
LECTURE 3

Hypothesis testing

The framework of hypothesis testing is used in computational biology exten-
sively.

We will look at hypothesis testing in both the classical and Bayesian framework
as well as multiple hypothesis testing.

The Bayesian and classical frameworks ask two different questions:

• Bayesian: “What is the probability of the hypothesis being true given
data ?” - Pr(H = t|D), posterior.

• Classical: “Assume the hypothesis is true, what is the probability of the
data?” - Pr(D|H = t), likelihood.

The first question is more natural but requires a prior on hypotheses.

3.0.11. Classical hypothesis testing

The classical hypothesis testing formulation is called the Neyman-Pearson par-
adigm. It is a formal means of distinguishing between probability distributions
based upon random variables generated from one of the distributions.

The two distributions are designated as:

• the null hypothesis: H0

• the alternative hypothesis: HA.

There are two types of hypothesis, simple and composite:

• simple hypothesis: all aspects of the distribution are specified. For exam-
ple, H0 : X ∼ N(µ1, σ

2) is simple since the distribution is fully specified.
Similarly HA : X ∼ N(µ2, σ

2) is also simple.
• composite hypotheses: the hypothesis does not specify the distribution.
For example, HA : X ∼ Bernoulli(n, p > /25), is composite since p > .25
in the Bernoulli distribution so the distribution is not specified.

In general two types of the alternative hypothesis are one and two sided:

• one sided: HA : X ∼ Binomial(n, p > /25)
• two sided: HA : X ∼ Binomial(n, p 6= /25).

In this paradigm we first need a test statistic t(X) which can be computed from
the data X = (x1, ..., xn). We have a decision problem in that given X we compute
t(X) and decide whether we reject H0, a positive event, or accept H0 the negative
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event. The sets of values of t for which we accept H0 is the acceptance region
and the sets for which we reject H0 are the rejection region. In this paradigm the
following four events written in a contingency table can happen. Two of the events
are errors, B and C.

H0 = T HA = T
Accept H0 A B
Reject H0 C D

C is called a type I error and measure the probability of a false positive,

α = Pr(null is rejected when true).

The reason why it is called a false positive is that rejecting the null is a positive
since one in general in an experiment is looking to reject the null since this corre-
sponds to finding something different from the lack of an effect. In general in the
hypothesis testing framework we will control the α value explicitly (this will be our
knob) and is called the significance level.

B is called the type II error and measure the probability of false negatives,

β = Pr(null is accepted when it is false).

The power of a test is

1− β = Pr(null is rejected when it is false).

Ideally we would like a test with α = β = 0. Like most of life this ideal is
impossible. For a fixed sample size increasing α will in general decrease β and vice
versa. So the general prescription in designing hypothesis tests is to fix α of a small
number and design a test that will give as small a β as possible, the most powerful
test.

Example. We return to the DNA sequence matching problem where we get a string
of 2n letters corresponding to two strands of DNA ask about the significance of the
number of observed matches. Our null hypothesis is that the nucleotides A, C, T, G
are equally likely and independent. Another way of saying this is

H0 : X ∼ Binomial(p = .25, n)

the alternative hypothesis is

HA : X ∼ Binomial(p > .25, n).

Assume we observe Y = 32, 33 matches out of 100 according to the distribution
under the null hypothesis.

Pr(Y ≥ 32|p = .25, n = 100) = .069,

Pr(Y ≥ 33|p = .25, n = 100) = .044.

Therefore, to achieve an α level of .05 we would need a significance point (critical
value) of 33.

The p-value is the smallest α for which the null will be rejected. It is also
called the achieved significance level. Another way of stating this is the p-value is
the probability of obtaining an observed value under the distribution given by the
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null hypothesis that is greater (more extreme) than the statistic computed on the
data t(X).

Example. We return to the matching problem.

H0 : X ∼ Binomial(p = .25, n)

the alternative hypothesis is

HA : X ∼ Binomial(p > .25, n).

We find 11 matches out of 26

Pr(Y ≥ 11|p = .25, n = 26) = .04,

so the p-value is .04

We find 278 matches out of 100

Pr(Y ≥ 278|p = .25, n = 100) ≈ .022,

and by the Normal approximation of the Binomial

Y ∼ N(250, 187.5).

