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Two parts

(1) Bayesian sparse factor model to estimate genetic covariance.



Two parts

(1) Bayesian sparse factor model to estimate genetic covariance.

(2) Quantitative genetics of shapes.



Quantitative genetics



Genetics of multiple traits

Phenotypic traits are often considered individually
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Genetics of multiple traits

Linda Strausbaugh (Genetics 147:5, 1997)

Important phenotypes often involve many traits

BBC



Some objectives in quantitative genetics

Partition total phenotypic (trait) variation into genetic and
environmental components.

P=G+E

G-matrix: matrix of genetic covariance among traits, G.
E-matrix: matrix covariance among traits due to environment E.



Some objectives in quantitative genetics

Partition total phenotypic (trait) variation into genetic and
environmental components.

P=G+E

G-matrix: matrix of genetic covariance among traits, G.
E-matrix: matrix covariance among traits due to environment E.

Broad-sense heritability = genetic effects on phenotype, can be
further partitioned into additive, dominant, and interaction effects.



Lande’s equation

Only the additive effects can be passed from parent to offsping:
narrow-sense heritability, h?

Fisher’s fundamental theorem (1930):
"The rate of increase in fitness of any organism at any time is
equal to its genetic variance in fithess at that time.”



Lande’s equation

Only the additive effects can be passed from parent to offsping:
narrow-sense heritability, h?

Fisher’s fundamental theorem (1930):
"The rate of increase in fitness of any organism at any time is
equal to its genetic variance in fithess at that time.”

Lande or breeder’s equation:

R = hZS,

R - response to selection, S - selection differential.



Multivariate Lande’s equation

G:. matrix of additive genetic covariance among traits, G



Multivariate Lande’s equation

G: matrix of additive genetic covariance among traits, G

Lande or breeder’s equation:

Ay = Gs

Y ~ Np: traits are multivariate normal

— a/;gv): selection gradient.




Estimating G

Previous aproaches

(1) Pairwise covariances followed by clustering — Ayroles and
Stone.
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Estimating G

Previous aproaches

(1) Pairwise covariances followed by clustering — Ayroles and
Stone.

(2) Methods based on moments estimators — Hine and Blows,
McGraw.

(3) Linear mixed effects models — Henderson, Kruuk, Kirkpatrick
and Meyer, De Los Campos and Gianola.

LMM model that scales to thousands of traits.



Genetics of many traits

Today we can measure thousands of traits simultaneously

Drosophila gene expression from Ayroles et al 2009

Genome-wide gene expression

Proteomics / metabolomics
morphometrics

genotype-environment
interactions

50 100 150 200 250 300 350

New methods are necessary to take advantage of these data



Bayesian genetic sparse factor model

Ayroles et al 2009

Goal:

Reduce high-dimensional data to its
underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or
complex pedigrees
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Bayesian genetic sparse factor model

Ayroles et al 2009

Goal:

Reduce high-dimensional data to its
underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or
complex pedigrees

Be scalable to large numbers of traits

Methods: Bayesian dimension reduction

Sparse estimation of the G matrix based on an animal model



Bayesian genetic sparse factor model

Ayroles et al 2009

Goal:

Reduce high-dimensional data to its
underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or
complex pedigrees

Be scalable to large numbers of traits

Methods: Bayesian dimension reduction

Sparse estimation of the G matrix based on an animal model

Case study:

An application to Drosophila gene expression data



Quantitative Genetics of Gene Expression

Gene expression is a readout of cellular activities
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Metabolism, and cell-signaling activity is difficult to measure
but may be key determinants of fitness



A factor model for G

Animal model for multiple traits

Random
phenotypes  fixed effects ~ genetic effects  residual error
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A factor model for G

Animal model for multiple traits

Random
phenotypes fixed effects genetic effects residual error

\ i /

y; = X; b +u; + ¢

-

genes < uf[/ 4 ~ N (O, G)




A factor model for G

Model u as output of development
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A factor model for G

