Modeleing Complex Phenotypes DCM&B seminar

Sayan Mukherjee

Departments of Statistical Science, Computer Science, Mathematics Duke University www.stat.duke.edu/~sayan Part I – DE. Runcie (UC Davis) Part II – K. Turner (U Chicago), D. Boyer (Duke)

Nov 12, 2014

(1) Bayesian sparse factor model to estimate genetic covariance.

(1) Bayesian sparse factor model to estimate genetic covariance.

(2) Quantitative genetics of shapes.

Quantitative genetics

Genetics of multiple traits

Phenotypic traits are often considered individually

Linda Strausbaugh (Genetics 147:5, 1997)

Genetics of multiple traits

Phenotypic traits are often considered individually

Linda Strausbaugh (Genetics 147:5, 1997)

Important phenotypes often involve many traits

BBC

Some objectives in quantitative genetics

Partition total phenotypic (trait) variation into genetic and environmental components.

$\mathbf{P} = \mathbf{G} + \mathbf{E}$.

G-matrix: matrix of genetic covariance among traits, G. E-matrix: matrix covariance among traits due to environment **E**.

Some objectives in quantitative genetics

Partition total phenotypic (trait) variation into genetic and environmental components.

$\mathbf{P} = \mathbf{G} + \mathbf{E}$.

G-matrix: matrix of genetic covariance among traits, G. E-matrix: matrix covariance among traits due to environment **E**.

Broad-sense heritability = genetic effects on phenotype, can be further partitioned into additive, dominant, and interaction effects.

Lande's equation

Only the additive effects can be passed from parent to offsping: narrow-sense heritability, h^2

Fisher's fundamental theorem (1930):

"The rate of increase in fitness of any organism at any time is equal to its genetic variance in fitness at that time."

Lande's equation

Only the additive effects can be passed from parent to offsping: narrow-sense heritability, h^2

Fisher's fundamental theorem (1930):

"The rate of increase in fitness of any organism at any time is equal to its genetic variance in fitness at that time."

Lande or breeder's equation:

$$R = h^2 s$$
,

R - response to selection, *S* - selection differential.

Multivariate Lande's equation

G: matrix of additive genetic covariance among traits, G

Multivariate Lande's equation

G: matrix of additive genetic covariance among traits, **G**

Lande or breeder's equation:

 $\Delta \mathbf{y} = \mathbf{Gs}$

 $\mathbf{Y} \sim \mathbf{N}_p$: traits are multivariate normal $\mathbf{s} = \frac{\partial F(\bar{\mathbf{Y}})}{\partial \mathbf{v}}$: selection gradient.

(1) Pairwise covariances followed by clustering – Ayroles and Stone.

- (1) Pairwise covariances followed by clustering Ayroles and Stone.
- (2) Methods based on moments estimators Hine and Blows, McGraw.

- (1) Pairwise covariances followed by clustering Ayroles and Stone.
- (2) Methods based on moments estimators Hine and Blows, McGraw.
- (3) Linear mixed effects models Henderson, Kruuk, Kirkpatrick and Meyer, De Los Campos and Gianola.

- (1) Pairwise covariances followed by clustering Ayroles and Stone.
- (2) Methods based on moments estimators Hine and Blows, McGraw.
- (3) Linear mixed effects models Henderson, Kruuk, Kirkpatrick and Meyer, De Los Campos and Gianola.
- LMM model that scales to thousands of traits.

Genetics of many traits

╋

Today we can measure thousands of traits simultaneously

Genome-wide gene expression **Proteomics / metabolomics** morphometrics genotype-environment interactions

New methods are necessary to take advantage of these data

Goal:

Reduce high-dimensional data to its underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or complex pedigrees

Be scalable to large numbers of traits

Ayroles et al 2009

Goal:

Reduce high-dimensional data to its underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or complex pedigrees

Be scalable to large numbers of traits

Methods: Bayesian dimension reduction

Sparse estimation of the **G** matrix based on an animal model

Ayroles et al 2009

Goal:

Reduce high-dimensional data to its underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or complex pedigrees

Be scalable to large numbers of traits

Methods: Bayesian dimension reduction

Sparse estimation of the **G** matrix based on an animal model

Case study:

An application to *Drosophila* gene expression data

Ayroles et al 2009

Quantitative Genetics of Gene Expression

Gene expression is a readout of cellular activities

Metabolism, and cell-signaling activity is difficult to measure but may be key determinants of fitness

Animal model for multiple traits

Animal model for multiple traits

Sparsity assumptions are key for high-dimensional data

Loadings matrix

Sparsity assumptions are key for high-dimensional data

Few underlying pathways = few parameters to estimate

Loadings matrix

Sparsity assumptions are key for high-dimensional data

Few underlying pathways = few parameters to estimate

Few effects per pathway = pathways are robust and interpretable

Loadings matrix

Posterior Likelihood Prior $p(\mathbf{G} \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \mathbf{G})\pi(\mathbf{G})}{p(\mathbf{Y})}$