We now look at an example that introduces a classic null distribution, the
t-statistic and the t-distribution.

Example. We have two cell types cancer A and B. we measure the expression of
one protein from the two cells.

A : X1, ..., Xm ∼ N(µ1, σ
2)

B : Y1, ..., Yn ∼ N(µ2, σ
2)

so we draw m observations from cell type A and n from cell type B.

H0 : µ1 = µ2 = µ

HA : µ1 6= µ2.

The statistic we use is the t-statistic

t(X) =
(X̄ − Ȳ )

√
mn

Ŝ
√

m+ n
,

where

Ŝ2 =

∑m
i=1(Xi − X̄)2 +

∑n
i=1(Yi − Ȳ )2

m+ n− 2
.

The distribution under the null hypothesis of the above is the t-distribution with
d = m+ n− 2 degrees of freedom

p(t) =
Γ[(d+ 1)/2]√

dπΓ[d/2](1 + t2

d )
(d+1)/2

.

The above example is the most classical example of a hypothesis test and
statistic. It is also a parametric test in that we have a parametric assumption
for the null hypothesis. Here the assumption is that the samples are normally
distributed.

There are a class of hypothesis tests that are called nonparametric in that the
parametric assumptions on the null hypothesis are weak. Typically these tests are
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called rank statistics in that the ranks of the observations are used to compute
the statistic. We will look at two such statistics: the Mann-Whitney (MW) and
Kolmogorov-Smirnov statistics. We first define the MW statistic and state its
property. We then look more carefully at the KS statistic and use it to illustrate
why rank based statistics are nonparametric.

Example (Mann-Whitney statistic). We have two cell types cancer A and B. we
measure the expression of one protein from the two cells.

A : X1, ..., Xm ∼ FA

B : Y1, ..., Yn ∼ FB ,

where FA and FB are continuous distributions. This is why the test is nonparamet-
ric.

H0 : µ1 = µ2 = µ

HA : µ1 > µ2.

We first combine the lists

Z = {X1, ..., Xm, Y1, ..., Yn},
we then rank order Z

Z(r) = {Z(1), ..., Z(m+n)}.
Given the rank ordered list Z(r) we can compute two statistics

R1 = sum of ranks of samples in A in Z(r)

R2 = sum of ranks of samples in B in Z(r)

Given R1 and R2 we compute the following statistics

U1 = mn+
(m+ 1)m

2
−R1

U1 = mn+
(n+ 1)n

2
−R2,

U = min(U1, U2). The statistic

ẑ =

∣

∣U − mn
2

∣

∣

√

mn(m+n+1)
12

∼ N(0, 1).

This test is called nonparametric in the the distributional assumptions (in terms of
parameters) on the null hypothesis are extremely week.

Example (Kolmogorov-Smirnov statistic). We have two cell types cancer A and
B. we measure the expression of one protein from the two cells.

A : X1, ..., Xm ∼ FA

B : Y1, ..., Yn ∼ FB ,

where FA and FB are continuous distributions. This is why the test is nonparamet-
ric.

H0 : FA = FB

HA : FA 6= FB .
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We first construct empirical distribution functions for the two sets of data X =
{X1, ..., Xm}, Y = {Y1, ..., Yn}

Fm(x) =
#[{X} ≤ x]

m

Fn(x) =
#[{Y } ≤ x]

n
,

where #[{X} ≤ x] indicates the number of elements in X that are smaller than
x, similarly for #[{Y } ≤ x]. Note that the above quantities are basically rank
quantities.

The first result is one by Smirnov.

Theorem. Given the statistic

Dmn = sup
x
|Fn(x)− Fm(x)|,

with X1, ...Xm, Y1, ..., Yn ∼ F (x). The distribution

Φmn(λ) = Pr

(

Dmn ≤ λ

√

mn

m+ n

)

,

is independent of F (x).

The above theorem states that the distribution under the null hypothesis for the
Kolmogorov-Smirnov statistic is independent of F (x).

