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Genetics of multiple traits

Linda Strausbaugh (Genetics 147:5, 1997)

Phenotypic traits are often considered individually
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Some objectives in quantitative genetics

Partition total phenotypic (trait) variation into genetic and
environmental components.

P = G + E.

G-matrix: matrix of genetic covariance among traits, G.
E-matrix: matrix covariance among traits due to environment E.

Broad-sense heritability = genetic effects on phenotype, can be
further partitioned into additive, dominant, and interaction effects.
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Lande’s equation

Only the additive effects can be passed from parent to offsping:
narrow-sense heritability, h2

Fisher’s fundamental theorem (1930):
”The rate of increase in fitness of any organism at any time is
equal to its genetic variance in fitness at that time.”

Lande or breeder’s equation:

R = h2s,

R - response to selection, S - selection differential.
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Multivariate Lande’s equation

G: matrix of additive genetic covariance among traits, G

Lande or breeder’s equation:

�y = Gs

Y ⇠ Np : traits are multivariate normal
s = @F(Ȳ)

@y : selection gradient.
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@y : selection gradient.



Estimating G

Previous aproaches
(1) Pairwise covariances followed by clustering – Ayroles and

Stone.

(2) Methods based on moments estimators – Hine and Blows,
McGraw.

(3) Linear mixed effects models – Henderson, Kruuk, Kirkpatrick
and Meyer, De Los Campos and Gianola.

LMM model that scales to thousands of traits.
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Drosophila gene expression from Ayroles et al 2009

Genetics of many traits

0.0

+

-

found 355, 1,128, 295, 231, 691 and 414 transcripts associated
with starvation stress resistance, chill-coma recovery time, life span,
locomotor behavior, mating speed and fitness, respectively (Supple-
mentary Table 6 online). There was little overlap between associations
of variation in transcripts and SFPs for the same phenotypes, further
increasing the number of candidate genes potentially associated with
each trait.
Transcripts that are significantly associated with organismal phe-

notypes are candidate genes affecting the phenotype25. We compared
phenotypes of P-element insertional mutations in or near candidate
genes with that of their co-isogenic control lines9,10. Seven of ten
mutations near candidate genes for resistance to starvation stress
indeed affected starvation resistance, and 29 of 39 mutations near

candidate genes for chill coma recovery time affected this trait
(Fig. 6a,b and Supplementary Table 7 online). Six of nine mutations
in candidate genes affecting locomotor reactivity have been shown
previously to affect this trait26 (Fig. 6c).

Transcriptional networks associated with complex traits
Most transcripts associated with phenotypes were either unexpected
based on prior mutational analyses of the traits, or from computa-
tionally predicted genes. To gain insight about functional relation-
ships among transcripts associated with each trait, we used the
residuals of the significant regressions of organismal phenotypes on
gene expression to quantify modules of transcripts with coordi-
nated patterns of expression across the 40 lines (Fig. 7 and
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Figure 7 Modules of correlated transcripts associated with organismal phenotypes. (a–e) Competitive fitness. (a) Clustering of the 414 transcripts
significantly associated with variation in fitness into 20 modules. (b) Tissue-specific expression of transcripts in modules 7 and 9 (ovaries), module 8
(accessory glands and testes) and module 17 (head, brain and thoracicoabdominal ganglion). (c) Interaction network for module 7. Each node represents a
gene and each edge the correlation between a pair of genes. Module 7 is enriched for female-biased transcripts and transcripts affecting DNA replication.
(d) Interaction network for module 9. Module 9 is enriched for female-biased transcripts and transcripts affecting oogenesis and transcriptional regulation.
(e) Interaction network for module 8. Module 8 is dominated by male-biased genes, and is enriched for genes involved in male-induced postmating
behaviors, including three genes encoding accessory gland proteins (Acps). (f–g) Starvation stress resistance. (f) Clustering of the 355 transcripts
significantly associated with variation in starvation resistance into 11 modules. (g) Interaction network for module 6. The black arrows indicate SFP variants
in a probe set that are associated with variation in expression of the other probes in that probe set (cis-acting variants) and with variation in another
transcript (trans-acting variants). The orange nodes indicate genes with a WD40 protein domain.
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Estimate evolutionary parameters