Bayes' Theorem

Animal model likelihood

 $p(\mathbf{Y} | \mathbf{G}) \quad \mathbf{y}_i \sim N(\mathbf{x}_i \mathbf{b} + \mathbf{u}_i, \mathbf{R})$

n

For a single trait

 $\mathbf{y}_i = \mathbf{X}\mathbf{b}_i + \mathbf{Z}\mathbf{u}_i + \mathbf{e}_i,$

For a single trait

$$\mathbf{y}_i = \mathbf{X}\mathbf{b}_i + \mathbf{Z}\mathbf{u}_i + \mathbf{e}_i,$$

y_{*i*}: vector of measurements of trait *i*

For a single trait

$$\mathbf{y}_i = \mathbf{X}\mathbf{b}_i + \mathbf{Z}\mathbf{u}_i + \mathbf{e}_i,$$

y_{*i*}: vector of measurements of trait *i*

b_{*i*}: vector of fixed effects and environmental covariates of trait *i*

$$\mathbf{y}_i = \mathbf{X}\mathbf{b}_i + \mathbf{Z}\mathbf{u}_i + \mathbf{e}_i,$$

- **y**_{*i*}: vector of measurements of trait *i*
- **b**_{*i*}: vector of fixed effects and environmental covariates of trait *i*
- X: design matrix

$$\mathbf{y}_i = \mathbf{X}\mathbf{b}_i + \mathbf{Z}\mathbf{u}_i + \mathbf{e}_i,$$

- \mathbf{y}_i : vector of measurements of trait *i*
- **b**_{*i*}: vector of fixed effects and environmental covariates of trait *i*
- X: design matrix
- \mathbf{u}_i : random additive genetic effects with known covariance $\sigma_i^2 \mathbf{A}$

$$\mathbf{y}_i = \mathbf{X}\mathbf{b}_i + \mathbf{Z}\mathbf{u}_i + \mathbf{e}_i,$$

- \mathbf{y}_i : vector of measurements of trait *i*
- **b**_{*i*}: vector of fixed effects and environmental covariates of trait *i*
- X: design matrix
- \mathbf{u}_i : random additive genetic effects with known covariance $\sigma_i^2 \mathbf{A}$
- **Z**: relates random effects to observations

$$\mathbf{y}_i = \mathbf{X}\mathbf{b}_i + \mathbf{Z}\mathbf{u}_i + \mathbf{e}_i,$$

- \mathbf{y}_i : vector of measurements of trait *i*
- **b**_{*i*}: vector of fixed effects and environmental covariates of trait *i*
- **X**: design matrix
- \mathbf{u}_i : random additive genetic effects with known covariance $\sigma_i^2 \mathbf{A}$
- **Z**: relates random effects to observations
- e_i : error independent to random effects.

For *p* traits

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$

For *p* traits

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$

Y: $n \times p$ vector of measured traits

For *p* traits

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$

Y: $n \times p$ vector of measured traits $\mathbf{U} = [\mathbf{u}_1, ..., \mathbf{u}_p]$: $\mathbf{U} \sim MN_{r,p}(\mathbf{0}, \mathbf{A}, \mathbf{G})$

For *p* traits

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$

 $\begin{aligned} \mathbf{Y}: n \times p \text{ vector of measured traits} \\ \mathbf{U} &= [\mathbf{u}_1, ..., \mathbf{u}_p] : \quad \mathbf{U} \sim \mathrm{MN}_{r,p}(\mathbf{0}, \mathbf{A}, \mathbf{G}) \\ \mathbf{E} &= [\mathbf{e}_1, ..., \mathbf{e}_p] : \quad \mathbf{E} \sim \mathrm{MN}_{n,p}(\mathbf{0}, \mathbf{I}_n, \mathbf{R}) \end{aligned}$

For *p* traits

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$

- $$\begin{split} \textbf{Y}: n \times p \text{ vector of measured traits} \\ \textbf{U} &= [\textbf{u}_1, ..., \textbf{u}_p] : \quad \textbf{U} \sim \text{MN}_{r,p}(\textbf{0}, \textbf{A}, \textbf{G}) \\ \textbf{E} &= [\textbf{e}_1, ..., \textbf{e}_p] : \quad \textbf{E} \sim \text{MN}_{n,p}(\textbf{0}, \textbf{I}_n, \textbf{R}) \end{split}$$
- **G**: $p \times p$ genetic covariance matrix **A**: rank $r \leq n$ matrix of relatedness

