Background on Compositional Data

UBIQUITY OF COMPOSITIONAL DATA

Compositional:Relating to parts of some wholeProportionsProportionsParts per millionX+Y+Z=kPercentagesAnd all Positive

RELATIVE DATA

Simple Examples

- Does hongite have more calcium than struvite? (e.g., parts per million)
- Have I been spending more of my day in the bathroom since I ate that sandwich? (e.g., percentage of your day)
- Does my cow produce higher protein milk when I feed her that sandwich? (*e.g.*, proportion of calories from protein)

UBIQUITY OF COMPOSITIONAL DATA COUNTS!

1200 Blue1100 Orange1300 Green

31% Blue19% Orange50% Green

UBIQUITY OF COMPOSITIONAL DATA COUNTS!

Examples

- Abundance Quantification by High Throughout Sequencing
 - Microbiome Composition (e.g., counts of 16s gene)
 - Gene expression analysis (e.g., RNA-seq)
- Abundance Quantification by Flow Cytometry
- Proportion of observed mice that go on to develop a disease?
- Population of North Carolina that is pro-Trump? (e.g., polling results)

RESULTING COUNT TABLE

	Species 1	Species 2	Species 3	Species 4	Species 5	Species 6	Species 7	Species 8	Species 9	Species 10
Sample 1	23	53	2	44	10	88	94	66	73	67
Sample 2	69	64	70	47	8	97	47	6	64	19
Sample 3	33	100	68	78	59	87	71	31	67	24
Sample 4	5	63	57	27	86	81	83	92	46	62
Sample 5	76	80	46	70	92	92	6	46	37	68
Sample 6	58	7	37	45	25	62	78	44	89	30
Sample 7	10	87	32	80	9	91	59	90	67	77
Sample 8	21	89	73	39	44	80	97	83	80	4
Sample 9	85	77	82	72	15	19	44	4	83	76
Sample 10	67	87	68	58	73	29	87	4	48	79
Sample 11	90	5	28	49	39	20	78	92	12	23
Sample 12	98	93	55	12	54	75	27	95	83	98
Sample 13	31	97	52	9	93	84	45	97	81	27
Sample 14	12	77	22	17	71	12	56	86	18	0
Sample 15	40	30	71	71	54	13	77	96	75	11
Sample 16	43	94	40	73	27	33	97	88	81	44

The Shape of Compositional Data (Microbiome Example)

compositional data: usual representation

definition: $\mathbf{x} = [x_1, x_2, \dots, x_D]$ is a *D*-part composition

$$\begin{cases} x_i > 0, & \text{for all } i = 1, ..., D\\ \sum_{i=1}^{D} x_i = \kappa \quad (\text{constant}) \end{cases}$$

 $\begin{array}{ll} \kappa = 1 & \Longleftrightarrow \text{ measurements in parts per unit} \\ \kappa = 100 & \Longleftrightarrow \text{ measurements in percent} \\ \text{other frequent units: ppm, ppb, ...} \end{array}$

a composition is the representative in the simplex of equivalent vectors with strictly positive components

a **subcomposition** \mathbf{x}_s with *s* parts is obtained as the closure of a subvector $[x_{i_1}, x_{i_2}, \dots, x_{i_s}]$ of \mathbf{x}

 presentation
 CoDa
 historical remarks
 sample space
 Aitchison geometry
 final comments

 000
 0
 0000
 00000000
 0000
 0000

compositional data: definition

definition: parts of some whole which carry only relative information

Proportional vectors with strictly positive components are compositionally equivalent if they are proportional: each equivalence class represents a composition

presentation	CoDa	historical remarks	sample space	Aitchison geometry	final comments
			00000		

the simplex as sample space

$$\mathcal{S}^{D} = \left\{ \mathbf{x} = [x_1, x_2, \dots, x_D] \middle| x_i > 0; \sum_{i=1}^{D} x_i = \kappa \right\}$$

standard representation for D = 3: the ternary diagram

STATISTICAL COMFORT ZONE

COMPOSITONAL SIMPLEX

COMPOSITONAL SIMPLEX

DELIVERY OF **EVENT: BACTEROIDES** PROBIOTIC

DELIVERY OF **EVENT: BACTEROIDES CHALLENGE:** PROBIOTIC

CHANGES IN FRACTIONS OF *LACTOBACILLUS* & *RUMINOCOCCUS*

measure distance

add probiotic

measure distance

 Probiotic addition alone shifts community composition

add probiotic

measure distance

- Probiotic addition
 alone shifts
 community
 composition
- Shifts are biased by probiotic dosage