Bayesian genetic sparse factor model

Goal:
Reduce high-dimensional data to its 
underlying structure
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locomotor behavior, mating speed and fitness, respectively (Supple-
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Figure 7 Modules of correlated transcripts associated with organismal phenotypes. (a–e) Competitive fitness. (a) Clustering of the 414 transcripts
significantly associated with variation in fitness into 20 modules. (b) Tissue-specific expression of transcripts in modules 7 and 9 (ovaries), module 8
(accessory glands and testes) and module 17 (head, brain and thoracicoabdominal ganglion). (c) Interaction network for module 7. Each node represents a
gene and each edge the correlation between a pair of genes. Module 7 is enriched for female-biased transcripts and transcripts affecting DNA replication.
(d) Interaction network for module 9. Module 9 is enriched for female-biased transcripts and transcripts affecting oogenesis and transcriptional regulation.
(e) Interaction network for module 8. Module 8 is dominated by male-biased genes, and is enriched for genes involved in male-induced postmating
behaviors, including three genes encoding accessory gland proteins (Acps). (f–g) Starvation stress resistance. (f) Clustering of the 355 transcripts
significantly associated with variation in starvation resistance into 11 modules. (g) Interaction network for module 6. The black arrows indicate SFP variants
in a probe set that are associated with variation in expression of the other probes in that probe set (cis-acting variants) and with variation in another
transcript (trans-acting variants). The orange nodes indicate genes with a WD40 protein domain.
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Estimate evolutionary parameters

Bayesian genetic sparse factor model

Goal:
Reduce high-dimensional data to its 
underlying structure

Sparse estimation of the G matrix based on an animal model

Methods: Bayesian dimension reduction

found 355, 1,128, 295, 231, 691 and 414 transcripts associated
with starvation stress resistance, chill-coma recovery time, life span,
locomotor behavior, mating speed and fitness, respectively (Supple-
mentary Table 6 online). There was little overlap between associations
of variation in transcripts and SFPs for the same phenotypes, further
increasing the number of candidate genes potentially associated with
each trait.
Transcripts that are significantly associated with organismal phe-
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phenotypes of P-element insertional mutations in or near candidate
genes with that of their co-isogenic control lines9,10. Seven of ten
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indeed affected starvation resistance, and 29 of 39 mutations near

candidate genes for chill coma recovery time affected this trait
(Fig. 6a,b and Supplementary Table 7 online). Six of nine mutations
in candidate genes affecting locomotor reactivity have been shown
previously to affect this trait26 (Fig. 6c).

Transcriptional networks associated with complex traits
Most transcripts associated with phenotypes were either unexpected
based on prior mutational analyses of the traits, or from computa-
tionally predicted genes. To gain insight about functional relation-
ships among transcripts associated with each trait, we used the
residuals of the significant regressions of organismal phenotypes on
gene expression to quantify modules of transcripts with coordi-
nated patterns of expression across the 40 lines (Fig. 7 and
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Figure 7 Modules of correlated transcripts associated with organismal phenotypes. (a–e) Competitive fitness. (a) Clustering of the 414 transcripts
significantly associated with variation in fitness into 20 modules. (b) Tissue-specific expression of transcripts in modules 7 and 9 (ovaries), module 8
(accessory glands and testes) and module 17 (head, brain and thoracicoabdominal ganglion). (c) Interaction network for module 7. Each node represents a
gene and each edge the correlation between a pair of genes. Module 7 is enriched for female-biased transcripts and transcripts affecting DNA replication.
(d) Interaction network for module 9. Module 9 is enriched for female-biased transcripts and transcripts affecting oogenesis and transcriptional regulation.
(e) Interaction network for module 8. Module 8 is dominated by male-biased genes, and is enriched for genes involved in male-induced postmating
behaviors, including three genes encoding accessory gland proteins (Acps). (f–g) Starvation stress resistance. (f) Clustering of the 355 transcripts
significantly associated with variation in starvation resistance into 11 modules. (g) Interaction network for module 6. The black arrows indicate SFP variants
in a probe set that are associated with variation in expression of the other probes in that probe set (cis-acting variants) and with variation in another
transcript (trans-acting variants). The orange nodes indicate genes with a WD40 protein domain.
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Estimate evolutionary parameters

Bayesian genetic sparse factor model

Goal:
Reduce high-dimensional data to its 
underlying structure

Sparse estimation of the G matrix based on an animal model

Methods: Bayesian dimension reduction

An application to Drosophila gene expression data
Case study: 

found 355, 1,128, 295, 231, 691 and 414 transcripts associated
with starvation stress resistance, chill-coma recovery time, life span,
locomotor behavior, mating speed and fitness, respectively (Supple-
mentary Table 6 online). There was little overlap between associations
of variation in transcripts and SFPs for the same phenotypes, further
increasing the number of candidate genes potentially associated with
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Transcripts that are significantly associated with organismal phe-
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(Fig. 6a,b and Supplementary Table 7 online). Six of nine mutations
in candidate genes affecting locomotor reactivity have been shown
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Most transcripts associated with phenotypes were either unexpected
based on prior mutational analyses of the traits, or from computa-
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significantly associated with variation in fitness into 20 modules. (b) Tissue-specific expression of transcripts in modules 7 and 9 (ovaries), module 8
(accessory glands and testes) and module 17 (head, brain and thoracicoabdominal ganglion). (c) Interaction network for module 7. Each node represents a
gene and each edge the correlation between a pair of genes. Module 7 is enriched for female-biased transcripts and transcripts affecting DNA replication.
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Quantitative Genetics of Gene Expression