Model u as output of development

u; -

+ + +
[]
[

e A ™~ \

TOR pathway Rb/E2F network p53 pathway

Developmental
effects are sparse

1 ) Few underlying developmental pathways
are genetically variable

2) Each pathway affects a low
number of genes



A factor model for G

Sparsity assumptions are key for high-dimensional data
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A factor model for G

Sparsity assumptions are key for high-dimensional data
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A factor model for G

Sparsity assumptions are key for high-dimensional data

ui! = + + +
o - =

7 ? N

TOR pathway Rb/E2F network  p53 pathway €;
N /\ Loadings
genes < matrix
10

\ =
pathways

Few underlying pathways = few parameters to estimate

Few effects per pathway = pathways are robust and interpretable



A factor model for G

genetic effects
measured traits underlying traits

o
\uz’ = /T\fi + €

Loadings matrix



A factor model for G

genetic effects
measured traits underlying traits

e
\uz- = Afz + €
f

Loadings matrix

\_YJ

Residual covariance

J
G =AA + 3.

T

Genetic covariances



Bayesian genetic sparse factor model

Posterior Likelihood Prior

(Y | G)7(G)

Bayes’ Theorem
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Bayesian genetic sparse factor model

Posterior Likelihood Prior
p(Y | G)r(G)
, p(G|Y)=
Bayes’ Theorem ( | ) p(Y)

Animal model likelihood

p(Y | G) y; ~ N (x;b +u;, R)




Bayesian genetic sparse factor model

Posterior Likelihood Prior
p(Y | G)r(G)
, p(G|Y)=
Bayes’ Theorem ( | ) p(Y)

Animal model likelihood

p(Y | G) y; ~ N (x;b +u;, R)

N (O, (71247;A)
— — —~
P U N(0,G)
— —— v



The animal model — singe trait

For a single trait
yi = Xb; + Zu; + e,
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The animal model — singe trait

For a single trait
yi = Xb; + Zu; + e,

y;: vector of measurements of trait i

b;: vector of fixed effects and environmental covariates of trait i
X: design matrix

u;. random additive genetic effects with known covariance O'I.ZA
Z: relates random effects to observations

e;:. error independent to random effects.



The animal model — multiple traits

For p traits
Y = XB 4 ZU + E,
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U — U1, cons Up] : U ~ MNr,p(o, A, G)
E — e‘] s soey ep] : E ~ MNn,p(o, In, R)

G:. p X p genetic covariance matrix
A: rank r < n matrix of relatedness
E: p X p residual covariance matrix



The animal model — multiple traits

For p traits
Y = XB 4 ZU + E,

Y: n X p vector of measured traits
U — U1,, Up] : U ~ MNr’p(O, A, G)
E — e‘] s soey ep] : E ~ MNn,p(o, In, R)

G:. p X p genetic covariance matrix
A: rank r < n matrix of relatedness
E: p X p residual covariance matrix

exp (—$tr[Q2(V - M) =71 (V - M)])
(Zﬂ)np/Z‘Q‘n/Z‘Z‘p/Z

p(VIMQ,2) =



Hierarchical factor model

Model k latent traits that linearly relate to observed traits.

Specification of U and E.

U=FA"+A, E=FA" +=
Fo ~ MN,«(0,A,Z;), Fe~MN,«(0,15,Z)
A~ MN,,(0,A,¥,), =~ MN,,(0,1,, W)
N ~ 7(6),



Partition of variation and heritability

F., and F, among-individual variation in the latent traits.
2, and 2, model within individual covariance of the factors:



Partition of variation and heritability

F., and F, among-individual variation in the latent traits.
2, and 2, model within individual covariance of the factors:

N\ is not identifiable without constraints (rotation and scaling).
Column variances sum to one

2, +t2e =k, Zpp=25=I -2,

Narrow sense heritability




Partition of variance by factors

Recovering G and R

G=AZ N +W,,
R=A(lx-Z2)A" + W,



Partition of variance by factors

Recovering G and R

G=AZ.:N +W¥,,

R=A(lx-%)\ +W,.