We now sketch why this is true.
We first use the idea of symmetrization which we first encountered in the sym-

metrization proposition on page 16. For simplicity we assume that n = m in this
context the symmetrization lemma on page 16 stated that: Given two draws from a
distribution x1, ..., xn and x′1, ..., x

′
n

Pr

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(xi)−
1

n

n
∑

i=1

f(x′i)

∣

∣

∣

∣

∣

≥ ǫ

)

≤ 2Pr

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(xi)− IEf(x)

∣

∣

∣

∣

∣

≥ ǫ/2

)

.

A result similar to the above was used to Kolmogorov and Smirnov to show that

Pr

(

Dmn ≤ λ

√

mn

m+ n

)

≈ Pr
(

Dn ≤ λ
√
2n
)

,

where

Dn = sup
x
|Fn(x) − F (x)|,

with X1, ...Xn ∼ F (x).
In a paper that appeared in the Italian Journal of the Actuarial Institute in

1933 Kolmogorov proved the convergence of the empirical distribution function to
the distribution function. This result was used by Smirnov in 1939 to derive the
KS test result (Smirnov was a student of Kolmogorov).

Kolmogorov showed that:

Theorem. Given the statistic

Dn = sup
x
|Fn(x) − F (x)|,

with X1, ...Xn, Y1. The distribution

Φn(λ) = Pr
(

Dn ≤ λ
√

n
)

,
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is independent of F (x). In addition the limiting distribution is

lim
n→∞

Φn(λ) =
∞
∑

k=−∞
(−1)ke−2k2λ2

.

A key idea in the proof of the result was the following lemma which is at the
heart of the reason why rank statistics are nonparametric and independent of the
distribution F (x). The essence of this lemma is that looking at the difference be-
tween Fn(x)−F (x) is equivalent to looking at the difference between Un(x)−U(x)
where U(x) is the distribution function for the uniform distribution in the interval
[0, 1] and Un(x) is the empirical distribution function for n observations drawn iid
from U [0, 1].

Lemma. The distribution Φn(λ) is independent of F (x) if F (x) is continuous.

Proof. Let X be a random variable with continuous distribution function F (X),
the random variable Y = F (X) has the following distribution F (0)(x)

F (0)(x) = 0, x ≤ 0;

F (0)(x) = x, 0 ≤ x ≤ 1;

F (0)(x) = 0, 1 ≤ x.

The above can be restated as Y is distributed as the uniform distribution on the

interval [0, 1]. Given that Fn(x) and F
(0)
n (x) represent the empirical distribution

functions for X and Y after n observations the following hold:

Fn(x) − F (x) = F (0)
n [F (x)] − F (0)[F (x)],

= F (0)
n (y)− F (0)(y)

sup
x
|Fn(x) − F (x)| = sup

x
|F (0)

n (y)− F (0)(y)|. �

The implication of the above lemma is that to study the distribution under the
null hypothesis for the difference of distribution functions it suffices to study the
uniform distribution.

The above lemma can be used to analyze the Mann-Whitney statistic since the
difference in the average ranks of

A : X1, ..., Xm ∼ FA

B : Y1, ..., Yn ∼ FA,

can be written as

R̄A − R̄A =
1

m

m
∑

i=1

Fm(xi)−
1

n

n
∑

i=1

Fn(xi),

and the above lemma holds for this case as well. Note, the Mann-Whitney statistic
can be rewritten in terms of the difference in average ranks of the two samples A
and B.

Both the Mann-Whitney and KS statistics are nonparametric and so in the
context of adaptability these are good tests. The general question of what is a
good hypothesis test or is test A better than test B has still not been addressed.
This question is typically addressed via the likelihood ratio testing framework and
the Neyman-Pearson Lemma.
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We start with the case of two simple hypotheses. Again these hypotheses are
simple since the densities are completely specified under the null and alternative
hypotheses.

H0 : X ∼ p(X |H0 = T )

HA : X ∼ p(X |HA = T ).

Given the sample X = {X1, ..., Xn} we can write down the likelihood ratio

Λ =
p(X |H0)

p(X |HA)
.

It would seem reasonable to reject H0 for small values of Λ.

Lemma (Neyman-Pearson). Suppose the likelihood ration test rejects H0 whenever
p(X|H0)
p(X|HA) < c has significance level α

Pr

(

p(X |H0)

p(X |HA)
< c

)

= α.

Then any other test which has significance level α∗ ≤ α has power less than or equal
to the likelihood ratio test.