Gene expression is a readout of cellular activities 

Metabolism, and cell-signaling activity is difficult to measure
but may be key determinants of fitness
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ui ∼ N(0,G)genes ui
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+ + +=

Rb/E2F network p53 pathwayTOR pathway
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Few underlying developmental pathways 
are genetically variable1)

Each pathway affects a low 
number of genes2)

Developmental 
effects are sparse
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A factor model for G

Sparsity assumptions are key for high-dimensional data

Few underlying pathways = few parameters to estimate 

genes

pathways

Λ Loadings
matrix

Few effects per pathway = pathways are robust and interpretable

+ + +=

Rb/E2F network p53 pathwayTOR pathway
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ei
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A factor model for G

fi eiΛ +=ui

measured traits underlying traits

Loadings matrix

genetic effects

G = ΛΛT + Σe

Residual covariance

Genetic covariances
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Bayesian genetic sparse factor model

p(G | Y) =
p(Y | G)π(G)

p(Y)Bayesʼ Theorem

Posterior Likelihood Prior

N 0, σ2
Ai

A

p(Y | G) yi ∼ N(xib + ui,R)

Animal model likelihood

N(0,G)



The animal model – singe trait

For a single trait
yi = Xbi + Zui + ei ,

yi : vector of measurements of trait i
bi : vector of fixed effects and environmental covariates of trait i
X: design matrix
ui : random additive genetic effects with known covariance �2

i A
Z: relates random effects to observations
ei : error independent to random effects.
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The animal model – multiple traits

For p traits
Y = XB + ZU + E,

Y: n ⇥ p vector of measured traits
U = [u1, ...,up] : U ⇠ MNr ,p(0,A,G)
E = [e1, ..., ep] : E ⇠ MNn,p(0, In,R)

G: p ⇥ p genetic covariance matrix
A: rank r  n matrix of relatedness
E: p ⇥ p residual covariance matrix

p(V | M,⌦,⌃) =
exp
⇣

�1
2 tr[⌦�1/2(V �M)T⌃�1(V �M)]

⌘
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Hierarchical factor model

Model k latent traits that linearly relate to observed traits.

Specification of U and E.

U = Fa⇤
T + �, E = Fe⇤

T + ⌅

Fa ⇠ MNr ,k (0,A,⌃a), Fe ⇠ MNn,k (0, In,⌃e)

� ⇠ MNr ,p(0,A, a), ⌅ ⇠ MNn,p(0, In, e)

⇤ ⇠ ⇡(✓),

(1)



Partition of variation and heritability
Fa and Fe among-individual variation in the latent traits.
⌃a and ⌃e model within individual covariance of the factors:

⌃a = Diag(�2
aj
),⌃e = Diag(�2

ej
).

⇤ is not identifiable without constraints (rotation and scaling).
Column variances sum to one

⌃a + ⌃e = Ik , ⌃h2 = ⌃a = Ik � ⌃e

Narrow sense heritability

h2
j =

�2
aj

�2
aj

+ �2
ej

= �2
aj
.
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Partition of variance by factors

Recovering G and R

G = ⇤⌃h2⇤T + a ,

R = ⇤(Ik � ⌃h2)⇤T + e .
(2)

Total phenotypic covariance P = G + R:

P = ⇤⇤T + a + e . (3)
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Constraints of G and R

Informative priors on covariance matrices
(1) Limited number of pathways are relevant for trait variation or

number of factors is low, k ⌧ p.

(2) Each underlying developmental pathway affects a limited
number of traits or factor loadings are sparse.

Constraints imposed on �im 2 ⇤
(1) Prior that shrinks the magnitude of successive factors.
(2) Heavy tailed distribution on elements �im.
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Bayesian genetic sparse factor model

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

π(G)

|λi| k

e
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0

λij

loadings

Λ G = ΛΛT + Σe

factors

σ2
eiip

Residual 
variances

Vi



Prior specification on ⇤

Based on (Bhattacharya and Dunson, 2011)

�im | �im, ⌧m ⇠ N
⇣

0, ��1
im ⌧
�1
m

⌘

�im ⇠ Ga(⌫/2, ⌫/2),

⌧m =
m
Y

`=1

�`,

�1 ⇠ Ga(a1, b1),

�` ⇠ Ga(a2, b2) for ` = 2, ..., k .