Total phenotypic covariance P = G + R:

P=A\"+W¥, + @,



Constraints of G and R

Informative priors on covariance matrices

(1) Limited number of pathways are relevant for trait variation or
number of factors is low, k < p.



Bayesian genetic sparse factor model

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = m (AN + Se)
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Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = 7 (AA" + Ze)
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Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = m (AN + Se)
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Bayesian genetic sparse factor model

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = m (AN + Se)
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Bayesian genetic sparse factor model

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = m (AN + Se)

|

0

Resi
factors loadings esidual

variances



Prior specification on A\

Based on (Bhattacharya and Dunson, 2011)
Aim | $im. Tm ~ N (0, i)
dim ~ Ga(v/2,v/2),
m
Tm — 1_[ 659
(=1

61 ~ Ga(a1, by),
Op ~ Ga(ag, bg) for £ = 2, ..., K.

Heritability prior (Zhou and Stephens, pers. comm.)

n(h? = €/ny) = 1/np, where £ =0...(ny—1).



Prior specification on A\

Based on (Bhattacharya and Dunson, 2011)

Aim | Oim>s Tm ~ N (O,¢EJT;71)
dim ~ Ga(v/2,v/2),

m
Tm — 1_[ 659
{=1

61 ~ Ga(a1, by),
Op ~ Ga(ag, bg) for £ = 2, ..., K.

Heritability prior (Zhou and Stephens, pers. comm.)
n(h? = €/ny) = 1/np, where £ =0...(ny—1).

Remaining variables: Bj ~ N(0,c0% > 10°), (W, V,) ~ IG.



Case study: Drosophila gene expression

As a demonstration, we collected gene expression from: ve T RELgEd

Ayroles et al (2009) Systems genetics of complex traits in
Drosophila melanogaster. Nat Genet, 41, 299-307. . |

AR ELE B R
40 lines of D. melanogaster DGRP
17 -
_ 161
% 15 -
gene expression of >10,000 genes
£
=
9 10 11 12 13 14 15 16 17
Female mean expression
100 -

Phenotype data on 7 fitness-related
traits

Starvation resistance (h)




Case study: Drosophila gene expression

We ran our genetic factor model on the 355 genes correlated with Starvation
Resistance



Case study: Drosophila gene expression

We ran our genetic factor model on the 355 genes correlated with Starvation
Resistance

Our estimate Ayroles et al. 2009
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Ayroles et al.



Case study: Drosophila gene expression

We ran our genetic factor model on the 355 genes correlated with Starvation
Resistance

Our estimate Ayroles et al. 2009
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Our estimate of genetic (line) correlations is very similar to the estimate by
Ayroles et al.

We fit >60,000 covariances with fewer than 4,000 parameters

We recover a true covariance matrix



Case study: Drosophila gene expression

We estimate that the genetic covariation in expression could be explained by
9 factors

Factor 1 is dense but the remainder are very sparse.
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Case study: Drosophila gene expression

We estimate that the genetic covariation in expression could be explained by
9 factors

Factor 1 is dense but the remainder are very sparse.
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Case study: Drosophila gene expression

We can measure genetic covariances with Starvation Resistance

0.3
cova (y;,w;) — AQ"

Ll (I

Top 20 genes of Factor 2

95% Posterior
credible intervals
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Case study: Drosophila gene expression

We can measure genetic covariances with Starvation Resistance
But have more power to identify covariances with underlying traits
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Drosophila melanogaster

Expression profiles of 414 genes and measures of competitive
fitness of 40 wild-derived lines of Drosophila melanogaster from
Ayroles et. al. 2009.

Ccompetitive fithess — percentage of offspring bearing a line’s
genotype given original proportion of the line.

Fixed effect of sex and random effects of the sex:line interaction
were modeled.