This lemma address the issue of optimality for simple hypotheses.

Example. We draw n observations iid from a normal distribution,

X1, ..., Xn ∼ N(µ, σ2).

H0 : µ = µ0

HA : µ = µA.

Λ =
p(X |µ0, σ

2)

p(X |µA, σ2)
=

exp(−∑n
i=1(xi − µ0)

2/2σ2)

exp(−∑n
i=1(xi − µA)2/2σ2)

.

log(Λ) =

n
∑

i=1

(xi − µ0)
2 −

n
∑

i=1

(xi − µA)
2,

=
∑

i

x2
i − 2µ0

∑

i

xi + nµ2
0 −

∑

i

x2
i + 2µA

∑

i

xi − nµ2
A

= 2nX̄(µ0 − µA) + nµ2
A − nµ2

0.

So we can use a statistic t(X)

t = 2nX̄(µ0 − µA) + nµ2
A − nµ2

0,

as our statistic to reject the null. Under the null hypothesis

X̄ ∼ N

(

µ0,
σ2

n

)

,

so for the case where µ0−µA < 0 the likelihood ratio test is a function of X̄ and is
small when X̄ is small. In addition

Pr(X̄ ≥ x0) = Pr

(

X̄ − µ0

σ/
√

n
>

x0 − µ0

σ/
√

n

)

,
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so we can solve
x0 − µ0

σ/
√

n
= z(α).

Which is the most powerful test under this model.

The problem with the likelihood ratio test framework is that in general the
alternative hypothesis is not simple but composite. A typical situation would be

H0 : X ∼ N(µ0, σ
2)

HA : X ∼ N(µ 6= µ0, σ
2),

where the distribution under the alternative is not specified but forms a family
of distributions. In this setting likelihood ration tests can be generalized to the
concept of generalized likelihood ration tests which also have optimality conditions
but these conditions are more subtle and we will not study these conditions.

Given the sample X = {X1, ..., Xn} drawn from a density p(X |θ) with the
hypotheses

H0 : θ ∈ ω0

HA : θ ∈ ωA,

where ω0 ∩ ωA = ∅ and ω0 ∪ ωA = Ω. The generalized likelihood ratio is defined as

Λ∗ =
maxθ∈ω0

p(X |H0(θ))

maxθ∈ωA
p(X |HA(θ))

.

For technical reasons we will work with a slight variation of the above likelihood
ration

Λ =
maxθ∈ω0

p(X |H0(θ))

maxθ∈Ω p(X |HA(θ))
.

Note that Λ = min(Λ∗, 1) so small values of Λ∗ correspond to small values of Λ so
in the rejection region using either one is equivalent.

Example. We draw n observations iid from a normal distribution,

X1, ..., Xn ∼ N(µ, σ2).

H0 : µ = µ0

HA : µ 6= µ0.

The generalized likelihood is

Λ =

1
(σ
√

2π)n
exp(− 1

2σ2

∑n
i=1(xi − µ0)

2)

maxµ
1

(σ
√

2π)n
exp(− 1

2σ2

∑n
i=1(xi − µ)2)

,

the denominator is maximized at µ = X̄. So we can write

−2 logΛ =
1

σ2

(

n
∑

i=1

(xi − µ0)
2 −

n
∑

i=1

(xi − X̄)2

)

= n(X̄ − µ0)
2/σ2.

We computed previously that if Xi ∼ N(µ0, σ
2) that X̄ ∼ N

(

µ0,
σ2

n

)

. The dis-

tribution of the square of a normal random variable is the chi-square distribution
so

t =
n(X̄ − µ0)

2

σ2
∼ χ2

1,
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where χ2
1 is the chi-square distribution with one degree of freedom and we would

reject the null hypothesis when

n(X̄ − µ0)
2

σ2
> χ2

1(α).

We will apply the generalized likelihood ration to two problems in classical
genetics. However, the relevant statistical model involved in both problems requires
the multinomial distribution which we now introduce.

There are n independent trials where for each trial one of r possibilities can oc-
cur each with probability p1, ..., pr ≥ 0 where

∑r
i=1 pr = 1. The actual counts from

the n independent trials are n1, ..., nr where
∑r

i=1 ni = n. The (joint) distribution
on the above counts is

Pr(n1, ..., nr) =
n!

n1! · · ·nr!

r
∏

i=1

pni

i .