Heritability prior (Zhou and Stephens, pers. comm.)

⇡(h2
i = `/nh) = 1/nh , where ` = 0 . . . (nh � 1).

Remaining variables: Bij ⇠ N(0,�2 > 106), ( u, e) ⇠ IG.
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Case study: Drosophila gene expression

As a demonstration, we collected gene expression from:
Ayroles et al (2009) Systems genetics of complex traits in 
Drosophila melanogaster. Nat Genet, 41, 299–307.

40 lines of D. melanogaster
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We ran our genetic factor model on the 355 genes correlated with Starvation 
Resistance

found 355, 1,128, 295, 231, 691 and 414 transcripts associated
with starvation stress resistance, chill-coma recovery time, life span,
locomotor behavior, mating speed and fitness, respectively (Supple-
mentary Table 6 online). There was little overlap between associations
of variation in transcripts and SFPs for the same phenotypes, further
increasing the number of candidate genes potentially associated with
each trait.
Transcripts that are significantly associated with organismal phe-

notypes are candidate genes affecting the phenotype25. We compared
phenotypes of P-element insertional mutations in or near candidate
genes with that of their co-isogenic control lines9,10. Seven of ten
mutations near candidate genes for resistance to starvation stress
indeed affected starvation resistance, and 29 of 39 mutations near

candidate genes for chill coma recovery time affected this trait
(Fig. 6a,b and Supplementary Table 7 online). Six of nine mutations
in candidate genes affecting locomotor reactivity have been shown
previously to affect this trait26 (Fig. 6c).

Transcriptional networks associated with complex traits
Most transcripts associated with phenotypes were either unexpected
based on prior mutational analyses of the traits, or from computa-
tionally predicted genes. To gain insight about functional relation-
ships among transcripts associated with each trait, we used the
residuals of the significant regressions of organismal phenotypes on
gene expression to quantify modules of transcripts with coordi-
nated patterns of expression across the 40 lines (Fig. 7 and
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Figure 7 Modules of correlated transcripts associated with organismal phenotypes. (a–e) Competitive fitness. (a) Clustering of the 414 transcripts
significantly associated with variation in fitness into 20 modules. (b) Tissue-specific expression of transcripts in modules 7 and 9 (ovaries), module 8
(accessory glands and testes) and module 17 (head, brain and thoracicoabdominal ganglion). (c) Interaction network for module 7. Each node represents a
gene and each edge the correlation between a pair of genes. Module 7 is enriched for female-biased transcripts and transcripts affecting DNA replication.
(d) Interaction network for module 9. Module 9 is enriched for female-biased transcripts and transcripts affecting oogenesis and transcriptional regulation.
(e) Interaction network for module 8. Module 8 is dominated by male-biased genes, and is enriched for genes involved in male-induced postmating
behaviors, including three genes encoding accessory gland proteins (Acps). (f–g) Starvation stress resistance. (f) Clustering of the 355 transcripts
significantly associated with variation in starvation resistance into 11 modules. (g) Interaction network for module 6. The black arrows indicate SFP variants
in a probe set that are associated with variation in expression of the other probes in that probe set (cis-acting variants) and with variation in another
transcript (trans-acting variants). The orange nodes indicate genes with a WD40 protein domain.
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We recover a true covariance matrix
We fit >60,000 covariances with fewer than 4,000 parameters
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We estimate that the genetic covariation in expression could be explained by 
9 factors

Factor 1 is dense but the remainder are very sparse. 
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Genes related to defense and immune responses



Case study: Drosophila gene expression

We can measure genetic covariances with Starvation Resistance 

95% Posterior 
credible intervals
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Drosophila melanogaster

Expression profiles of 414 genes and measures of competitive
fitness of 40 wild-derived lines of Drosophila melanogaster from
Ayroles et. al. 2009.

Ccompetitive fitness – percentage of offspring bearing a line’s
genotype given original proportion of the line.

Fixed effect of sex and random effects of the sex:line interaction
were modeled.



Drosophila results
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Figure 7: Among-line covariance of gene expression and competitive fitness in

Drosophila is modular. Genetic (among-line) architecture of 414 gene expression traits

(Ayroles et al. 2009). The three components show: i) Posterior mean broad-sense heritabil-

ities (H2) for the 414 genes, ii) Posterior mean genetic correlations among these genes, and

iii) Posterior means and 95% highest posterior density (HPD) intervals around estimates of

genetic correlations between each gene and competitive fitness. For comparison, see Figure

7a of (Ayroles et al. 2009). B. Latent trait structure of gene expression covariances. The

three components show: i) Posterior mean H2 for each estimated latent trait, ii) Posterior

mean gene loadings on each latent trait, and iii) Posterior means and 95% (HPD) intervals

around estimates of genetic correlations between each latent trait and competitive fitness.