Given: X + Y + Z = 100%

If: X increases \rightarrow Y + Z must decrease

Not actually 3 independent variables

Fake Data

Fake Data (Normalized)

Fake (Normalized) Data

Real Data

Real Data

the problem: negative bias & spurious correlation

example: scientists A and B record the composition of aliquots of soil samples; A records (animal, vegetable, mineral, water) compositions, B records (animal, vegetable, mineral) after drying the sample; both are absolutely accurate (adapted from Aitchison, 2005)

sar	nple A	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4		sample E	3	x'_1	<i>x</i> ₂ '	x'_3
	1	0.1	0.2	0.1	0.6	-	1		0.25	0.50	0.25
2		0.2	0.1	0.2	0.5		2		0.40	0.20	0.40
3		0.3	0.3	0.1	0.3		3		0.43	0.43	0.14
		•						,			
corr	A <i>x</i> ₁	λ	(₂	<i>X</i> 3	<i>X</i> 4		corr B		X'_1	X_2'	x'_3
<i>X</i> ₁	1.0	0 0 .	50	0.00	-0.98	_			^1 .00	- 0.57	-0.05
<i>X</i> ₂		1.	00	-0.87	-0.65		x'_1	1	.00	1.00	-0.05
<i>X</i> 3				1.00	0.19		x ₂ '			1.00	1.00
<i>X</i> ₄					1.00		x'_3				1.00

4

(日)

 presentation
 CoDa
 historical remarks
 sample space
 Aitchison geometry
 final comments

 ○○○
 ○
 ○○○○○●
 ○○○○○○○
 ○○○○○○
 ○○○○○○

requirements for a proper analysis

- scale invariance: the analysis should not depend on the closure constant κ; proportional positive vectors are equivalent as compositions
- permutation invariance: the order of the parts should be irrelevant
- subcompositional coherence: studies performed on subcompositions should not stand in contradiction with those performed on the full composition

presentation

CoDa

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

final comments

why a new geometry on the simplex?

in real space \mathbb{R}^D we **add** vectors, we **multiply** them by a constant, we look for **orthogonality** between vectors, we look for **distances** between points, ...

possible because \mathbb{R}^D is a Euclidean vector space

BUT the usual Euclidean geometry in real space is not a proper geometry for compositional data because

- results might not be in the simplex when we add compositional vectors, multiply them by a constant, or compute confidence regions
- Euclidean differences are not always reasonable: from 0.05% to 0.10% the amount is doubled; from 50.05% to 50.10% the increase is negligible

closure of $\mathbf{z} = [z_1, z_2, \dots, z_D] \in \mathbb{R}^D_+$, with closure constant $= \kappa$

$$\mathcal{C}\left[\mathbf{z}\right] = \left[\frac{\kappa \cdot z_1}{\sum_{i=1}^{D} z_i}, \frac{\kappa \cdot z_2}{\sum_{i=1}^{D} z_i}, \cdots, \frac{\kappa \cdot z_D}{\sum_{i=1}^{D} z_i}\right]$$

 $\mathcal{C}\left[\boldsymbol{z}\right]$ is the representative of \boldsymbol{z} in $\mathcal{S}^{\mathcal{D}}$

perturbation of $\mathbf{x} \in \mathcal{S}^{D}$ by $\mathbf{y} \in \mathcal{S}^{D}$

$$\mathbf{X} \oplus \mathbf{y} = \mathcal{C} \left[x_1 y_1, x_2 y_2, \dots, x_D y_D \right]$$

powering of $\mathbf{x} \in \mathcal{S}^D$ by $\alpha \in \mathbb{R}$

$$\alpha \odot \mathbf{X} = \mathcal{C}\left[\mathbf{X}_{1}^{\alpha}, \mathbf{X}_{2}^{\alpha}, \dots, \mathbf{X}_{D}^{\alpha}\right]$$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

presentation CoDa historical remarks

sample space

Aitchison geometry

final comments

interpretation of perturbation and powering

left: perturbation of initial compositions (\circ) by **p** = [0.1, 0.1, 0.8] resulting in compositions (\star)

right: powering of compositions (*) by $\alpha = 0.2$ resulting in compositions (°)

presentation	CoDa ○	historical remarks	sample space	Aitchison geometry	final comments
comme	ents				