We will parameterize the multinomial as M(p, n, r) where p = {p1, ..., pr}.
Given observations X = {n1, ..., nr} from the multinomial distribution with r

possibilities and

H0 : X ∼M(θ, n, r) with θ ∈ ω0

HA : X ∼M(θ, n, r) with θ ∈ ωA.

We write down the likelihood ratio as

Γ =
maxθ∈ω0

n!
n1!···nr!

∏r
i=1 pi(θ)

ni

maxθ∈Ω
n!

n1!···nr!

∏r
i=1 pi(θ)ni

.

The maximization in the denominator is unconstrained so the unconstrained max-
imal likelihood estimate results in

p̂i =
ni

n
.

The maximization in the numerator is constrained and we denote the estimate as

θ̂ = argmax
θ∈ω0

[

n!

n1! · · ·nr!

r
∏

i=1

pi(θ)
ni

]

.

If we plug the above back into the likelihood ratio

Γ =
n!

n1!···nr !

∏r
i=1 pi(θ̂)

ni

n!
n1!···nr!

∏r
i=1 p̂ni

i

=

r
∏

i=1

(

pi(θ̂)

p̂i

)ni

,

=

r
∏

i=1

(

pi(θ̂)

p̂i

)np̂i

,

the last line comes from ni = p̂in. Taking the log

−2 logΓ = −2n
r
∑

i=1

p̂i log

(

pi(θ̂)

p̂i

)

= 2

r
∑

i=1

Oi log

(

Oi

Ei

)

,
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where Oi = np̂i and Ei = npi(θ̂) are the observed and expected counts, respectively.
If the dimensionality of the model space ω0 is k then under the null hypothesis

t = 2

r
∑

i=1

Oi log

(

Oi

Ei

)

∼ χ2
r−k−1,

where χ2
r−k−1 is the chi-square distribution with r − k − 1 degrees of freedom.

Example. Under Hardy-Weinberg equilibrium the genotypes AA, Aa, and aa occur
in a population with frequencies (1− τ)2, 2τ(1− τ), and τ2. In a sample from the
Chinese population in Hong Kong in 1937 blood types occurred with the frequencies
given in the table below. Given the observed numbers and the Hardy-Weinberg
equilibrium model we can estimate τ using maximum likelihood, τ̂ = .4247. This
allows us to compute the expected counts under our model which is given in the
table as well.

M MN N
Observed 342 500 187
Expected 340.6 502.8 185.6

Given the above data our hypotheses are

H0 : X ∼M({(1− τ2), 2τ(1 − τ), τ2}, n = 1029, r = 3)

HA : X ∼M(θ, n = 1029, r = 3) with θ 6= {(1− τ 2), 2τ(1− τ), τ2},

so the null and alternate are both multinomial however the null assumes the Hardy-
Weinberg model. For this case

−2 logΓ = 2

3
∑

i=1

Oi log

(

Oi

Ei

)

= .032,

the likelihood is .98 and r − k − 1 = 1 since r = 1 and k = 1 so the p-value is .86.
There is no good reason to reject the Hardy-Weinberg model.

Example (Fisher’s reexamination of Mendel’s data). Mendel liked to cross peas.
He crossed 556 smooth, yellow male peas with wrinkled, green female peas. Ac-
cording to the genetic theory he developed the frequency of the baby peas should
be

Smooth yellow 9
16

Smooth green 3
16

Wrinkled yellow 3
16

Wrinkled green 1
16

The observed and expected counts are given in the following table.

Type Observed count Expected count
Smooth yellow 315 312.75
Smooth green 108 104.25

Wrinkled yellow 102 104.25
Wrinkled green 31 34.75
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Given the above data our hypotheses are

H0 : X ∼M

({

9

16
,
3

16
,
3

16
,
1

16

}

, n = 556, r = 4

)

HA : X ∼M(θ, n = 556, r = 4) with θ 6=
{

9

16
,
3

16
,
3

16
,
1

16

}

so the null and alternate are both multinomial however the null assumes what became
Mendel’s law. For this case

−2 logΓ = 2

4
∑

i=1

Oi log

(

Oi

Ei

)

= .618,

the likelihood is .73 and r − k − 1 = 3 since r = 4 and k = 1 so the p-value is .9.
There is no good reason to reject the Mendel’s law.