The right-axis of panel B. groups genes into modules inferred using Modulated Modularity

Clustering (Stone and Ayroles 2009; Ayroles et al. 2009).
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Software and paper

(1) Software:
http://www.stat.duke.edu/

˜

sayan/bfgr/index.shtml

(2) Paper:
Dissecting High-Dimensional Phenotypes with Bayesian
Sparse Factor Analysis of Genetic Covariance Matrices ,
Runcie and Mukherjee, Genetics, 194:3, 753–767.
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Extensions and open problems

(1) Problems estimating the number of factors.

(2) Develop distance metrics for covariance matrices or
subspaces.

(3) Response to selection

�ȳ = ⇤u/p⇤⇤
T
up⇤ .

(4) Percentage genetic variation in fitness by measured traits

1 � up⇤ /Gp⇤,p⇤ .

(5) Incorporation with GWAS.
(6) Discrete traits and time varying traits.
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Homology on homology



Morphology

From D. Boyer.



Morphology

Distance between heel bones across primates for evolutionary
analysis.

Algorithms to automatically quantify the geometric similarity of
anatomical surfaces, Boyer et. al. PNAS 2011.



Geometric algorithm

index, and orientation patch count (details in SI Appendix,
Materials).

Comparing the Correspondence Maps. Morphometric analyses are
based on the identification of corresponding landmark points
on each of S and S0; the cP algorithm constructs a correspon-
dence map a from S to S0. (The correspondence induced by
cWn is less smooth and will not be considered here.) For each
landmark point L on S, we can compare the location on S0 of
its images aðLÞ with the location of the corresponding landmark
points L0. Fig. 2 shows that the “propagated” landmarks aðLÞ
typically turn out to be very close to those of the observer-deter-
mined landmarks L0 (more in SI Appendix, Materials).

An Application. These comparisons show our algorithms capture
biologically informative shape variation. But scientists are inter-
ested in more than overall shape! We illustrate how correspon-
dence maps could be used to analyze more specific features. In
comparative morphological and phylogenetic studies, anatomical
identification of certain features (e.g., particular cusps on teeth)

is controversial in some cases; an example of this is the distolin-
gual corner of sportive lemur (Lepilemur) lower molars in Dataset
(A) (2, 41), illustrated in Fig. 3.

In such controversial cases, transformational homology (42)
hypotheses are usually supported by a specific comparative sam-
ple or inferred morphocline (2, 43, 44). Lepilemur is thought by
some researchers to lack a cusp known as an entoconid (Fig. 3)
but to have a hypertrophied metastylid cusp that “takes the place”
of the entoconid (2) in other taxa. Yet, in comparing a Lepilemur
tooth to a more “standard” primate tooth, like that ofMicrocebus,
both seem to have the same basic cusps; alternatives to the view-
point of ref. 2 have therefore also been argued in the literature
(41). However, another lemur, Megaladapis (now extinct), argu-
ably a closer relative of Lepilemur than Microcebus, has an
entoconid that is very small and a metastylid that is rather large,
thus providing an evolutionary argument supporting the original
hypothesis. (For more details, see SI Appendix, Materials.) Such
arguments can now be made more precise. We can propagate
(as in Fig. 2) landmarks from the Microcebus to the Lepilemur
molar; this direct propagation matches the entoconid cusp of
Microcebus with the controversial cusp of Lepilemur (Fig. 3,
path 1), supporting ref. 41. In contrast, when we propagate land-
marks in different steps, either from Microcebus to Megaladapis
and then to Lepilemur (Fig. 3, path 2), or through the extinct
Adapis and extant Lemur (Fig. 3, path 3), the Lepilemur metas-
tylid takes the place of the Microcebus entoconid, supporting
ref. 2. Automatic propagation of landmarks via mathematical
algorithms recenters the controversy on the (different) discussion
of which propagation channel is most suitable.

