
USEFUL PROPERTIES OF THE MULTIVARIATE
NORMAL*

3.1. Conditionals and marginals

For Bayesian analysis it is very useful to understand how to write joint, marginal,
and conditional distributions for the multivariate normal.

Given a vector x ∈ IRp the multivariate normal density is

f(x) =
1

(2π)p/2|Σ|1/2 exp
(

−1
2
(x− µ)TΣ−1(x− µ)

)

.

Now split the vector into two parts

x =

[

x1
x2

]

, µ =

[

µ1
µ2

]

, of size

[

q × 1
(p− q)× 1

]

,

and

Σ =

[

Σ11 Σ12
Σ21 Σ22

]

, of size

[

q × q q × (p− q)
(p− q)× q (p− q)× (p− q)

]

.

We now state the joint and marginal distributions

x1 ∼ N(µ1,Σ11), x2 ∼ N(µ2,Σ22), x ∼ N(µ,Σ),

and the conditional density

x1 | x2 ∼ N
(

µ1 +Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21

)

.

The same idea holds for other sizes of partitions.

3.2. Conjugate priors

3.2.1. Univariate normals

3.2.1.1. Fixed variance, random mean. We consider the parameter σ2 fixed so we
are interested in the conjugate prior for µ:

π(µ | µ0, σ2) ∝
1

σ0
exp

(

− 1

2σ20
(µ− µ0)

2

)

,

where µ0 and σ2 are hyper-parameters for the prior distribution (when we don’t
have informative prior knowledge we typically consider µ0 = 0 and σ2 large).
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The posterior distribution for x1, ..., xn with a univariate normal likelihood and
the above prior will be

Post(µ | x1, ..., xn) ∼ N

(

σ20
σ2

n + σ20
x̄+

σ2

σ2

n + σ20
µ0,

( 1

σ20
+

n

σ2

)

−1
)

.

3.2.1.2. Fixed mean, random variance. We will formulate this setting with two
parameterizations of the scale parameter: (1) the variance σ2, (2) the precision
τ = 1

σ2 .
The two conjugate distributions are the Gamma and the inverse Gamma (really

they are the same distribution, just reparameterized)

IG(α, β) : f(σ2) =
βα

Γ(α)
(σ2)−α−1 exp(−β(σ2)−1), Ga(α, β) : f(τ) =

βα

Γ(α)
τα−1 exp(−βτ).

The posterior distribution of σ2 is

σ2 | x1, ..., xn ∼ IG
(

α+
n

2
, β +

1

2

∑

(xi − µ)2
)

.

The posterior distribution of τ is not surprisingly

τ | x1, ..., xn ∼ Ga
(

α+
n

2
, β +

1

2

∑

(xi − µ)2
)

.

3.2.1.3. Random mean, random variance. We now put the previous priors together
in what is called a Bayesian hierarchical model:

xi | µ, τ iid∼ N(µ, (τ)−1)

µ | τ ∼ N(µ0, (κ0τ)
−1)

τ ∼ Ga(α, β).

For the above likelihood and priors the posterior distribution for the mean and
precision is

µ | τ, x1, ..., xn ∼ N
(µ0κ0 + nx̄

n+ κ0
, (τ(n+ κ0))

−1
)

τ | x1, ..., xn ∼ Ga
(

α+
n

2
, β +

1

2

∑

(xi − x̄)2 +
n

n+ 1

(x̄− xi)
2

2

)

.

3.2.2. Multivariate normal

Given a vector x ∈ IRp the multivariate normal density is

f(x) =
1

(2π)p/2|Σ|1/2 exp
(

−1
2
(x− µ)TΣ−1(x− µ)

)

.

We will work with the precision matrix instead of the covariance and we will consider
the following Bayesian hierarchical model:

xi | µ,Λ iid∼ N(µ, (Λ)−1)

µ | Λ ∼ N(µ0, (κ0Λ)
−1)

Λ ∼ Wi(Λ0, n0),

the precision matrix is modeled using the Wishart distribution

f(Λ;V, n) =
|Λ|(n−d−1)/2 exp(−.5tr(ΛV −1))

2nd/2|V |n/2Γd(n/2)
.
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For the above likelihood and priors the posterior distribution for the mean and
precision is

µ | Λ, x1, ..., xn ∼ N
(µ0κ0 + nx̄

n+ κ0
, (Λ(n+ κ0))

−1
)

Λ | x1, ..., xn ∼ Wi

(

n0 +
n

2
,Λ0 +

1

2

[

Σ̄ +
κ0

κ0 + n
(x̄− µ0)(x̄− µ0)

T

])

.





