USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL*

3.1. Conditionals and marginals

For Bayesian analysis it is very useful to understand how to write joint, marginal, and conditional distributions for the multivariate normal.

Given a vector $x \in \mathbb{R}^{p}$ the multivariate normal density is

$$
f(x)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) .
$$

Now split the vector into two parts

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right], \quad \text { of size }\left[\begin{array}{c}
q \times 1 \\
(p-q) \times 1
\end{array}\right],
$$

and

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right], \quad \text { of size }\left[\begin{array}{cc}
q \times q & q \times(p-q) \\
(p-q) \times q & (p-q) \times(p-q)
\end{array}\right] .
$$

We now state the joint and marginal distributions

$$
x_{1} \sim \mathrm{~N}\left(\mu_{1}, \Sigma_{11}\right), \quad x_{2} \sim \mathrm{~N}\left(\mu_{2}, \Sigma_{22}\right), \quad x \sim \mathrm{~N}(\mu, \Sigma),
$$

and the conditional density

$$
x_{1} \mid x_{2} \sim \mathrm{~N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

The same idea holds for other sizes of partitions.

3.2. Conjugate priors

3.2.1. Univariate normals

3.2.1.1. Fixed variance, random mean. We consider the parameter σ^{2} fixed so we are interested in the conjugate prior for μ :

$$
\pi\left(\mu \mid \mu_{0}, \sigma^{2}\right) \propto \frac{1}{\sigma_{0}} \exp \left(-\frac{1}{2 \sigma_{0}^{2}}\left(\mu-\mu_{0}\right)^{2}\right)
$$

where μ_{0} and σ^{2} are hyper-parameters for the prior distribution (when we don't have informative prior knowledge we typically consider $\mu_{0}=0$ and σ^{2} large).

The posterior distribution for x_{1}, \ldots, x_{n} with a univariate normal likelihood and the above prior will be

$$
\operatorname{Post}\left(\mu \mid x_{1}, \ldots, x_{n}\right) \sim \mathrm{N}\left(\frac{\sigma_{0}^{2}}{\frac{\sigma^{2}}{n}+\sigma_{0}^{2}} \bar{x}+\frac{\sigma^{2}}{\frac{\sigma^{2}}{n}+\sigma_{0}^{2}} \mu_{0},\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)^{-1}\right)
$$

3.2.1.2. Fixed mean, random variance. We will formulate this setting with two parameterizations of the scale parameter: (1) the variance σ^{2}, (2) the precision $\tau=\frac{1}{\sigma^{2}}$.

The two conjugate distributions are the Gamma and the inverse Gamma (really they are the same distribution, just reparameterized)
$\operatorname{IG}(\alpha, \beta): f\left(\sigma^{2}\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}\left(\sigma^{2}\right)^{-\alpha-1} \exp \left(-\beta\left(\sigma^{2}\right)^{-1}\right), \quad \operatorname{Ga}(\alpha, \beta): f(\tau)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha-1} \exp (-\beta \tau)$.
The posterior distribution of σ^{2} is

$$
\sigma^{2} \mid x_{1}, \ldots, x_{n} \sim \operatorname{IG}\left(\alpha+\frac{n}{2}, \beta+\frac{1}{2} \sum\left(x_{i}-\mu\right)^{2}\right) .
$$

The posterior distribution of τ is not surprisingly

$$
\tau \mid x_{1}, \ldots, x_{n} \sim \operatorname{Ga}\left(\alpha+\frac{n}{2}, \beta+\frac{1}{2} \sum\left(x_{i}-\mu\right)^{2}\right)
$$

3.2.1.3. Random mean, random variance. We now put the previous priors together in what is called a Bayesian hierarchical model:

$$
\begin{aligned}
x_{i} \mid \mu, \tau & \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu,(\tau)^{-1}\right) \\
\mu \mid \tau & \sim \mathrm{N}\left(\mu_{0},\left(\kappa_{0} \tau\right)^{-1}\right) \\
\tau & \sim \operatorname{Ga}(\alpha, \beta) .
\end{aligned}
$$