Summary and Conclusion. New distances between 2D surfaces,
with fast numerical implementations, were shown to lead to fast,
landmark-free algorithms that map anatomical surfaces automa-
tically to other instances of anatomically equivalent surfaces, in a

Table 2. Success rates (percentage) of leave-one-out classification, based on the cP, cWn, and ODLP distances

Dataset Teeth First metatarsal Radius

Classification No. N cP Obs. 1 cWn No. N Obs. 1 cP Obs. 2 cWn No. N cP Obs. 1 cWn

Genera 24 99 90.9 91.9 68 13 59 76.3 79.9 88.1 50.8 4 45 84.4 77.8 68.9
Family 17 106 92.5 94.3 75.1 9 61 83.6 91.8 93.4 68.9 not applicable
Above family 5 116 94.8 95.7 83.3 2 61 100 100 100 98.4 not applicable

Fig. 2. Observer-placed landmarks can be propagated from structure S (I)
using cP-determined correspondence maps (II) to another specimen S0 (III).
The similarity between propagated landmarks in III and observer placed land-
marks in IV on S0 shows the success of the method and makes explicit the
geometric basis for the observer determinations.

Fig. 3. Observer-placed landmarks on a tooth ofMicrocebus are propagated
using cP-determined correspondence maps to a tooth of Lepilemur. Path 1 is
direct, paths 2 and 3 have intermediate steps, representing stepwise propa-
gation between teeth of other taxa.

Boyer et al. PNAS Early Edition ∣ 5 of 6
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Topological methods

What happens when the shapes are not isomorphic ?



Topological methods

Broken claw tips.



Use integral geometry

(1) Hadwiger integrals
(2) Minkowski functionals
(3) Euler integration
(4) Radon transform.



Betti numbers
Homology

0-Homology 1-Homology 2-Homology

�0 = 1, �1 = 0, �2 = 1�0 = 1, �1 = 1, �2 = 0�0 = 2, �1 = 0, �2 = 0

Hole Void
Connected Components

John Steenbergen & Sayan Mukherjee & Caroline Klivans (Duke University)Near-Homology and its Applications November 3, 2012 2 / 20



Euler characteristic

Given a shape M the Euler characteristic is

�(M) =
dX

i=0

(�1)i�i = #vertices �#edges + #faces.



Euler characteristic

Given a shape M the Euler characteristic is

�(M) =
dX

i=0

(�1)i�i = #vertices �#edges + #faces.



Critical points



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

Dgm0(f)

birth

de
at

h
f�1((�1, a])



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

f�1((�1, a])

a

Dgm0(f)

birth

de
at

h

1



Persistent homology: Morse theory
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Point cloud data
Persistent homology

Taken’s theorem

Sometimes, it is useful
to transform data into
a point cloud using a
specific procedure.

Often, it is natural
to represent data as
a point cloud.



Filtration, X0



Filtration, X1



Filtration, X2



Filtration, X3



Filtration, X4



Filtration, X5



Filtration, X6



Persistent homology

Construct a filtration

⇢ ⇢ ⇢ ⇢ ⇢ ⇢
X0 X1 X2 X3 X4 X5 X6

Hp(X0)! Hp(X1)! Hp(X2)! Hp(X3)! Hp(X4)! Hp(X5)! Hp(X6)

Images of linear maps �i,j
p : Hp(Xi)! Hp(Xj) induced by inclusion.

Determine when a homology class is born and when it dies.



Metrics on diagrams

L2-Wasserstein distance

dL2(X ,Y)2 = inf
�:X!Y

X

x2X
kx � �(x)k2



Height function: v1



Height function: v2



Persistence homology transform (PHT)

M is simplicial complex in IRd and v 2 Sd�1 is a unit vector.
Xk (M, v) captures changes in topology of

M(v)r = {� 2 M : x · v  r for all x 2 �}.

Definition
The persistent homology transform of M 2 IRd is the function

PHT(M) : Sd�1 ! Dd�1

v 7! (X0(M, v),X1, (M, v) . . . ,Xd�1(M, v)).
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Distances

Md is the space of finite simplicial complexes in IRd .

The distance between two surfaces M1,M2 is

dMd (M1,M2) :=
dX

k=0

Z

Sd�1
d(Xk (M1, v),Xk (M2, v))dv .
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Euler characteristic transform (ECT)

M is simplicial complex in IRd and v 2 Sd�1 is a unit vector.
�(M, v) captures changes in topology of

M(v)r = {� 2 M : x · v  r for all x 2 �}.

Definition
The Euler characteristic transform of M 2 IRd is the function

ECT(M) : Sd�1 ! L2(R)

v 7! �(M, v).
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Euler characteristic curve

(a) (b) (c)

Figure 1: (a) sublevel set of a mouse embryo head; (b) EC curve of the 2D contour of a hand and
(c) the associated (centered) cumulative EC-curve.

characteristic transform (ECT). Leveraging these topological transforms, we propose to develop
methodology based on several variants of the ECT to address a range of problems involving shapes
and networks.