Drosophila results

A Genetic correlations B Gene loadings on latent traits
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Software and paper

(1) Software:
http://www.stat.duke.edu/~sayan/bfgr/index.shtml



Software and paper

(1) Software:
http://www.stat.duke.edu/~sayan/bfgr/index.shtml

(2) Paper:
Dissecting High-Dimensional Phenotypes with Bayesian

Sparse Factor Analysis of Genetic Covariance Matrices ,
Runcie and Mukherjee, Genetics, 194:3, 753—767.
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Extensions and open problems

(1) Problems estimating the number of factors.

(2) Develop distance metrics for covariance matrices or
subspaces.

(3) Response to selection

AY = Ay, AL

(4) Percentage genetic variation in fithess by measured traits

1 — \Uup* /Gp*,p*

(5) Incorporation with GWAS.
(6) Discrete traits and time varying traits.



Homology on homology



Morphology

From D. Boyer.



Morphology

Distance between heel bones across primates for evolutionary
analysis.

Algorithms to automatically quantify the geometric similarity of
anatomical surfaces, Boyer et. al. PNAS 2011.



Geometric algorithm

|. Observer-Placed Landmarks

*(nonprimate) ¥ (monkey)

Il. cP-determined correspondence map between two structures




Topological methods

What happens when the shapes are not isomorphic ?




Topological methods

Broken claw tips.




Use integral geometry

Hadwiger integrals
Minkowski functionals
Euler integration
Radon transform.



Betti numbers

0-Homology 1-Homology 2-Homology

Connected Components Hole Void

/N
0

Bo=2,81=0,58=0 bo=1681=1 58=0 bo=1 581=0 58=1




Euler characteristic

Given a shape M the Euler characteristic is

d
Y(M) = Z(—1 )'Bi = #+vertices — #edges + #faces.
i=0



Euler characteristic

Given a shape M the Euler characteristic is

d

x(M) = Z(—1 )'Bi = #vertices — #edges + #faces.
i=0

9
.l




Critical points

NN/~

Maximum Minimum Inflection

AN

(Corner Discontinuity
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Persistent homology: Morse theory

Evolution of homology as birth-death pair.

death
o

) o T birth




Persistent homology: Morse theory

Evolution of homology as birth-death pair.

R Dgmy (f)
a7 .
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<
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Point cloud data

Taken's Wu




Filtration, X,
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Filtration, X




Filtration, X3




Filtration, X4




Filtration, Xs




Filtration, Xg




Persistent homology

Construct a filtration

> &-P-S-&
X3 X4 X5 XG
y

g

Hp(Xo) — Hp(X4) = Hp(X2) = Hp(X3) = Hp(X4) = Hp(Xs) = Hp(XGs)

Images of linear maps (/b;;j . Hp(X;) = Hp(X) induced by inclusion.
Determine when a homology class is born and when it dies.



Metrics on diagrams

| 2-Wasserstein distance

diz(X.Y)2 = inf > |lx - ¢(x)I
xeX

O:X—>Y



Height function: v,




Height function: v»




Persistence homology transform (PHT)

M is simplicial complex in R and v € S%! is a unit vector.
Xk (M, v) captures changes in topology of

M(v),={AeM:x-v<rforall x e A}



Persistence homology transform (PHT)

M is simplicial complex in R and v € S%! is a unit vector.
Xk (M, v) captures changes in topology of

M(v),={AeM:x-v<rforall x e A}

Definition
The persistent homology transform of M € IR¢ is the function

PHT(M) : 841 — 91
v (Xo(M,v), Xy,(M,v)..., Xq-1(M, v)).



Distances

My is the space of finite simplicial complexes in IRY.



Distances

My is the space of finite simplicial complexes in IRY.

The distance between two surfaces My, Mo IS

d
de(M1, Mg) L= Z Loﬂ d(Xk(M1, V),XK(MQ, V))dV.
k=0
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Euler characteristic transform (ECT)

M is simplicial complex in R and v € S%! is a unit vector.
x(M, v) captures changes in topology of

M(v),={AeM:x-v<rforall x e A}

Definition
The Euler characteristic transform of M € R? is the function

ECT(M) : S = [,(R)
v x(M,v).



