
1

Inference of Population Structure

Sayan Mukherjee

The biological problem we look at is inference of population structure from genetic data. This is
an important problem in population genetics/biology both to understand the genetic history of of
populations as well to control for population structure when examining genome wide association
studies (GWAS).

There are several statistical ideas used in this paper in a very clean way. These ideas include
mixture models, Gibb’s sampling, and conjugate priors.

Inference of population structure with no admixture

We first look the case where the observed individuals are not admixed. By this we mean that
each individual is drawn from an allele distribution coming from one of k = 1, ...,K ancestral
populations. We will then look at the case with admixture where each individual’s genome can
come from a mixture of of the K ancestral populations.

The quantities that define the problem are

(a) {X1, ..., Xn} – The genotypes of the n individuals. These are n observed variables where for
each individual we have x(i,a)` ≡ (x

(i,1)
` , x

(i,2)
` ) = the genotype of the i-th individual at the

`-th locus where i = 1, ..., n and ` = 1, ..., L.

(b) {Z1, ..., Zn} – The population of origin of the i-th individual, zi = the population form which
individual i originated where zi = {1, 2, ....K}.

(c) pk`j = frequency of allele j at locus ` in population k where j = 1, ..., J` is the number of
possible alleles at locus ` and k = 1, ...,K. Note that pz(i)`j = Pr(x(i,a)` = j | Z,P )

The genotypes X are observed.
The population of origin Z is hidden and must be inferred. The frequency variables P must also
be inferred.

From the perspective of conditional probabilities we would like to compute the posterior dis-
tribution given a likelihood model for the genotypes (and priors on Z and P )

Pr(Z,P | X) ∝ Pr(Z)× Pr(P )× Lik(X;Z,P ), Lik(X;Z,P ) ≡ Pr(X | Z,P ).

We now build up the problem from the simplest setting to the general setting with no admix-
ture. Pretend that there is only one ancestral population K = 1 and that at a locus ` we have only
two possibile alleles J` = 2. The likelihood over n individuals at allele ` is

Lik(X1,a
` , ..., X

(n,a)
` ; p) ∝

n∏
i=1

pX
(i,a)
` (1− p)1−X

(i,a)
` ,
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which is a binomial distribution. The generalization from J` = 2 to J` > 2 orX(i,a)
` = {0, 1, 2, ..., J`}

corresponds to moving from the binomial distribution to the multinomial distribution

Lik(X(1,a)
` , ..., X

(n,a)
` ; {p`1, ..., p`J`}) ∝

n∏
i=1

 J∏̀
j=1

p
I(X

(i,a)
` ,j)

`j

 =

J∏̀
j=1

p
S`j

`j

where p`j is the probability of the j-th allele at locus `with
∑J`
j=1 p`j = 1, p`j ≥ 0, S`j = #{X(i,a)

` =

j} is the number of individuals that have allele j at locus `, and I(X(i,a)
` , j) = 1 if X(i,a)

` is the j-th
allele and 0 otherwise (this is called the indicator function).

The parameters P = {p`1, ..., p`J`} are uncertain. These parameters also can be modeled using
a probability distribution. We agin first look at the case where J` = 2 the binomial case where we
have one parameter p. A natural probability distribution to model p is the beta distribution with
parameters α, β > 0 with

f(p;α, β) ∝ pα−1(1− p)β−1, 0 ≤ p ≤ 1

the case of α = β = 1 returns the uniform distribution. If we use the beta distribution to set our
prior on p and use the binomial likelihood we obtain the following posterior distribution for p give
our data

Pr(p | X(1,a)
` , ..., X

(n,a)
` ) ∝ Lik(X(1,a)

` , ..., X
(n,a)
` ; p)× f(p;α, β)

=

[
n∏
i=1

pX
(i,a)
` (1− p)1−X

(i,a)
`

]
pα−1(1− p)β−1

=
[
pS`(1− p)n−S`

]
, S` = #{X1,a

` = 1}
= pS`+α−1(1− p)n+β−S`−1

= Beta(S` + α, n− S` + β),

so the posterior distribution is a beta. The beta and binomial are conjugate distributions. In the
case of the multinomial the natural distribution on {p`1, ..., p`J`} is given by a Dirichlet distribution

f({p`1, ..., p`J`}; {α1, ..., αJ`}) ∝
J∏̀
j=1

p
αj−1
`j .

Using the Dirichlet as the prior we can show that the posterior distribution of the parameters
({p`1, ..., p`J`) given the genotype is also Dirichlet

Pr(p | X(1,a)
` , ..., X

(n,a)
` ) ∝ Lik(X(1,a)

` , ..., X
(n,a)
` ; {p`1, ..., p`J`})× f({p`1, ..., p`J`}; {α1, ..., αJ`})

=

 J∏̀
j=1

p
S`j

`j

 J∏̀
j=1

p
αj−1
`j


=

J∏̀
j=1

p
S`j+αj−1
`j

= Dir(S`1 + α1, S`2 + α2, ..., S`J` + αJ`).
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So at this point we know how to infer the posterior distribution of allele frequencies if we only
had one ancestral population, it is given by the Dirichlet distrbution. Obviously this is not so
interesting since this case defeats the point of inferring population structure.