2.2 Reformulation of the ECT and EC-Signatures

Euler characteristic curves are piecewise constant functions with numerous discontinuities – see
Figure 1(b). In order to obtain a numerically stable representation of the ECT, we propose the
following reformulation. Let �̄K

� be the mean value of �K
� over [a�, b�]. The centered EC curve in

the direction � is the function ZK
� : R � R given by ZK

� (x) = �K
� (x)� �̄K

� , for x � [a�, b�], extended
to zero outside this interval. We define the (centered) cumulative Euler characteristic curve as
FK

� (x) =
� x
�� ZK

� (y) dy, for any x � R. By construction, the cumulant FK
� is a continuous,

piecewise linear function that vanishes outside the interval [a�, b�] – see Figure 1(c). Henceforth, to
simplify notation, we drop the superscript K if there is no ambiguity. Note that, for any x � [a�, b�],
��(x) = F �

�(x) + �̄�, so that we can recover �� from the pair (�̄�, F�), which we refer to as the EC-
signature in the direction �. Since F� is continuous with compact support, F� may be viewed as an
element of the Hilbert space L2 of square integrable functions on the real line. Thus, we may treat
the EC-signature (�̄�, F�) as an element of R � L2. We assemble this family of signatures of K,
indexed by directions in Sn�1, into a mapping �K : Sn�1 � R � L2, where �K(�) = (�̄�, F�). The
mapping �K gives a computationally robust formulation of the ECT. Note that the Hilbert space
structure on R � L2 let us define an L2-space of mappings Sn�1 � R � L2 with metric

��K � �L�2
2 =

�

Sn�1
��K(�) � �L(�)�2 d�n(�) . (1)

2.3 Shape-Preserving Transformations

Simplicial complexes in Rn that di�er by scale and rigid transformations are typically viewed as
having the same shape. There are simple ways of removing translational and size e�ects. A
commonly used method is to center a shape (i.e., translate it so that the centroid lies at the origin)
and scale it to have a fixed centroid size (cf. [15, 22]). (Centroid size is the root-mean-square
distance to the centroid.) Accounting for rotations or orthogonal transformations is more delicate.
Let O(n) be the group of orthogonal transformation of Rn. The action of U � O(n) on a simplicial
complex K (that simply applies U to all simplices of K) induces an action on �K given by

U · �K(�) = (�̄�, F� � U�) , (2)

4

Mao Li



Sufficient statistic

Given X ⇠ f✓ 2 F , a statistic T = T(X) is sufficient if for the
parameter ✓ if for all sets B the probability IP[X 2 B | T(X) = t ]
does not depend on ✓

IP[X | T(X) = t , ✓] = IP[X | T(X) = t ].

For the normal distribution with known variance µ̂ = 1
n
P

i xi is a
sufficient statistic.
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Sufficiency of the PHT

Theorem (Turner-M-Boyer)
The persistent homology transform is injective when the domain is
Md for d = 2, 3.

Corollary (Turner-M-Boyer)
Consider the subspace of shapesMN

k (for k = 2 or 3), piecewise
linear simplicial complexes with at most N vertices. Let f(x; ✓) be a
density function overMk with parameters ✓ 2 ⇥ and x 2Mk
whose support is contained in someMN

k . The persistence
homology transform t(X) 2 C(S2,D3) is a sufficient statistic.
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Exponential family

Given sufficient statistic T(z) = (T1(x), ...,Td(x))T the exponential
family takes the form

p✓(x) = a(✓) h(x) exp(�h✓,T(x)i),

with h·, ·i standard inner product.

Likelihood model for surfaces Data ⌘ (X1, ...,Xn)
iid⇠ p✓, stated as

Lik(Data | ✓) =
nY

i=1

a(✓) h(xi) exp(�h✓,T(xi)i).
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Exponential family and ECT

Denote the Euler characteristic curve for each direction:
f(y) = �(M, v) Define the integral of f(y) as F(x) =

R x
0 f(y)dy.

This results in K smooth curves {F1, ...,FK }.

Exponential family model

p✓(x) = a(✓) h(x) exp

0
BBBBBB@�

KX

k=1

h✓,Fk (x)i
1
CCCCCCA .
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The matrix variate normal

Define F = [F1F2 · · ·FK ] as a K ⇥ T matrix and

p(F | A,U,V) =
exp
⇣
�1

2 tr[V�1(F � A)T U�1(F � A)]
⌘

(2⇡)KT/2|V|L/2|U|K/2 ,

A models mean
U models covariance between curves
V models covariance between points in a curve.