For the above likelihood and priors the posterior distribution for the mean and precision is

$$
\begin{aligned}
\mu \mid \tau, x_{1}, \ldots, x_{n} & \sim \mathrm{~N}\left(\frac{\mu_{0} \kappa_{0}+n \bar{x}}{n+\kappa_{0}},\left(\tau\left(n+\kappa_{0}\right)\right)^{-1}\right) \\
\tau \mid x_{1}, \ldots, x_{n} & \sim \operatorname{Ga}\left(\alpha+\frac{n}{2}, \beta+\frac{1}{2} \sum\left(x_{i}-\bar{x}\right)^{2}+\frac{n}{n+1} \frac{\left(\bar{x}-x_{i}\right)^{2}}{2}\right) .
\end{aligned}
$$

3.2.2. Multivariate normal

Given a vector $x \in \mathbb{R}^{p}$ the multivariate normal density is

$$
f(x)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) .
$$

We will work with the precision matrix instead of the covariance and we will consider the following Bayesian hierarchical model:

$$
\begin{aligned}
x_{i} \mid \mu, \Lambda & \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu,(\Lambda)^{-1}\right) \\
\mu \mid \Lambda & \sim \mathrm{N}\left(\mu_{0},\left(\kappa_{0} \Lambda\right)^{-1}\right) \\
\Lambda & \sim \operatorname{Wi}\left(\Lambda_{0}, n_{0}\right)
\end{aligned}
$$

the precision matrix is modeled using the Wishart distribution

$$
f(\Lambda ; V, n)=\frac{|\Lambda|^{(n-d-1) / 2} \exp \left(-.5 \operatorname{tr}\left(\Lambda V^{-1}\right)\right)}{2^{n d / 2}|V|^{n / 2} \Gamma_{d}(n / 2)} .
$$

For the above likelihood and priors the posterior distribution for the mean and precision is

$$
\begin{aligned}
\mu \mid \Lambda, x_{1}, \ldots, x_{n} & \sim \mathrm{~N}\left(\frac{\mu_{0} \kappa_{0}+n \bar{x}}{n+\kappa_{0}},\left(\Lambda\left(n+\kappa_{0}\right)\right)^{-1}\right) \\
\Lambda \mid x_{1}, \ldots, x_{n} & \sim \mathrm{Wi}\left(n_{0}+\frac{n}{2}, \Lambda_{0}+\frac{1}{2}\left[\bar{\Sigma}+\frac{\kappa_{0}}{\kappa_{0}+n}\left(\bar{x}-\mu_{0}\right)\left(\bar{x}-\mu_{0}\right)^{T}\right]\right) .
\end{aligned}
$$

LECTURE 4

A Bayesian approach to linear regression

The main motivations behind a Bayesian formalism for inference are a coherent approach to modeling uncertainty as well as an axiomatic framework for inference. We will reformulate multivariate linear regression from a Bayesian formulation in this section.

Bayesian inference involves thinking in terms of probability distributions and conditional distributions. One important idea is that of a conjugate prior. Another tool we will use extensively in this class is the multivariate normal distribution and its properties.

4.1. Conjugate priors

Given a likelihood function $p(x \mid \theta)$ and a prior $\pi(\theta)$ on can write the posterior as

$$
p(\theta \mid x)=\frac{p(x \mid \theta) \pi(\theta)}{\int_{\theta^{\prime}} p\left(x \mid \theta^{\prime}\right) \pi\left(\theta^{\prime}\right) \mathrm{d} \theta^{\prime}}=\frac{p(x, \theta)}{p(x)}
$$

where $p(x)$ is the marginal density for the data, $p(x, \theta)$ is the joint density of the data and the parameter θ.

The idea of a prior and likelihood being conjugate is that the prior and the posterior densities belong to the same family. We now state some examples to illustrate this idea.