Euler characteristic curve

Mao LI
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Sufficient statistic

Given X ~ fy € ¥, a statistic T = T(X) is sufficient if for the
parameter @ if for all sets B the probability P[X € B | T(X) = {]
does not depend on &

P[X | T(X) = t,6] = P[X | T(X) = 1.



Sufficient statistic

Given X ~ fy € ¥, a statistic T = T(X) is sufficient if for the
parameter @ if for all sets B the probability P[X € B | T(X) = {]
does not depend on &

P[X | T(X) = t,6] = P[X | T(X) = 1.

For the normal distribution with known variance i = 15 DiXjlsa
sufficient statistic.
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The persistent homology transform is injective when the domain is
My ford = 2, 3.



Sufficiency of the PHT

Theorem (Turner-M-Boyer)

The persistent homology transform is injective when the domain is
My ford = 2, 3.

Corollary (Turner-M-Boyer)

Consider the subspace of shapes M (for k = 2 or 3), piecewise
linear simplicial complexes with at most N vertices. Let f(x;6) be a
density function over My with parameters 6 € © and x € Mk
whose support is contained in some M,’:’. The persistence
homology transform t(X) € C(S%, D°) is a sufficient statistic.
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Sufficiency of the ECT

Theorem (Turner-M-Boyer)

The Euler characteristic transform is injective when the domain is
My ford = 2, 3.

Corollary (Turner-M-Boyer)

Consider the subspace of shapes M (for k = 2 or 3), piecewise
linear simplicial complexes with at most N vertices. Let f(x;6) be a
density function over My with parameters 6 € © and x € Mk
whose support is contained in some M,’:’ . The Euler characteristic
transform t(X) € C(S?, D) is a sufficient statistic.




Exponential family

Given sufficient statistic T(z) = (Ty(x), ..., T4(x))' the exponential
family takes the form

po(Xx) = a(8) h(x) exp(—(0, T(x))),

with (-, -) standard inner product.



Exponential family

Given sufficient statistic T(z) = (Ty(x), ..., T4(x))' the exponential
family takes the form

po(Xx) = a(8) h(x) exp(—(0, T(x))),
with (-, -) standard inner product.

Likelihood model for surfaces Data = (Xj, ..., Xj) S py, Stated as

Lik(Data | ) = ﬁ a(60) h(x;) exp(—(0, T(x;))).
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f(y) = x(M, v) Define the integral of f(y) as F(x) = fOX f(y)dy.
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Exponential family and ECT

Denote the Euler characteristic curve for each direction:
f(y) = x(M, v) Define the integral of f(y) as F(x) = fOX f(y)dy.

This results in K smooth curves {F4, ..., Fk}.

Exponential family model

K
py(Xx) = a(8) h(x) exp (— 2(6’, Fk(x)>].
k=1



The matrix variate normal

Define F = [F1F>--- Fx] as a K X T matrix and

exp (—tr[V-"(F - A)TU~"(F - A)])

p(FI1A.U.V) = ()KL

A models mean
U models covariance between curves
V models covariance between points in a curve.



The matrix variate normal

Define F = [F1F>--- Fx] as a K X T matrix and

exp (—tr[V-"(F - A)TU~"(F - A)])
(27T)KT/2|V\L/2\U\K/2 ’

p(F|AUYV) =

A models mean
U models covariance between curves
V models covariance between points in a curve.

The given n meshes (M, ..., M,;) we can define a likelihood model

n
Lik(M.... My | AU V) = | [ p(F(M) | A, U.V). (4)
=1



Distances without alignment

Theorem (Turner-M)

Letf: S? = Lo(IR) and g : S? — L»>(IR) be the ECT for two finite
simplicial complexes My and My respectively. Both f and g are
generically injective. Let u be the measure on S=. If f.(u) = g.(u),

the push forwards of the measure are equal, then there is some
X € O(3) such that My = X(M;).

The distributions of the Euler characteristic curves are sufficient
statistics.



Picture of heel bone

Figure : Images of a calcaneus from two different angles.