For *p* traits

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$

- $$\begin{split} \textbf{Y}: n \times p \text{ vector of measured traits} \\ \textbf{U} &= [\textbf{u}_1, ..., \textbf{u}_p] : \quad \textbf{U} \sim \text{MN}_{r,p}(\textbf{0}, \textbf{A}, \textbf{G}) \\ \textbf{E} &= [\textbf{e}_1, ..., \textbf{e}_p] : \quad \textbf{E} \sim \text{MN}_{n,p}(\textbf{0}, \textbf{I}_n, \textbf{R}) \end{split}$$
- **G**: $p \times p$ genetic covariance matrix **A**: rank $r \leq n$ matrix of relatedness **E**: $p \times p$ residual covariance matrix

For *p* traits

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$

- $\begin{aligned} \mathbf{Y} \colon n \times p \text{ vector of measured traits} \\ \mathbf{U} &= \begin{bmatrix} \mathbf{u}_1, ..., \mathbf{u}_p \end{bmatrix} \colon \quad \mathbf{U} \sim \mathsf{MN}_{r,p}(\mathbf{0}, \mathbf{A}, \mathbf{G}) \\ \mathbf{E} &= \begin{bmatrix} \mathbf{e}_1, ..., \mathbf{e}_p \end{bmatrix} \colon \quad \mathbf{E} \sim \mathsf{MN}_{n,p}(\mathbf{0}, \mathbf{I}_n, \mathbf{R}) \end{aligned}$
- **G**: $p \times p$ genetic covariance matrix **A**: rank $r \leq n$ matrix of relatedness **E**: $p \times p$ residual covariance matrix

$$p(\mathbf{V} \mid \mathbf{M}, \mathbf{\Omega}, \mathbf{\Sigma}) = rac{\exp\left(-rac{1}{2} \mathrm{tr} [\mathbf{\Omega}^{-1/2} (\mathbf{V} - \mathbf{M})^T \mathbf{\Sigma}^{-1/2} (\mathbf{V} - \mathbf{M})^T \mathbf{\Sigma}^{-1/2} (\mathbf{U} \mid \mathbf{M}, \mathbf{\Omega}, \mathbf{\Sigma}) + rac{1}{2} (2\pi)^{np/2} |\mathbf{\Omega}|^{n/2} |\mathbf{\Sigma}|^{p/2} \mathbf{U}|^{n/2} |\mathbf{U}|^{n/2} |\mathbf{U}|^{n/2$$

$\frac{(V - M)]}{2}$

Model k latent traits that linearly relate to observed traits.

Specification of **U** and **E**.

$$egin{aligned} & m{U} = m{F}_a m{\Lambda}^T + m{\Delta}, & m{E} = m{F}_e m{\Lambda}^T + m{\Xi} \ & m{F}_a &\sim \mathrm{MN}_{r,k}(m{0},m{A},m{\Sigma}_a), & m{F}_e &\sim \mathrm{MN}_{n,k}(m{0},\ & m{\Delta} &\sim \mathrm{MN}_{r,p}(m{0},m{A},m{\Psi}_a), & m{\Xi} &\sim \mathrm{MN}_{n,p}(m{0},m{I}_r) \ & m{\Lambda} &\sim \pi(m{ heta}), \end{aligned}$$

I_n, **Σ**_e) $_{n}, \mathbf{\Psi}_{e})$

(1)

Partition of variation and heritability

 F_a and F_e among-individual variation in the latent traits. Σ_a and Σ_e model within individual covariance of the factors:

$$\mathbf{\Sigma}_{a} = \text{Diag}(\sigma_{a_{j}}^{2}), \mathbf{\Sigma}_{e} = \text{Diag}(\sigma_{e_{j}}^{2}).$$

Partition of variation and heritability

 \mathbf{F}_a and \mathbf{F}_e among-individual variation in the latent traits. Σ_a and Σ_e model within individual covariance of the factors:

$$\mathbf{\Sigma}_{a} = \text{Diag}(\sigma_{a_{j}}^{2}), \mathbf{\Sigma}_{e} = \text{Diag}(\sigma_{e_{j}}^{2}).$$

 Λ is not identifiable without constraints (rotation and scaling). Column variances sum to one

$$\Sigma_a + \Sigma_e = I_k, \quad \Sigma_{h^2} = \Sigma_a = I_k - \Sigma_e$$

Narrow sense heritability

$$h_j^2 = rac{\sigma_{a_j}^2}{\sigma_{a_j}^2 + \sigma_{e_j}^2} = \sigma_{a_j}^2.$$

Partition of variance by factors

Recovering **G** and **R**

$$\begin{split} \mathbf{G} &= \mathbf{\Lambda} \mathbf{\Sigma}_{h^2} \mathbf{\Lambda}^T + \mathbf{\Psi}_a, \\ \mathbf{R} &= \mathbf{\Lambda} (\mathbf{I}_k - \mathbf{\Sigma}_{h^2}) \mathbf{\Lambda}^T + \mathbf{\Psi}_e. \end{split}$$