Beta, Binomial: Consider the Binomial likelihood with n (the number of trials) fixed

$$
f(x \mid p, n)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

the parameter of interest (the probability of a success) is $p \in[0,1]$. A natural prior distribution for p is the Beta distribution which has density

$$
\pi(p ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}, \quad p \in(0,1) \text { and } \alpha, \beta>0
$$

where $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}$ is a normalization constant. Given the prior and the likelihood densities the posterior density modulo normalizing constants will take the form

$$
\begin{aligned}
f(p \mid x) & \propto\left[\binom{n}{x} \times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\right] p^{x}(1-p)^{n-x} \times p^{\alpha-1}(1-p)^{\beta-1} \\
& \propto p^{x+\alpha-1}(1-p)^{n-x+\beta-1}
\end{aligned}
$$

which means that the posterior distribution of p is also a Beta with

$$
p \mid x \sim \operatorname{Beta}(\alpha+x, \beta+n-x)
$$

Normal, Normal: Given a normal distribution with unknown mean the density for the likelihood is

$$
f\left(x \mid \theta, \sigma^{2}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}}(x-\theta)^{2}\right)
$$

and one can specify a normal prior

$$
\pi\left(\theta ; \theta_{0}, \tau_{0}^{2}\right) \propto \exp \left(-\frac{1}{2 \tau_{0}^{2}}\left(\theta-\theta_{0}\right)^{2}\right)
$$

with hyper-parameters θ_{0} and τ_{0}. The resulting posterior distribution will have the following density function

$$
f(\theta \mid x) \propto \exp \left(-\frac{1}{2 \sigma^{2}}(x-\theta)^{2}\right) \times \exp \left(-\frac{1}{2 \tau_{0}^{2}}\left(\theta-\theta_{0}\right)^{2}\right)
$$

which after completing squares and reordering can be written as

$$
\theta \mid x \sim \mathrm{~N}\left(\theta_{1}, \tau_{1}^{2}\right), \quad \theta_{1}=\frac{\frac{\theta_{0}}{\tau_{0}^{2}}+\frac{x}{\sigma^{2}}}{\frac{1}{\tau_{0}^{2}}+\frac{1}{\sigma^{2}}}, \quad \tau_{1}^{2}=\frac{1}{\frac{1}{\tau_{0}^{2}}+\frac{1}{\sigma^{2}}}
$$

4.2. Bayesian linear regression

We start with the likelihood as

$$
f\left(Y \mid \mathbf{X}, \beta, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left\|y_{i}-\beta^{T} x_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$

and the prior as

$$
\pi(\beta) \propto \exp \left(-\frac{1}{2 \tau_{0}^{2}} \beta^{T} \beta\right)
$$

The density of the posterior is
$\operatorname{Post}(\beta \mid D) \propto\left[\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left\|y_{i}-\beta^{T} x_{i}\right\|^{2}}{2 \sigma^{2}}\right)\right] \times \frac{1}{(2 \pi)^{p / 2} \gamma^{1 / 2}} \exp \left(-\frac{1}{2 \tau_{0}^{2}} \beta^{T} \beta\right)$.
With a good bit of manipulation the above can be rewritten as a multivariate normal distribution

$$
\beta \mid Y, \mathbf{X}, \sigma^{2} \sim \mathrm{~N}_{p}\left(\mu_{1}, \Sigma_{1}\right)
$$

with

$$
\Sigma_{1}=\left(\tau_{0}^{-2} \mathbf{I}_{p}+\sigma^{-2} \mathbf{X}^{T} \mathbf{X}\right)^{-1}, \quad \mu_{1}=\sigma^{-2} \Sigma_{1} \mathbf{X}^{T} Y
$$

Note the similarities of the above distribution to the MAP estimator. Relate the mean of the above estimator to the MAP estimator.

Predictive distribution: Given data $D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1^{n}}$ and and a new value x_{*} one would like to estimate y_{*}. This can be done using the posterior and is called the posterior predictive distribution

$$
f\left(y_{*} \mid D, x_{*}, \sigma^{2}, \tau_{0}^{2}\right)=\int_{\mathbb{R}^{p}} f\left(y_{*} \mid x_{*}, \beta, \sigma^{2}\right) f\left(\beta \mid Y, \mathbf{X}, \sigma^{2}, \tau_{0}^{2}\right) \mathrm{d} \beta
$$

where with some manipulation

$$
y_{*} \mid D, x_{*}, \sigma^{2}, \tau_{0}^{2} \sim \mathrm{~N}\left(\mu_{*}, \sigma_{*}^{2}\right),
$$

where

$$
\mu_{*}=\frac{1}{\sigma^{2}} \Sigma_{1} \mathbf{X}^{T} Y x_{*}, \quad \sigma_{*}^{2}=\sigma^{2}+x_{*}^{T} \Sigma_{1} x_{*} .
$$