Mendel did this experiment many times and Fisher pooled the results in the
following way. Two independent experiments give chi-square statistics with p and
r degrees of freedom respectively. Under the null hypothesis that the models were
correct the sum of the test statistic would follow a chi-square distribution with p+ r
degrees of freedom. So Fisher added the chi-square statistics for all the independent
experiments that Mendel conducted and found a p-value of .99996 !

3.0.12. Multiple hypothesis testing

In the various “omics” the issue of multiple hypothesis testing arises very often.
We start with an example to illustrate the problem.

Example. The expression level of 12, 000 genes can be measured with the technology
available in one current platform. We measure the expression level of these 12, 000
genes for 30 breast cancer patients of which C1 are those with ductal invasion and
C2 are those with no ductal invasion. There are 17 patients in C1 and 13 in C2.
We consider a matrix xij with i = 1, ..., 12, 000 indexing the genes and j = 1, ..., 30
indexing the patients. Assume that for each gene we use a t-test to determine if that
gene is differentially expressed under the two conditions of for each i = 1, ..., 12, 000
we assume Xij ∼ N(µ, sigma2)

H0 : µ
C1

= µ
C2

HA : µ
C1
6= µ

C2
,

We set the significance level of each gene to α = .01 and we find that we reject the
null hypothesis for 250 genes. At this point we need to stop and ask ourselves a
basic question.

Assume H0 is true for i = 1, ..., m = 12, 000 and we observe n = 30 observations
that are N(µ, σ2) split into groups of 13 and 17. We can ask about the distribution
of the following two random variables

ξ = # rejects at α = .01 | H0 = T ∀i = 1, ...m

ξ = # times t ≥ tdf(.01) | H0 = T ∀i = 1, ...m

where tdf is the t-distribution with degree of freedom df . We can also ask whether
IEξ ≈ 120 or IEξ ≫ 120. This is the question addressed by multiple hypothesis
testing correction.



36 S. MUKHERJEE, STATISTICS FOR COMP BIO

The following contingency table of outcomes will be used ad nauseum in un-
derstanding multiple hypothesis testing.

Accept null Reject null Total
Null true U V m0

Alternative true T S m1

W R m

The main quantity that is controlled or worried about in multiple hypothesis
testing is V the number of false positives or false discoveries. The other possible
error is the type II error or the number of false negatives or missed discoveries. The
two main ideas are the Family-wise error rate (FWER) and the False Discovery
Rate (FDR). We start with the FWER.

3.0.12.1. FWER. The family-wise error rate consists of finding a cutoff level or α
value for the individual hypothesis tests such that we can control

α
F W ER

= Pr(V ≥ 1),

this means we control the probability of obtaining any false positives. Our objective
will be to find an α-level or cutoff for the test statistic of the individual tests such
that we can control α

F WER
.

The simplest correction to control for the FWER is called the Bonferroni cor-
rection. We derive this correction

α
F WER

= Pr(V ≥ 1),

= Pr ({T1 > c} ∪ {T2 > c}, ...,∪{Tm > c}|H0)

≤
m
∑

i=1

Pr ({Ti > c})

≤ mPr ({T > c})
≤ mα,

so if we want to control α
F WER

at for example at .05 we can find a cutoff or select for
α = .05

m for the individual hypotheses. There is a huge problem with this correction
the inequality between steps 2 and 3 can be large if the hypothesis are not disjoint
(or the union bound sometimes sucks).

Let us make this concrete by using the example from the beginning of this
section.

Example. In the previous example we use a t-test to determine if a gene is dif-
ferentially expressed under the two conditions, for each i = 1, ..., 12, 000 we assume
Xij ∼ N(µ, sigma2)

H0 : µ
C1

= µ
C2

HA : µ
C1
6= µ

C2
,

We set the significance level of each gene to α = .01 this gives us the Bonferroni
correction of α

F WER
= .01 × 12, 000 = 120, which is a joke. In addition, the

assumption that the hypotheses, genes, are independent is ludicrous.