(2)

Partition of variance by factors

Recovering **G** and **R**

$$\mathbf{G} = \mathbf{\Lambda} \mathbf{\Sigma}_{h^2} \mathbf{\Lambda}^T + \mathbf{\Psi}_a,$$
$$\mathbf{R} = \mathbf{\Lambda} (\mathbf{I}_k - \mathbf{\Sigma}_{h^2}) \mathbf{\Lambda}^T + \mathbf{\Psi}_e.$$

Total phenotypic covariance $\mathbf{P} = \mathbf{G} + \mathbf{R}$:

 $\mathbf{P} = \mathbf{\Lambda}\mathbf{\Lambda}^{T} + \mathbf{\Psi}_{a} + \mathbf{\Psi}_{e}.$

(2)

(3)

Constraints of **G** and **R**

Informative priors on covariance matrices

(1) Limited number of pathways are relevant for trait variation or number of factors is low, $k \ll p$.

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

$$\pi(\mathbf{G}) = \pi \left(\Lambda \Lambda^T + \Sigma_{\mathbf{e}} \right)$$

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

$$\pi(\mathbf{G}) = \pi \left(\Lambda \Lambda^T + \Sigma_{\mathbf{e}} \right)$$

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

$$\pi(\mathbf{G}) = \pi \left(\Lambda \Lambda^T + \Sigma_{\mathbf{e}}\right)$$

 $\Sigma_{\mathbf{e}}$

factors

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

$$\pi(\mathbf{G}) = \pi \left(\Lambda \Lambda^T + \Sigma_{\mathbf{e}}\right)$$

factors

 $\Sigma_{\mathbf{e}}$

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

$$\pi(\mathbf{G}) = \pi \left(\Lambda \Lambda^T + \Sigma_{\mathbf{e}}\right)$$

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

$$\pi(\mathbf{G}) = \pi \left(\Lambda \Lambda^T + \Sigma_{\mathbf{e}}\right)$$

Prior specification on Λ

Based on (Bhattacharya and Dunson, 2011)

$$\lambda_{im} \mid \phi_{im}, \tau_m \sim N\left(0, \phi_{im}^{-1} \tau_m^{-1}\right)$$

$$\phi_{im} \sim Ga(\nu/2, \nu/2),$$

$$\tau_m = \prod_{\ell=1}^m \delta_\ell,$$

$$\delta_1 \sim Ga(a_1, b_1),$$

$$\delta_\ell \sim Ga(a_2, b_2) \text{ for } \ell = 2, ..., k.$$

Heritability prior (Zhou and Stephens, pers. comm.)

$$\pi(h_i^2 = \ell/n_h) = 1/n_h$$
, where $\ell = 0...($

Prior specification on Λ

Based on (Bhattacharya and Dunson, 2011)

$$\lambda_{im} \mid \phi_{im}, \tau_m \sim N\left(0, \phi_{im}^{-1} \tau_m^{-1}\right)$$

$$\phi_{im} \sim Ga(\nu/2, \nu/2),$$

$$\tau_m = \prod_{\ell=1}^m \delta_\ell,$$

$$\delta_1 \sim Ga(a_1, b_1),$$

$$\delta_\ell \sim Ga(a_2, b_2) \text{ for } \ell = 2, ..., k.$$

Heritability prior (Zhou and Stephens, pers. comm.)

$$\pi(h_i^2=\ell/n_h)=1/n_h,$$
 where $\ell=0\dots(n_h)$

Remaining variables: $\mathbf{B}_{ij} \sim N(0, \sigma^2 > 10^6)$, $(\Psi_u, \Psi_e) \sim IG$.

As a demonstration, we collected gene expression from:

Ayroles et al (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet, 41, 299-307.

40 lines of *D. melanogaster*

gene expression of >10,000 genes

Phenotype data on 7 fitness-related traits

We ran our genetic factor model on the 355 genes correlated with Starvation Resistance

We ran our genetic factor model on the 355 genes correlated with Starvation Resistance

Our estimate of genetic (line) correlations is very similar to the estimate by Ayroles et al.

We ran our genetic factor model on the 355 genes correlated with Starvation Resistance

Our estimate of genetic (line) correlations is very similar to the estimate by Ayroles et al.

> We fit >60,000 covariances with fewer than 4,000 parameters We recover a true covariance matrix

We estimate that the genetic covariation in expression could be explained by 9 factors

Factor 1 is dense but the remainder are very sparse.

We estimate that the genetic covariation in expression could be explained by 9 factors

Factor 1 is dense but the remainder are very sparse.

