
LECTURE 13
Mixture models and latent space models

We now consider models that have extra unobserved variables. The variables
are called latent variables or state variables and the general name for these models
are state space models.A classic example from genetics/evolution going back to
1894 is whether the carapace of crabs come from one normal or from a mixture of
two normal distributions.

We will start with a common example of a latent space model, mixture models.

13.1. Mixture models

13.1.1. Gaussian Mixture Models (GMM)

Mixture models make use of latent variables to model different parameters for
different groups (or clusters) of data points. For a point xi, let the cluster to which
that point belongs be labeled zi; where zi is latent, or unobserved. In this example
(though it can be extended to other likelihoods) we will assume our observable
features xi to be distributed as a Gaussian, so the mean and variance will be cluster-
specific, chosen based on the cluster that point xi is associated with. However, in
practice, almost any distribution can be chosen for the observable features. With
d-dimensional Gaussian data xi, our model is:

zi | π ∼ Mult(π)

xi | zi = k ∼ ND(µk,Σk),

where π is a point on a K-dimensional simplex, so π ∈ RK obeys the following

properties:
∑K
k=1 πk = 1 and ∀k ∈ {1, 2, ..,K} : πk ∈ [0, 1]. The variables π are

known as the mixture proportions and the cluster-specific distributions are called
the mixture components. Variables µk and Σk are the kth cluster specific mean and
covariance parameters, respectively (k ∈ {1, 2, ..,K}). Figure 1 is an example of a
GMM where d = 1 and K = 3.
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Figure 1. The density of a univariate Gaussian Mixture Model with three

Gaussian mixture components, each with their own mean and variance terms
(K = 3, d = 1). [Source: http://prateekvjoshi.com]

The likelihood for xi conditioned on parameters is then:

p(xi | µk,Σk,π) =

K∑
k=1

p(xi, zi = k | π, θ)

=

K∑
k=1

p(zi = k|πk)p(xi | zi = k, θ)

=

K∑
k=1

πkNd(xi;µk,Σk),

which is a weighted, linear sum of Gaussians. This gives a nice interpretation of πk
as the probabilistic ‘weight’ we place on each cluster k in our model.

13.1.2. Mixture Models for Clustering

Mixture models are often used for clustering; this is a generative model because
we specifically model p(z) and p(x | z). For general parameters θ = {π, µ,Σ}, the
posterior probability of assigning point xi to cluster k is given by (using Bayes
rule):

rik , p(zi = k | xi, θ) ∝ p(xi | zi = k, θ) p(zi = k | π).

Calculating the posterior probability of each cluster for a data point xi is known
as soft clustering. Hard clustering is assigning the best cluster z∗i to data point x∗i
such that

z∗i = arg max
k

(rik) = arg max
k

log (p (xi | zi = k, θ)) + log (p (zi = k | π)) .

Hard clustering induces a linear boundary between clusters that assigns points
to a single cluster, whereas soft clustering computes the probability for each point
that it was generated from each of the clusters.

13.1.3. Estimation Attempt for GMM

One possible approach to estimate all of our parameters and clusters is through the
MLE process given we have observed D = {x1, . . . ,xN}]. Our parameters we wish
to estimate are θ = {π, µ,Σ}. For notational simplicity we will write out zi = k as
the vector zi, where zij = 1(j = k), meaning that there is a single 1 in a vector
of length K of all zeros that indicates the value that the multinomial zi takes on.
This is called the multinomial vector representation. So zki is defined as the boolean
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value at the kth position of the zi vector. Using this:

p (zi | π) =

K∏
k=1

π
zki
k

p (xi | zi, θ) =

K∏
k=1

N (µk,Σk)
zki

Thus, the log likelihood of the GMM is written as

`(θ; D) =

N∑
i=1

log p(xi | θ) =

N∑
i=1

log

[
K∑

zi=1

p(xi, zi | θ)

]