We now extend to the case where K > 2 where we have real population structure. We intro-
duce a latent variable Z(i) which assigns to each individual a population of origin. This adding a
variable is sometimes called augmentation. If we knew Zi = k we could write out the posterior
distribution of the allele frequencies pk`j which are the allele frequencies for alleles j = 1, ...J` at
locus ` for group k with Sk`j = #{X(i,a) = j, z(i) = k}

Pr(pk`1, ..., pk`J` | Z(i) = k,X(1,a,), ..., X(n,a)) ∝

 J∏̀
j=1

p
Sk`j

k`j

 J∏̀
j=1

p
αj−1
j

 ,
= Dir(α1 + Sk`1, ..., αJ` + Sk`J`).

This gives us a way to sample from the posterior distribution Pr(P | Z,X).

We will show that we can also sample from Pr(Z | P,X). We can write using Bayes’ rule

Pr(Z(i) = k | X,P ) = Pr(X(i) | P, z(i) = k)∑
k′ Pr(X(i,a) | P, z(i) = k′)

,

where

Pr(X(i,a) | P,Z(i) = k) =

L∏
`=1

pk`x(i,1)pk`x(i,2) .

At this point we know how to draw Pr(Z | P,X) and Pr(P | Z,X). The problem is we want
to draw Pr(Z,P | X). There is a way of doing this in many cases using a procedure called Gibb’s
sampling. The idea behind Gibb’s sampling is if I want to sample from a joint distribution Pr(Z,X)
but can only compute the condiitionals Pr(Z | P ) and Pr(P | Z) then I can use the following
iterative procedure to sample the joint:

(1) Guess a Z(0)

(2) For t = 1 to T

(a) sample P(t) | Z(t−1)

(b) sample Z(t) | P(t)

(3) Remove the first t0 pairs of (P(t), Z(t)), this is called burn-in

(4) Keep every a-th pair of the remaining (P(t), Z(t)), this is called thinning

(5) We now have a iid draws from Pr(Z,P )
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The procedure in STRUCTURE adapts the above algorithm in the following way

(1) For i = 1 to n: Z(i)
(0)

iid∼ Uni(1, ...,K)

(2) For t = 1 to T

(a) For each k, `
P

(t)
k`· | X,Z(t−1) ∼ Dir(λ1 + nk`1, ..., λJ` + nk`J`),

where nk`j = #{(i, a) : Xi,a
` = k, Z

(i)
(t−1) = k}

(b) For each i

Pr
(
Z

(i)
(t) = k | X,P (t)

)
=

Pr(X(i) | P (t), z(i) = k)∑
k′ Pr(X(i,a) | P (t), z(i) = k′)

,

where

Pr
(
X(i,a) | P (t), Z(i) = k

)
=

L∏
`=1

pk`x(i,1)pk`x(i,2) .

Inference of population structure with admixture

In the case where there is admixture each individual does not necessarily come from one ances-
tral population. Their genome comes from a mixture of ancestral populations. This is admixture.
To model this we need to introduce a new variable Q and adjust our previous variable Z. Our
variable P and X are the same as before. The new or adjusted variables are:

(a) {Q1, ..., Qn} – Vectors of admixture proportions for each individual with

q
(i)
k = proportion of i-th individuals genome that originated in population k

(b) {Z} – Allele copy X(i,a)
` originated in unknown population Z(i,a)

`

z
(i,a)
` = population of origin of allele copy X(i,a)

`

note previously we only needed one Z for each individual.

We observe that
Pr(X(i,a)

` = j | Z,P,Q) = p
z
(i,a)
` `j

,

and
Pr(z(i,a) = k | P,Q) = q

(i)
k ,

and we can place the prior
q(i) ∼ Dir(α, ..., α).

We will see soon we can write the following conditionals

P,Q | X,Z, Z | X,P,Q.

This lets us write out the following Gibbs sampler.
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(1) For each i, a: Z(i,a)
(0)

iid∼ Uni(1, ...,K)

(2) For t = 1 to T

(a) For each k, `
P

(t)
k`· | X,Z(t−1) ∼ Dir(λ1 + nk`1, ..., λJ` + nk`J`),

where nk`j = #{(i, a) : Xi,a
` = k, Z

(i,a)
(t−1) = k}

(b) For each i
q
(i)
(t) | X,Z

(i,a)
(t−1) ∼ Dir(α+m

(i)
1 , ..., α+m

(i)
k ,

where
m

(i)
k = #{(`, a) : z(i,a)` = k}.

(c) For each i, a, `

Pr
(
Z

(i,a)
(t) = k | X,P (t),Q(t)

)
=

q
(i)
k Pr(X(i)

` | P (t), z(i) = k)∑
k′ q
′(i)
k Pr(X(i,a)

` | P (t), z(i) = k′)
,

where
Pr
(
X

(i,a)
` | P (t), Z(i) = k

)
= pk`x(i,a) .