Genes related to defense and immune responses

We can measure genetic covariances with Starvation Resistance

95% Posterior credible intervals
Case study: Drosophila gene expression

We can measure genetic covariances with Starvation Resistance But have more power to identify covariances with underlying traits

95% Posterior credible intervals

Expression profiles of 414 genes and measures of competitive fitness of 40 wild-derived lines of *Drosophila melanogaster* from Ayroles et. al. 2009.

Ccompetitive fitness – percentage of offspring bearing a line's genotype given original proportion of the line.

Fixed effect of sex and random effects of the sex:line interaction were modeled.

Drosophila results

Software and paper

(1) Software:

http://www.stat.duke.edu/~sayan/bfgr/index.shtml

Software and paper

(1) Software:

http://www.stat.duke.edu/~sayan/bfgr/index.shtml

(2) Paper:

Dissecting High-Dimensional Phenotypes with Bayesian Sparse Factor Analysis of Genetic Covariance Matrices, Runcie and Mukherjee, Genetics, **194**:3, 753–767.

(1) Problems estimating the number of factors.

- (1) Problems estimating the number of factors.
- (2) Develop distance metrics for covariance matrices or subspaces.

- (1) Problems estimating the number of factors.
- (2) Develop distance metrics for covariance matrices or subspaces.
- (3) Response to selection

$$\Delta \mathbf{\bar{y}} = \Lambda_{u_{/p^*}} \Lambda_{u_{p^*}}^T.$$

- (1) Problems estimating the number of factors.
- (2) Develop distance metrics for covariance matrices or subspaces.
- (3) Response to selection

$$\Delta \mathbf{\bar{y}} = \Lambda_{u_{/p^*}} \Lambda_{u_{p^*}}^T.$$

(4) Percentage genetic variation in fitness by measured traits

$$1 - \Psi_{u_{p^*}} / \mathbf{G}_{p^*, p^*}.$$

- (1) Problems estimating the number of factors.
- (2) Develop distance metrics for covariance matrices or subspaces.
- (3) Response to selection

$$\Delta \mathbf{\bar{y}} = \Lambda_{u_{/p^*}} \Lambda_{u_{p^*}}^T.$$

(4) Percentage genetic variation in fitness by measured traits

$$1-\Psi_{u_{p^*}}/\mathbf{G}_{p^*,p^*}.$$

(5) Incorporation with GWAS.

- (1) Problems estimating the number of factors.
- (2) Develop distance metrics for covariance matrices or subspaces.
- (3) Response to selection

$$\Delta \mathbf{\bar{y}} = \Lambda_{u_{/p^*}} \Lambda_{u_{p^*}}^T.$$

(4) Percentage genetic variation in fitness by measured traits

$$1 - \Psi_{u_{p^*}} / \mathbf{G}_{p^*, p^*}.$$

(5) Incorporation with GWAS. (6) Discrete traits and time varying traits.

Homology on homology

Morphology

From D. Boyer.

Distance between heel bones across primates for evolutionary analysis.

Algorithms to automatically quantify the geometric similarity of anatomical surfaces, Boyer et. al. PNAS 2011.

Geometric algorithm

Topological methods

What happens when the shapes are not isomorphic ?

Topological methods

Broken claw tips.

Use integral geometry

- (1) Hadwiger integrals
- (2) Minkowski functionals
- (3) Euler integration
- (4) Radon transform.

Betti numbers

Euler characteristic

Given a shape *M* the Euler characteristic is

$$\chi(M) = \sum_{i=0}^{d} (-1)^{i} \beta_{i} = \# \text{vertices} - \# \text{edges}$$

+ #faces.

Euler characteristic

Given a shape *M* the Euler characteristic is

$$\chi(M) = \sum_{i=0}^{d} (-1)^{i} \beta_{i} = \#$$
vertices – $\#$ edges

+ #faces.

Critical points

Evolution of homology as birth-death pair.

$\operatorname{Dgm}_0(f)$

Evolution of homology as birth-death pair.

$\operatorname{Dgm}_0(f)$

Point cloud data

Filtration, X_0

Persistent homology

Construct a filtration

$$H_p(\mathbb{X}_0) \to H_p(\mathbb{X}_1) \to H_p(\mathbb{X}_2) \to H_p(\mathbb{X}_3) \to H_p(\mathbb{X}_4) \to$$

Images of linear maps $\phi_p^{i,j} : H_p(\mathbb{X}_i) \to H_p(\mathbb{X}_j)$ induced by inclusion. Determine when a homology class is born and when it dies.