106 primates
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Primate calcanel
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Flgure . Phenetic clustering of phylogenetic groups of primate calcanei (n = 106). 67 genera are represented.
Asterisks indicate groups of extinct taxa. Abbreviations: Str, Strepsirrhines; Plat, platyrrhines; Cerc, Cercopithecoids; Om,
Omomyiforms; Adp, Adapiforms; Pp, parapithecids; Hmn, Hominoids. Note that more primitive prosimian taxa cluster
separately from simians (Om, Adp, Str.). Also note that monkeys (Plat, Cerc, Pp) cluster mainly separately from apes
(Hmn).



Comment from Doug

"In at least one way the method matched shapes with family
groups better than any of the other previous methods... it linked a
Hylobates specimen with the the other ape specimens (pan,
gorilla, pongo, and oreopithecus). Previous both hylobatids (which
ARE apes) always ended up closest to some Alouatta specimens.”



Comparing methods

A. Manually placed landmark data B. Persistent Homology
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C. Automatically placed landmark data
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Can you hear the shape of a drum ?
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Association studies of shape phenotypes




Variation in baboon microbiome networks
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Open problems

(1) Automatic alignment.
(2) Correspondence.

(3) Signal processing theory for surfaces based on Euler
integration.

(5) Maps between networks - relation between behavioral
networks and genetic networks.

(6) Combine the two parts of this talk.
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Simulation procedure

Simulate from
Y =XB + ZU + E,

withZ =1,, B = 0,, and X = 1.



Simulation procedure

Simulate from
Y =XB + ZU + E,

withZ =1,, B = 0,, and X = 1.

Effect of G and R in above equation on inference.

Traits measured on the off-spring of a balanced paternal half-sib
breeding design.



Simulation parameters

# factors R type # traits Sample size
a b C d e f g h ] J
Gand R
# traits 100 100 100 100 100 20 1000 100 100 100
Residual type SFa SF SF Fb Wishart® SF SF SF SF SF
# factors 10 25 50 10 5 10 10 10 10 10
h2 of factorsd 0.5(5) 0.5(15)  0.5(30)  0.5(5) 1.0(5) 0.5(5) 0.9-0.1(5)
0.05) 0.0(10)  0.0(20)  0.0(5) 0.0(5) 0.0(5)
Sample Size
# sires 100 100 100 100 100 100 100 50 100 500
# offspring/sire 10 10 10 10 10 10 10 5 10 10
R — sparse factor.
5 R — factor.
. *°R — Wishart

9 number of heritable factors.



Recovering factors

Scenario Expected Median Range

a 10 10 (10,10)

# factors b 25 25 (23,25)
Cc 50 49 (48,50)

d 10 10 (10,10)

Rtype e NA 56 (44,66)

. f 10 9 (8,11)

# traits g 10 10 (10,10)
h 10 10 (10,10)

Sample size i 10 10 (10,10)
J 10 10 (10,10)
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Trait heritability
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P as a metric space

Alexandrov space bounded from below: Given a geodesic space X
with metric d’ for any geodesic vy : [0,1] — X from X to Y and any
Z eX

d'(Z,y(1)? > td(Z,Y)? + (1 - 1)d'(Z,X)?> —t(1 - t)d'(X, Y)?.



P as a metric space

Alexandrov space bounded from below: Given a geodesic space X
with metric d’ for any geodesic vy : [0,1] — X from X to Y and any
Z eX

d'(Z,y(1)? > td(Z,Y)? + (1 - 1)d'(Z,X)?> —t(1 - t)d'(X, Y)?.

Theorem (Turner-Milyeko-M-Harer)

(D, d,2) is a geodesic space and is a non-negatively curved
Alexandrov space.



Comparison triangles

J

Universe with posdive Universe with negadive curvature.
curvature. Diverging line Lines diverge at ever increasing angles.
converge at great distances. Triangle angles add to less than 180°.
Triangle angles add to more

than 180°.

Universe with no curvature. Lines diverge at
constant angle. Triangle angles add to 180°.



