karchin et al. (1998) Bioinformatics 14, 772-778 



Side note: Pseudocounts and Dirichlet distributions

Unfortunately, for alignments containing a small number of sequences the 
observed counts may not be representative of the family as a whole. 

In such cases we must adjust the probabilities to account for our under-sampling 
(i.e. unobserved residues) 

One common approach is to add pseudocounts to the observed counts so that 
no zero probabilities can occur. 

Simplest approach is to just add one to all counts. More accurate adjustments 
consider prior knowledge about the behavior of sequence families adjusting 
counts according to pre-tabulated Dirichlet distributions - which are rather like 
protein comparison matrixes used in profile methods

Such information is often called prior information, indicating that it is known 
before any sequence data is seen

For example, an alignment containing only 20 of the sequences from the 
example above may contain all L's in column 57, resulting in an emissions 
probability of 1.0 for L and 0.0 for all other amino acids. So there

See: Durbin et al. “Biological Sequence Analysis” 



Generating multiple sequence alignments

Large MSAs can be generated very quickly by using the Viterbi algorithm to find 
the most likely path through the HMM for a set of unaligned sequences

This is the basis of the PFAM database which uses the HMMER software package
Namely, HAMMER’s hmmalign from the results of hmmsearch  

MSA produced by HMMs are not true MSAs in the way that those produced by 
ClustalW are. ClustalW compares every sequence to every other sequence, 
whereas HMM aligning compares every sequence to the model independently so 
that the alignment between sequences is by proxy. Adding new sequences to the 
ClustalW alignment will add new information which may alter the alignment of 
existing sequences; adding new sequences to the HMM alignment never changes 
the alignment of any sequences relative to each other.

As an alternative to HMMER, you can use the Sequence Alignment and 
Modeling Software System (SAM)

http://compbio.soe.ucsc.edu/sam.html



Recent speed benchmarks indicate that HMMER3 is approaching BLAST speed 

Each point represents a speed measurement for one search with one query against  
target sequences. Both axes are logarithmic, for speed in millions of dynamic 
programming cells per second (Mc/s) on the y-axis and query length on the x-axis. 

See: Eddy (2011) PLoS Comp Biol 7(10): e1002195

HMM sequence searching performance



HMM sequence searching performance...

However HMMER3 has a much higher search sensitivity and specificity 

In each benchmark, true positive subsequences have been selected to be no more than 
25% identical to any sequence in the query alignment ... (see paper for details).

See: Eddy (2011) PLoS Comp Biol 7(10): e1002195



HMM limitations

HMMs are linear models and are thus unable to capture higher order 
correlations among positions (e.g. distant cysteins in a disulfide bridge, RNA 
secondary structure pairs, etc).

Another flaw of HMMs lies at the very heart of the mathematical theory behind 
these models. Namely, that the probability of a sequence can be found from the 
product of the probabilities of its individual residues. 

This claim is only valid if the probability of a residue is independent of the 
probabilities of its neighbors. In biology, there are frequently strong dependencies 
between these probabilities (e.g. hydrophobic residues clustering at the core of 
protein domains).

These biological realities have motivated research into new kinds of statistical 
models. These include hybrids of HMMs and neural nets, dynamic Bayesian nets, 
factorial HMMs, Boltzmann trees and stochastic context-free grammars.

See: Durbin et al. “Biological Sequence Analysis” 



PFAM: Protein Family Database of Profile HMMs

Comprehensive compilation of both multiple sequence alignments and profile 
HMMs of protein families.

http://pfam.sanger.ac.uk/

PFAM consists of two databases: 
• Pfam-A is a manually curated collection of protein families in the form of 

multiple sequence alignments and profile HMMs. HMMER software is used to 
perform searches.

• Pfam-B contains additional protein sequences that are automatically aligned. 
Pfam-B serves as a useful supplement that makes the database more 
comprehensive.

• Pfam-A also contains higher-level groupings of related families, known as clans













































That’s it!  