The given n meshes (M1, ...,Mn) we can define a likelihood model

Lik(M1, ...,Mn | A,U,V) =
nY

i=1

p(F(Mi) | A,U,V), (4)
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Distances without alignment

Theorem (Turner-M)
Let f : S2 ! L2(IR) and g : S2 ! L2(IR) be the ECT for two finite
simplicial complexes Mf and Mg respectively. Both f and g are
generically injective. Let µ be the measure on S2. If f⇤(µ) = g⇤(µ),
the push forwards of the measure are equal, then there is some
X 2 O(3) such that Mg = X(Mf ).

The distributions of the Euler characteristic curves are sufficient
statistics.



Picture of heel bone

Figure : Images of a calcaneus from two different angles.
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Primate calcanei

Figure : Phenetic clustering of phylogenetic groups of primate calcanei (n = 106). 67 genera are represented.
Asterisks indicate groups of extinct taxa. Abbreviations: Str, Strepsirrhines; Plat, platyrrhines; Cerc, Cercopithecoids; Om,
Omomyiforms; Adp, Adapiforms; Pp, parapithecids; Hmn, Hominoids. Note that more primitive prosimian taxa cluster
separately from simians (Om, Adp, Str.). Also note that monkeys (Plat, Cerc, Pp) cluster mainly separately from apes
(Hmn).



Comment from Doug

”In at least one way the method matched shapes with family
groups better than any of the other previous methods... it linked a
Hylobates specimen with the the other ape specimens (pan,
gorilla, pongo, and oreopithecus). Previous both hylobatids (which
ARE apes) always ended up closest to some Alouatta specimens.”



Comparing methods



Can you hear the shape of a drum ?

Mao Li



Association studies of shape phenotypes



Variation in baboon microbiome networks
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Fig 4. Persistence diagrams for 3 Bray-Curtis community 
composition networks. Blue and purple networks are 
subsampled from the same social group and have more 
similar persistence diagrams than when either is compared 
to the orange network (a different social group). Inset: 
subsampled social networks from the same group are also 
more similar than social networks from different groups, 
based on distances between persistence diagrams.
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(1) Automatic alignment.

(2) Correspondence.
(3) Signal processing theory for surfaces based on Euler

integration.
(5) Maps between networks - relation between behavioral

networks and genetic networks.
(6) Combine the two parts of this talk.
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Simulation procedure

Simulate from
Y = XB + ZU + E,

with Z = In, B = 0p , and X = 1.

Effect of G and R in above equation on inference.

Traits measured on the off-spring of a balanced paternal half-sib
breeding design.
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Simulation parameters

# factors R type # traits Sample size
a b c d e f g h i j

G and R

# traits 100 100 100 100 100 20 1000 100 100 100
Residual type SFa SF SF Fb Wishartc SF SF SF SF SF
# factors 10 25 50 10 5 10 10 10 10 10

h2 of factorsd 0.5(5) 0.5(15) 0.5(30) 0.5(5) 1.0(5) 0.5(5) 0.9-0.1(5)
0.0(5) 0.0(10) 0.0(20) 0.0(5) 0.0(5) 0.0(5)

Sample Size

# sires 100 100 100 100 100 100 100 50 100 500
# offspring/sire 10 10 10 10 10 10 10 5 10 10

a R – sparse factor.
b R – factor.

. c R – Wishart
d number of heritable factors.



Recovering factors

Scenario Expected Median Range

# factors
a 10 10 (10,10)
b 25 25 (23,25)
c 50 49 (48,50)

R type d 10 10 (10,10)
e NA 56 (44,66)

# traits f 10 9 (8,11)
g 10 10 (10,10)

Sample size
h 10 10 (10,10)
i 10 10 (10,10)
j 10 10 (10,10)



Factor heritability



Trait heritability
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Figure 6: Heritability estimates for each individual trait were accurate. The heri-

tability of each individual trait was estimated as h2
i = Gii/Pii. RMSE =

�
1
p

p�
i=1

(ĥ2
i � h2

i )
2

was calculated for each simulation. Boxplots show the distribution of RMSE values for each

scenario. A) Increasing numbers of simulated factors. B) Di�erent properties of the R

matrix. C) Di�erent numbers of traits. D) Di�erent numbers of sampled individuals.
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D as a metric space

Alexandrov space bounded from below: Given a geodesic space X
with metric d0 for any geodesic � : [0, 1]! X from X to Y and any
Z 2 X

d0(Z , �(t))2 � td0(Z ,Y)2 + (1 � t)d0(Z ,X)2 � t(1 � t)d0(X ,Y)2.

Theorem (Turner-Milyeko-M-Harer)
(D, dL2) is a geodesic space and is a non-negatively curved
Alexandrov space.
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Comparison triangles