$H_{\rho}(\mathbb{X}_5) \to H_{\rho}(\mathbb{X}_6)$

Metrics on diagrams

L²-Wasserstein distance

$$d_{L^2}(X,Y)^2 = \inf_{\phi:X o Y} \sum_{x\in X} ||x-\phi(x)|$$

2

Height function: *v*₁

Height function: *v*₂

Persistence homology transform (PHT)

M is simplicial complex in \mathbb{R}^d and $v \in S^{d-1}$ is a unit vector. $X_k(M, v)$ captures changes in topology of

 $M(v)_r = \{\Delta \in M : x \cdot v \leq r \text{ for all } x \in \Delta\}.$

Persistence homology transform (PHT)

M is simplicial complex in \mathbb{R}^d and $v \in S^{d-1}$ is a unit vector. $X_k(M, v)$ captures changes in topology of

$$M(v)_r = \{\Delta \in M : x \cdot v \leq r \text{ for all } x \in M\}$$

Definition

The persistent homology transform of $M \in \mathbb{R}^d$ is the function

$$\mathsf{PHT}(M) : S^{d-1} \to \mathcal{D}^{d-1}$$
$$v \mapsto (X_0(M, v), X_1, (M, v) \dots, A_{d-1})$$

$\in \Delta$ }.

$X_{d-1}(M, v)).$

\mathcal{M}_d is the space of finite simplicial complexes in \mathbb{R}^d .

\mathcal{M}_d is the space of finite simplicial complexes in \mathbb{R}^d .

The distance between two surfaces M_1 , M_2 is

$$d_{\mathcal{M}_d}(M_1, M_2) := \sum_{k=0}^d \int_{S^{d-1}} d(X_k(M_1, v), X_k(v))$$

$(M_2, v))dv.$

Euler characteristic transform (ECT)

M is simplicial complex in \mathbb{R}^d and $v \in S^{d-1}$ is a unit vector. $\chi(M, v)$ captures changes in topology of

 $M(v)_r = \{\Delta \in M : x \cdot v \leq r \text{ for all } x \in \Delta\}.$

Euler characteristic transform (ECT)

M is simplicial complex in \mathbb{R}^d and $v \in S^{d-1}$ is a unit vector. $\chi(M, v)$ captures changes in topology of

 $M(v)_r = \{\Delta \in M : x \cdot v \leq r \text{ for all } x \in \Delta\}.$

Definition The Euler characteristic transform of $M \in \mathbb{R}^d$ is the function

$$\mathsf{ECT}(M): S^{d-1} \to L_2(\mathbb{R})$$
$$v \mapsto \chi(M, v).$$

Euler characteristic curve

Mao Li

Sufficient statistic

Given $X \sim f_{\theta} \in \mathcal{F}$, a statistic T = T(X) is sufficient if for the parameter θ if for all sets *B* the probability $\mathbb{P}[X \in B \mid T(X) = t]$ does not depend on θ

 $\mathbb{P}[X \mid T(X) = t, \theta] = \mathbb{P}[X \mid T(X) = t].$

Sufficient statistic

Given $X \sim f_{\theta} \in \mathcal{F}$, a statistic T = T(X) is sufficient if for the parameter θ if for all sets *B* the probability $\mathbb{P}[X \in B \mid T(X) = t]$ does not depend on θ

$$\mathbb{P}[X \mid T(X) = t, \theta] = \mathbb{P}[X \mid T(X) =$$

For the normal distribution with known variance $\hat{\mu} = \frac{1}{n} \sum_{i} x_{i}$ is a sufficient statistic.

= *t*].

Sufficiency of the PHT

Theorem (Turner-M-Boyer) The persistent homology transform is injective when the domain is \mathcal{M}_d for d = 2, 3.

Sufficiency of the PHT

Theorem (Turner-M-Boyer)

The persistent homology transform is injective when the domain is \mathcal{M}_d for d = 2, 3.

Corollary (Turner-M-Boyer)

Consider the subspace of shapes \mathcal{M}_{k}^{N} (for k = 2 or 3), piecewise linear simplicial complexes with at most N vertices. Let $f(x; \theta)$ be a density function over \mathcal{M}_k with parameters $\theta \in \Theta$ and $x \in \mathcal{M}_k$ whose support is contained in some \mathcal{M}_{k}^{N} . The persistence homology transform $t(X) \in C(S^2, \mathcal{D}^3)$ is a sufficient statistic.

Sufficiency of the ECT

Theorem (Turner-M-Boyer) The Euler characteristic transform is injective when the domain is \mathcal{M}_d for d = 2, 3.

Sufficiency of the ECT

Theorem (Turner-M-Boyer)

The Euler characteristic transform is injective when the domain is \mathcal{M}_d for d = 2, 3.

Corollary (Turner-M-Boyer)

Consider the subspace of shapes \mathcal{M}_{k}^{N} (for k = 2 or 3), piecewise linear simplicial complexes with at most N vertices. Let $f(x; \theta)$ be a density function over \mathcal{M}_k with parameters $\theta \in \Theta$ and $x \in \mathcal{M}_k$ whose support is contained in some \mathcal{M}_k^N . The Euler characteristic transform $t(X) \in C(S^2, \mathcal{D}^3)$ is a sufficient statistic.

