
LECTURE 2
Linear regression the proceduralist approach

2.1. Standard multivariate linear regression

The regression problem is usually stated as

Y = f(X) + ", "
iid⇠ N(0,�2)

the multivariate random variable X ✓ IRp are called covariates and the univariate
random variable Y ✓ IR is called the response, the function belongs to a class
of functions f 2 F . The random variables X,Y have associated with them the
following distributions

joint: ⇢X,Y (x, y), marginals: ⇢X (x), ⇢Y (y), conditional: ⇢(y | x).
For now the class of functions F will be linear functions

f(x) = �Tx, � 2 IRp.

The data we are given consists of n observations D = {(xi, yi)}ni=1

iid⇠ ⇢(x, y),
we call this a sample and the sample size is n. We will assume the data we observed
is consistent with the following model

Yi = �TXi + "i, "i
iid⇠ N(0,�2).

Our goal is given the data D solve the following problems:

(1) parameter inference: what is a reasonable estimate for �, we’ll call the
estimate �̂

(2) prediction: given a new x⇤ what is the corresponding y⇤, try y⇤ = �̂Tx⇤.
(3) estimating the conditional distribution: what is Y | X = x.

An idea to estimate �̂ that goes back to Gauss is the minimizing the least
squares error

arg min
�2IR

p
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n

X

i

(yi � �Txi)
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.

One can derive the above estimator from the following probabilistic model

Lik(D;�) =
n
Y

i=1
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by maximizing the likelihood above with respect to �

argmax
�

Lik(D;�) ⌘ arg min
�2IR

p

"

1

n

X

i

(yi � �Txi)
2,

#

.

We can state the negative of the log likelihood as

L =
n
X

i=1

(yi � xT
i �)

2.

We will rewrite the above in matrix notation. In doing this we define a matrix X
which is n ⇥ p and each row of the matrix is a data point xi. We also define a
column vector Y (p ⇥ 1) with yi as the i-th element of y. Similarly � is a column
vector with p rows. We can rewrite the error minimization as

argmin
�

⇥

L = (Y �X�)T (Y �X�)
⇤

,

taking derivatives with respect to ✓ and setting this equal to zero (taking derivatives
with respect to � means taking derivatives with respect to each element in �)

dL

d�
= �2XT (Y �X�) = 0

= XT (Y �X�) = 0.

this implies

XTY = XTX�

�̂ = (XTX)�1XTY.

If we look at the above formula carefully there is a serious numerical problem –
(XTX)�1. The matrix XTX is a p⇥ p matrix of rank n where p � n. This means
that XTX cannot be inverted so we cannot compute the estimate �̂ by matrix
inversion. There are numerical approaches to address this issue but the solution
will not be unique or stable. A general rule in estimation problems is that numerical
problems in estimating the parameters usually coincide with with statistical errors
or variance of the estimate.

2.2. The Stein estimator

The above numerical problem is related to an amazing result that was first ob-
served in 1956 by Charles Stein. The question that Stein asked is if one is given n
observations from a multivariate normal

(xi)
n
i=1

iid⇠ N(✓,�2I),

what is the best estimator of ✓. In statistics if there exists an estimator that is
better than the one you are using then your estimator is called inadmissible. What
Stein found was that for p � 3 the sample mean

✓̂ =
1

n

X

i

xi,
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is not admissible. A better estimator called the James-Stein estimator is the fol-
lowing

✓̂ =

 

1� (p� 2)�
2

n

kx̄k2
!

x̄.

The intuition about the above estimator is take the sample mean x̄ and move it a
bit towards zero, this is called shrinkage or shrinkage towards zero. Now what is
an optimal estimator, it is one which minimizes

arg min
�2IR

p



IEX,Y

⇥

(y � �Tx)2
⇤

=

Z

Y,X

(y � �Tx)2⇢(x, y) dx dy

�

,

the idea above is minimizing the error on unseen data, later in the course we will
call the above the generalization error

I[f̂ ] = IEX,Y

h

(y � f̂(x))2
i

, f̂(x) = �̂Tx,

and provide some theory to justify the estimators we will propose.

2.3. Cross-validation

One cannot estimate the generalization error since one does not have access to the
generating distribution ⇢(x, y). A common proxy for the generalization error is the
leave-one-out cross-validation error

I[cv] ⌘ 1

n

n
X

i=1

(yi � f̂D\i(xi))
2,

where D\i is the data set with the i-th sample removed and f̂D\i is the function
estimated when the i-th sample is removed. The idea is to remove the i-th sample,
estimate a function with that sample left out, then test the error made on the i-th
sample, and average this over all n observations. Of course one need not leave-out
one observation but can leave-out k observations. The leave-one-out estimator is
(almost) unbiased.

2.4. Shrinkage models

We can now adapt the idea behind the James-Stein estimator to the linear regression
problem. We will minimize the following loss function

arg min
�2IR

p

1

n

n
X

i=1

(yi � xT
i �)

2 + �k�k2,

where � > 0 is a parameter and k�k2 =
Pp

i=1

�2

i .

dL

d�
= �2XT (Y �X�) + 2�n� = 0

= XT (X� � Y ) + �n�.

this implies

XTY = XTX� + �n�

XTY = (XTX+ �I)n�

�̂ = (XTX+ �nI)�1XTY,
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where I is the p ⇥ p identity matrix. The matrix (XTX + �nI) is invertible and
this penalized loss function approach has had great success in problems with more
variables than observations.