LECTURE 4
A Bayesian approach to linear regression

The main motivations behind a Bayesian formalism for inference are a coherent
approach to modeling uncertainty as well as an axiomatic framework for inference.
We will reformulate multivariate linear regression from a Bayesian formulation in
this section.

Bayesian inference involves thinking in terms of probability distributions and
conditional distributions. One important idea is that of a conjugate prior. Another
tool we will use extensively in this class is the multivariate normal distribution and
its properties.

4.1. Conjugate priors

Given a likelihood function p(x | θ) and a prior π(θ) on can write the posterior as

p(θ | x) = p(x | θ)π(θ)
∫

θ′
p(x | θ′)π(θ′) dθ′ =

p(x, θ)

p(x)
,

where p(x) is the marginal density for the data, p(x, θ) is the joint density of the
data and the parameter θ.

The idea of a prior and likelihood being conjugate is that the prior and the
posterior densities belong to the same family. We now state some examples to
illustrate this idea.

Beta, Binomial: Consider the Binomial likelihood with n (the number of
trials) fixed

f(x | p, n) =
(

n

x

)

px(1− p)n−x,

the parameter of interest (the probability of a success) is p ∈ [0, 1]. A natural prior
distribution for p is the Beta distribution which has density

π(p;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1, p ∈ (0, 1) and α, β > 0,
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where Γ(α+β)
Γ(α)Γ(β) is a normalization constant. Given the prior and the likelihood

densities the posterior density modulo normalizing constants will take the form

f(p | x) ∝
[(

n

x

)

× Γ(α+ β)

Γ(α)Γ(β)

]

px(1− p)n−x × pα−1(1− p)β−1,

∝ px+α−1(1− p)n−x+β−1,

which means that the posterior distribution of p is also a Beta with

p | x ∼ Beta(α+ x, β + n− x).

Normal, Normal: Given a normal distribution with unknown mean the den-
sity for the likelihood is

f(x | θ, σ2) ∝ exp

(

− 1

2σ2
(x− θ)2

)

,

and one can specify a normal prior

π(θ; θ0, τ
2
0 ) ∝ exp

(

− 1

2τ20
(θ − θ0)

2

)

,

with hyper-parameters θ0 and τ0. The resulting posterior distribution will have the
following density function

f(θ | x) ∝ exp

(

− 1

2σ2
(x− θ)2

)

× exp

(

− 1

2τ20
(θ − θ0)

2

)

,

which after completing squares and reordering can be written as

θ | x ∼ N(θ1, τ
2
1 ), θ1 =

θ0
τ2

0

+ x
σ2

1
τ2

0

+ 1
σ2

, τ21 =
1

1
τ2

0

+ 1
σ2

.

4.2. Bayesian linear regression

We start with the likelihood as

f(Y | X, β, σ2) =

n
∏

i=1

1

σ
√
2π

exp

(

−‖yi − βTxi‖2
2σ2

)

.

and the prior as

π(β) ∝ exp

(

− 1

2τ20
βTβ

)

.

The density of the posterior is

Post(β | D) ∝
[

n
∏

i=1

1

σ
√
2π

exp

(

−‖yi − βTxi‖2
2σ2

)

]

× 1

(2π)p/2γ1/2
exp

(

− 1

2τ20
βTβ

)

.

With a good bit of manipulation the above can be rewritten as a multivariate
normal distribution

β | Y,X, σ2 ∼ Np(µ1,Σ1)

with

Σ1 = (τ−20 Ip + σ−2XTX)−1, µ1 = σ−2Σ1 XTY.

Note the similarities of the above distribution to the MAP estimator. Relate the
mean of the above estimator to the MAP estimator.
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Predictive distribution: Given data D = {(xi, yi)}i=1n and and a new value x∗
one would like to estimate y∗. This can be done using the posterior and is called
the posterior predictive distribution

f(y∗ | D,x∗, σ
2, τ20 ) =

∫

IRp

f(y∗ | x∗, β, σ2)f(β | Y,X, σ2, τ20 ) dβ,

where with some manipulation

y∗ | D,x∗, σ
2, τ20 ∼ N(µ∗, σ

2
∗
),

where

µ∗ =
1

σ2
Σ1X

TY x∗, σ2
∗
= σ2 + xT

∗
Σ1x∗.