Exponential family

Given sufficient statistic $T(z) = (T_1(x), ..., T_d(x))^T$ the exponential family takes the form

$$p_{\theta}(x) = a(\theta) h(x) \exp(-\langle \theta, T(x) \rangle)$$

with $\langle \cdot, \cdot \rangle$ standard inner product.

),

Exponential family

Given sufficient statistic $T(z) = (T_1(x), ..., T_d(x))^T$ the exponential family takes the form

$$p_{\theta}(x) = a(\theta) h(x) \exp(-\langle \theta, T(x) \rangle),$$

with $\langle \cdot, \cdot \rangle$ standard inner product.

Likelihood model for surfaces Data $\equiv (X_1, ..., X_n) \stackrel{iid}{\sim} p_{\theta}$, stated as

$$Lik(Data \mid \theta) = \prod_{i=1}^{n} a(\theta) h(x_i) \exp(-\langle \theta,$$

 $T(x_i)\rangle$).

Exponential family and ECT

Denote the Euler characteristic curve for each direction: $f(y) = \chi(M, v)$ Define the integral of f(y) as $F(x) = \int_0^x f(y) dy$.

Exponential family and ECT

Denote the Euler characteristic curve for each direction: $f(y) = \chi(M, v)$ Define the integral of f(y) as $F(x) = \int_0^x f(y) dy$.

This results in K smooth curves $\{F_1, ..., F_K\}$.

Exponential family and ECT

Denote the Euler characteristic curve for each direction: $f(y) = \chi(M, v)$ Define the integral of f(y) as $F(x) = \int_0^x f(y) dy$.

This results in K smooth curves $\{F_1, ..., F_K\}$.

Exponential family model

$$p_{ heta}(x) = a(heta) h(x) \exp \left(-\sum_{k=1}^{K} \langle heta, F_k(x) \rangle \right)$$

The matrix variate normal

Define $\mathbf{F} = [F_1 F_2 \cdots F_K]$ as a $K \times T$ matrix and $p(\mathbf{F} \mid \mathbf{A}, \mathbf{U}, \mathbf{V}) = \frac{\exp\left(-\frac{1}{2}\mathrm{tr}[\mathbf{V}^{-1}(\mathbf{F} - \mathbf{A})^{T}\mathbf{U}^{-1}(\mathbf{F} - \mathbf{A})]\right)}{(2\pi)^{KT/2}|\mathbf{V}|^{L/2}|\mathbf{U}|^{K/2}},$

A models mean **U** models covariance between curves V models covariance between points in a curve.

The matrix variate normal

Define
$$\mathbf{F} = [F_1 F_2 \cdots F_K]$$
 as a $K \times T$ matrix and
 $p(\mathbf{F} \mid \mathbf{A}, \mathbf{U}, \mathbf{V}) = rac{\exp\left(-rac{1}{2} \operatorname{tr}[\mathbf{V}^{-1}(\mathbf{F} - \mathbf{A})^T \mathbf{U}^{-1}]\right)}{(2\pi)^{KT/2} |\mathbf{V}|^{L/2} |\mathbf{U}|^{K/2}}$

A models mean **U** models covariance between curves V models covariance between points in a curve.

The given *n* meshes $(M_1, ..., M_n)$ we can define a likelihood model

$$\mathsf{Lik}(M_1,...,M_n \mid \mathbf{A},\mathbf{U},\mathbf{V}) = \prod_{i=1}^n p(\mathbf{F}(M_i) \mid A_i)$$

A, **U**, **V**), (4)

Distances without alignment

Theorem (Turner-M)

Let $f: S^2 \to L_2(\mathbb{R})$ and $g: S^2 \to L_2(\mathbb{R})$ be the ECT for two finite simplicial complexes M_f and M_g respectively. Both f and g are generically injective. Let μ be the measure on S². If $f_*(\mu) = g_*(\mu)$, the push forwards of the measure are equal, then there is some $X \in O(3)$ such that $M_a = X(M_f)$.

The distributions of the Euler characteristic curves are sufficient statistics.

Picture of heel bone

Figure : Images of a calcaneus from two different angles.

106 primates

Primate calcanei

Figure : Phenetic clustering of phylogenetic groups of primate calcanei (n = 106). 67 genera are represented. Asterisks indicate groups of extinct taxa. Abbreviations: Str, Strepsirrhines; Plat, platyrrhines; Cerc, Cercopithecoids; Om, Omomyiforms; Adp, Adapiforms; Pp, parapithecids; Hmn, Hominoids. Note that more primitive prosimian taxa cluster separately from simians (Om, Adp, Str.). Also note that monkeys (Plat, Cerc, Pp) cluster mainly separately from apes (Hmn).