=

N∑
i=1

log

[∑
zi∈Z

K∏
k=1

π
zk
i

k N (µk,Σk)
zki

]
note that

∑
zi∈Z

indicates the sum through all possible categorical values of zi

This does not decouple the likelihood because the log cannot be ‘pushed’ inside
the summation; however, if we had observed each zi, then would this problem
decouple? Let’s say we observe each zi, so now D = {(x1z1), . . . , (xNzN )]. The
log likelihood now becomes:

`(θ; D) = log

N∏
i=1

p (zi | π) p (xi | zi, θ)

=

N∑
i=1

log p (zi | π) + log p (xi | zi, θ)

=

N∑
i=1

K∑
k=1

[
zki log πk + zki logN (µk,Σk)

]
Our parameters estimations are now decoupled since we can estimate πk and

µk,Σk separately. In fact, we have a unimodal posterior distribution p (θ | D) with
respect to each of the parameters, so we say that we have identifiable parameters.

The issue of unidentifiable parameters comes up when we do not have a
unique MLE or MAP estimates of θ, meaning our posterior has multiple modes. In
other words, it is possible that multiple values of θ produce the same likelihood.
In the case of unobserved zi’s for our GMM, we could not compute a unique MLE
estimate of our parameters since the posterior depended on the unobserved zi’s.

Another problem to consider with mixture models is label switching : If we order
the clusters A, B, C, and then run it again, it is possible we may get the clusters
C, B, A, which would have the same likelihood as clusters A, B, C. This just needs
to be considered when we compare different models or different runs from a given
model.

Without observations of z, there is no ground truth, so we only have the feature
distribution to guess the hidden causes from.
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13.2. Expectation Maximization (EM)

The EM Algorithm is a general method for parameter estimation when the model
depends on unobserved or latent variables, published in 1977 by Demster, Laird,
and Rubin. The EM algorithm alternates estimating model parameters, starting
from some initial guess, with estimating the values of the latent variables. Each
iteration consists of an E step (Expectation step) and an M step (Maximization
step). Let X = {x1, . . . , xn} be a set of observed variables and Z = {z1, . . . , zn} be
a set of latent variables. Recall the marginal log likelihood:

` (θ;Z,X) =

N∑
i=1

log p(xi | θ)

=

N∑
i=1

log

[∑
zi

p(xi, zi | θ)

]
.

As discussed in Section 2.3, this is hard to optimize since we have the sum-
mation inside the log, which does not allow our latent variables and parameters to
separate in this equation, causing multiple possible modes. Instead let’s define the
complete data log likelihood, or the likelihood of the data if we assume that we
have complete observations (i.e., latent variables and observed variables both):

`C (θ;Z,X) =

N∑
i=1

log p(xi, zi | θ)

This is simple to work with since we do not have any summations inside the
log, and it decouples nicely. But it still depends on the latent states which are
unknown. To this end, we will see that the E step in EM to estimates realizations
of the latent states. From the complete log likelihood, we can take the expectation
of the latent variables with respect to the current values of our parameters:

Q
(
θ(t)
)

= IEθ(t)
[
`C (θ;Z,X) | D, θ(t−1)

]
= E

[
n∑
i=1

K∑
k=1

zki log πk + zki logN (xi;µk,Σk)

]

=

n∑
i=1

K∑
k=1

E[zki ] log πk + E[zki ] logN (xi;µk,Σk).

This equationQ as known as the expected complete log likelihood or the auxiliary
function. This function denotes the expected sufficient statistics for our model. To
solve Q

(
θ(t)
)
, the EM algorithm is composed of two main steps:

• E step: compute the expected sufficient statistics of zi:

rtik = IEθt
[
zki
]

In this Gaussian mixture model, we will compute p (zi = k | θ,xi)
• M step: update θt to θt+1 where

θt+1 = argmax
θ

(
Q(θt)

)
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Instead of computing the ML, we could also compute the MAP. Then,

θ(t+1) = argmax
θ

(
Q(θ(t)) + log(p(θ(t))

)
Because these variables are separated, we know that, for a given set of expected

values for the z parameters, the ECLL is concave with respect to each of our
parameters. Thus, the M step involves maximizing the ECLL with respect to each
of our variables by taking the derivative with respect to each of them, setting to
zero, and solving, as in our standard MLE process.