We now use an alternative approach based upon a computational approach
that falls under the class of permutation procedures. This lets us avoid the union
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bound and control the FWER more accurately. We will also deal with the issue
that t-distribution assumes normality and our data may not be normal. We will
develop this procedure in the context of the previous example.

Example. We will use a t-statistic to determine if a gene is differentially expressed
under the two conditions. However, for each j = 1, ..., 12, 000 we do not make
distributional assumptions about the two distributions

H0 : C1 and C2 are exchangeable

HA : C1 and C2 are not exchangeable,

by exchangeable we mean loosely Pr(x, y|y ∈ C1) = Pr(x, y|y ∈ C2).
For each gene we can compute the t-statistic: ti. We then repeat the following

procedure π = 1, ...,Π times for each gene

(1) permute labels
(2) compute tπi .

For each gene i we can get a p-value by looking at where ti falls in the ecdf generated
from the sequence {tπi }Πi=1,

pi = P̂r(ξ > ti|{tπi }Ππ=1).

The above procedure gives us a p-value for the individual genes without an assump-
tion of normality but how does it help regarding the FWER.

The following observation provides us with the key idea

α
F WER

= Pr(V ≥ 1),

= Pr ({T1 > c} ∪ {T2 > c}, ...,∪{Tm > c}|H0)

= Pr

(

max
i=1,...,m

{Ti > c}|H0

)

.

This suggests the following permutation procedure For each gene we can com-
pute the t-statistic: {ti}m

i=1, where m = 12, 000. Then repeat the following procedure
π = 1, ...,Π

(1) permute labels
(2) compute tπi for each gene
(3) compute tπ = maxi=1,...,m tπi ,

for each gene we can compute the FWER as

pi,F W ER
= P̂r(ξ > ti|{tπ}Ππ=1).

One very important aspect of the permutation procedure is we did not assume
that the genes were independent and in some sense modeled the dependencies.

For many problems even this approach with a more accurate estimation of the
FWER p-value does not give us significant hypotheses because the quantity we are
trying to control Pr(V ≥ 1) is too stringent.

3.0.12.2. FDR. The false discovery rate consists of finding a cutoff level or α value
for the individual hypothesis tests such that we can control

q
F DR

= IE

[

V

R

]

,
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this is controlling the proportion of false positives among the hypotheses we reject.
For the reason that the above is not well defined when R = 0 we adjust the statistic
so that we condition on there being rejects

q
pF DR

= IE

[

V

R
|R > 0

]

.

We first illustrate the procedure with the permutation procedure we introduced
previously as an example and then we will look at the more classical parametric
case.

Example. We will use a t-statistic to determine if a gene is differentially expressed
under the two conditions. However, for each j = 1, ..., 12, 000 we do not make
distributional assumptions about the two distributions

H0 : C1 and C2 are exchangeable

HA : C1 and C2 are not exchangeable,

by exchangeable we mean loosely Pr(x, y|y ∈ C1) = Pr(x, y|y ∈ C2).
For each gene we can compute the t-statistic: {ti}m

i=1, where m = 12, 000. Then
repeat the following procedure π = 1, ...,Π

(1) permute labels
(2) compute tπi for each gene

note that the statistics {tπi }i,π were all drawn under the assumption that the null
is true. So if we reject any of them they would be a false positive. The statistics
{ti}m

i=1, are drawn from a combination of hypotheses for which the null hypothesis
holds true and those for which the alternative is true. Define the ranked list of the
statistics under the null hypothesis as

{Null(i)}Π×m
i=1 = ranked{tπi } for i = 1, ..., m, π = 1, ...,Π.

Similarly we can define the ranked list of the statistics coming from the set of the
alternative and the null as

{Tot(i)}m
i=1 = ranked{ti} for i = 1, ..., m.

We now look at a series of cutoffs corresponding to

c = Tot(1),Tot(2), ...,Tot(k).

For each value of c we can compute the following two quantities

%R(c) =
#{Null(i)} ≤ c

m×Π
,

%V (c) =
#{Tot(i)} ≤ c

m
,

from which we can compute the pFDR for the given cutoff c

q
pF DR

(c) =
%V (c)

%R(c)
.