Comment from Doug

"In at least one way the method matched shapes with family groups better than any of the other previous methods... it linked a Hylobates specimen with the the other ape specimens (pan, gorilla, pongo, and oreopithecus). Previous both hylobatids (which ARE apes) always ended up closest to some Alouatta specimens."

Comparing methods

C. Automatically placed landmark data

Can you hear the shape of a drum ?

Mao Li

Association studies of shape phenotypes

Variation in baboon microbiome networks

(1) Automatic alignment.

- (1) Automatic alignment.
- (2) Correspondence.

- (1) Automatic alignment.
- (2) Correspondence.
- (3) Signal processing theory for surfaces based on Euler integration.

- (1) Automatic alignment.
- (2) Correspondence.
- (3) Signal processing theory for surfaces based on Euler integration.
- (5) Maps between networks relation between behavioral networks and genetic networks.

- (1) Automatic alignment.
- (2) Correspondence.
- (3) Signal processing theory for surfaces based on Euler integration.
- (5) Maps between networks relation between behavioral networks and genetic networks.
- (6) Combine the two parts of this talk.

Acknowledgements

Thanks !!

Acknowledgements

Thanks !!

Funding:

- Center for Systems Biology at Duke
- NSF DMS and CCF
- DARPA
- AFOSR
- ► NIH

Simulation procedure

Simulate from

 $\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$

with $\mathbf{Z} = \mathbf{I}_n$, $\mathbf{B} = \mathbf{0}_p$, and $\mathbf{X} = \mathbf{1}$.

Simulation procedure

Simulate from $\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E},$ with $\mathbf{Z} = \mathbf{I}_n$, $\mathbf{B} = \mathbf{0}_p$, and $\mathbf{X} = \mathbf{1}$.

Effect of **G** and **R** in above equation on inference.

Traits measured on the off-spring of a balanced paternal half-sib breeding design.

Simulation parameters

	# factors			R type		# traits		Sample size		
	а	b	С	d	е	f	g	h	i	j
G and R										
# traits	100	100	100	100	100	20	1000	100	100	100
Residual type	SF ^a	SF	SF	F^b	Wishart ^c	SF	SF	SF	SF	SF
# factors	10	25	50	10	5	10	10	10	10	10
h? of to staved	0.5(5)	0.5(15)	0.5(30)	0.5(5)	1.0(5)	0.5(5)		0.9-0.1(5)		
n- or lactors	0.0(5)	0.0(10)	0.0(20)	0.0(5)		0.0(5)		0.0(5)		
Sample Size										
# sires	100	100	100	100	100	100	100	50	100	500
<pre># offspring/sire</pre>	10	10	10	10	10	10	10	5	10	10

^{*a*} \mathbf{R} – sparse factor.

^b \mathbf{R} – factor.

. ^c **R** – Wishart

^d number of heritable factors.

Recovering factors

Scenario		Expected	Median	Range	
# factors	a	10	10	(10,10)	
	b	25	25	(23,25)	
	c	50	49	(48,50)	
R type	d	10	10	(10,10)	
	e	NA	56	(44,66)	
# traits	f	10	9	(8,11)	
	g	10	10	(10,10)	
Sample size	h	10	10	(10,10)	
	i	10	10	(10,10)	
	j	10	10	(10,10)	

Factor heritability

Trait heritability

\mathcal{D} as a metric space

Alexandrov space bounded from below: Given a geodesic space Xwith metric d' for any geodesic $\gamma : [0, 1] \rightarrow \mathbb{X}$ from X to Y and any $Z \in \mathbb{X}$

 $d'(Z, \gamma(t))^2 \ge td'(Z, Y)^2 + (1-t)d'(Z, X)^2 - t(1-t)d'(X, Y)^2.$

\mathcal{D} as a metric space

Alexandrov space bounded from below: Given a geodesic space Xwith metric d' for any geodesic $\gamma : [0, 1] \rightarrow \mathbb{X}$ from X to Y and any $Z \in \mathbb{X}$

$d'(Z, \gamma(t))^2 \ge td'(Z, Y)^2 + (1-t)d'(Z, X)^2 - t(1-t)d'(X, Y)^2.$

Theorem (Turner-Milyeko-M-Harer)

 (\mathcal{D}, d_{1^2}) is a geodesic space and is a non-negatively curved Alexandrov space.

Comparison triangles

Universe with *positive* curvature. Diverging line converge at great distances. Triangle angles add to more than 180°.

Universe with *negative* curvature. Lines diverge at ever increasing angles. Triangle angles add to less than 180°.

Universe with no curvature. Lines diverge at constant angle. Triangle angles add to 180°.