13.2.1. EM for GMM

zi

xi
N

πK

Σk

μk

Figure 2. Graphical model of GMM

Here we will show an example of using EM for the GMM we have be discussing
(Figure 5 and Section 2.3). Where the parameters we wish to estimate are θ =
{πk, µk,Σk}. Our expected complete data log likelihood decouples as:

Q(θt) = IEθt(`C(θ;Z,X))

= IE(

n∑
i=1

log p(xi, zi|θ))

=

N∑
i=1

IEθt [log p(zi|π)p(xi | zi, θ)]

=

N∑
i=1

K∑
k=1

IEθt
[
zki log(πkpk(xi | µtk,Σtk))

]
=

N∑
i=1

K∑
k=1

IEθt
[
zki
]

log(πkpk(xi | µtk,Σtk))

=

N∑
i=1

K∑
k=1

IEθt
[
zki
]

log(πk) + IEθt
[
zki
]

log(pk(xi | µtk,Σtk))

=

N∑
i=1

K∑
k=1

rtik log(πk) + rtik log(pk(xi | µtk,Σtk))

Now for each iteration, t, we compute the E step and M step as follows.
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• E step:

rt+1
ik = p (zi = k | θ,xi) =

πtk N (xi | µtk,Σtk)∑K
j=1 π

t
j N (xi | µtj ,Σtj)

rt+1
ik is the posterior probability of each cluster assignment to k on a

specific data point.
• M step: After we have computed rti , the ML updates are the same as

in the Naive Bayes, where we update each parameter by the respective
partial derivatives of Q(θt).

πt+1
k =

∑N
i=1 r

t
ik

N

µt+1
k =

∑N
i=1 r

t
ikxi∑N

i=1 r
t
ik

Σt+1
k =

∑N
i=1 r

t
ik

(
xi − µt+1

k

) (
xi − µt+1

k

)T∑N
i=1 r

t
ik

13.3. K-Means

The K-means algorithm is a simple clustering method that aims to partition
n observations into K clusters using hard clustering, where each observation is
assigned to the cluster with the nearest mean/centroid. As we will see, EM assigns
probabilities (or weights) of observations belonging to each cluster. K-means, on
the other hand, has no underlying probability model, and instead it assigns each
observation to a specific cluster in a hard clustering manner. This is why we call
the cluster means centroids: to emphasize that there is no underlying (Gaussian)
probability model. The following steps implement the K-means algorithm.

(1) Set K and choose the initial centroids, ηk (often one can choose these
from K data points).

(2) Assign each data point to its closest centroid:

zik =

{
1, if k = arg mink ‖xi − ηk‖2

0, otherwise
(13.1)

(3) Update each cluster center by computing the mean of all points assigned
to it

ηk =

∑N
i=1 zikxi∑N
i=1 zik

(4) Repeat the second and third steps until cluster assignments do not change
between iterations.

An inappropriate choice of K may result in poor results, so it is important
to vary K and run diagnostic checks. The Euclidian distance (the term in step
2 defining the distance between point xi and centroid ηk also need not be the
metric minimized; other metrics such as the Mahalanobis distance may also be
used. The distance metric may be customized for the specific space and feature
set you are working with. Figure 4 illustrates provides a visualization of the K-
means algorithm. In essence, K-means pretends we observe the latent states z and
updates the cluster-specific centroids based on this (pretend) observation. The next
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question we should ask is how can we adapt K-means in a probabilistic framework?
We will see that the EM algorithm does this.

As with GLMs, we can use a gradient-based approach to find the local minima
in the likelihood (marginalizing out the latent variables z. Instead, we will follow
the ideas in K-means in a probabilistic way.

Figure 3. Example of K-means algorithm results. Source: www.mathworks.com.