- closure = projection of a point in \mathbb{R}^{D}_{+} on \mathcal{S}^{D}
- points on a ray are projected onto the same point
 - a ray in \mathbb{R}^{D}_{+} is an equivalence class
 - the point on \mathcal{S}^{D} is a representative of the class
 - a generalization to other representatives is possible

• for $\mathbf{z} \in \mathbb{R}^{D}_{+}$ and $\mathbf{x} \in \mathcal{S}^{D}$, $\mathbf{x} \oplus (\alpha \odot \mathbf{z}) = \mathbf{x} \oplus (\alpha \odot \mathcal{C} [\mathbf{z}])$

 presentation
 CoDa
 historical remarks
 sample space
 Aitchison geometry
 final comments

 000
 0
 0000
 0000000
 0000
 0000

vector space structure of $(\mathcal{S}^{\mathcal{D}}, \oplus, \odot)$

• commutative group structure of $(\mathcal{S}^{D}, \oplus)$

• commutativity: $\mathbf{x} \oplus \mathbf{y} = \mathbf{y} \oplus \mathbf{x}$ • associativity: $(\mathbf{x} \oplus \mathbf{y}) \oplus \mathbf{z} = \mathbf{x} \oplus (\mathbf{y} \oplus \mathbf{z})$ • neutral element: $\mathbf{e} = \mathcal{C} [1, 1, \dots, 1] = \text{barycentre of } \mathcal{S}^{\mathcal{D}}$ • inverse of \mathbf{x} : $\mathbf{x}^{-1} = \mathcal{C} \left[x_1^{-1}, x_2^{-1}, \dots, x_D^{-1} \right]$ $\Rightarrow \mathbf{x} \oplus \mathbf{x}^{-1} = \mathbf{e}$ and $\mathbf{x} \oplus \mathbf{y}^{-1} = \mathbf{x} \oplus \mathbf{y}$

properties of powering

associativity: α ⊙ (β ⊙ x) = (α ⋅ β) ⊙ x;
 distributivity 1: α ⊙ (x ⊕ y) = (α ⊙ x) ⊕ (α ⊙ y)
 distributivity 2: (α + β) ⊙ x = (α ⊙ x) ⊕ (β ⊙ x)
 neutral element: 1 ⊙ x = x

 presentation
 CoDa
 historical remarks
 sample space
 Aitchison geometry
 final comments

 000
 0
 0000
 000000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

complete inner product space structure

d

inner product :
$$\langle \mathbf{x}, \mathbf{y} \rangle_{a} = \frac{1}{2D} \sum_{i=1}^{D} \sum_{j=1}^{D} \ln \frac{x_{i}}{x_{j}} \ln \frac{y_{i}}{y_{j}}, \quad \mathbf{x}, \mathbf{y} \in \mathcal{S}^{D}$$

$$\begin{aligned} \mathbf{norm} : \quad \|\mathbf{x}\|_{a} &= \sqrt{\frac{1}{2D}\sum_{i=1}^{D}\sum_{j=1}^{D}\left(\ln\frac{x_{j}}{x_{j}}\right)^{2}}, \quad \mathbf{x} \in \mathcal{S}^{D} \\ \end{aligned}$$
$$\begin{aligned} \text{listance} : \quad d_{a}(\mathbf{x}, \mathbf{y}) &= \sqrt{\frac{1}{2D}\sum_{i=1}^{D}\sum_{j=1}^{D}\left(\ln\frac{x_{i}}{x_{j}} - \ln\frac{y_{i}}{y_{j}}\right)^{2}}, \quad \mathbf{x}, \mathbf{y} \in \mathcal{S}^{D} \end{aligned}$$

Aitchison geometry on the simplex

 $(\mathcal{S}^{D}, \oplus, \odot)$ is a (D-1)-dim. Euclidean space

properties of the Aitchison geometry

distance and perturbation: $d_a(\mathbf{p} \oplus \mathbf{x}, \mathbf{p} \oplus \mathbf{y}) = d_a(\mathbf{x}, \mathbf{y})$

distance and powering: $d_a(\alpha \odot \mathbf{x}, \alpha \odot \mathbf{y}) = |\alpha| d_a(\mathbf{x}, \mathbf{y})$

compositional lines: $\mathbf{y} = \mathbf{x}_0 \oplus (\alpha \odot \mathbf{x})$ (\mathbf{x}_0 = starting point, \mathbf{x} = leading vector)

orthogonal lines: $y_1 = x_0 \oplus (\alpha_1 \odot x_1), y_2 = x_0 \oplus (\alpha_2 \odot x_2),$

$$\mathbf{y_1} \perp \mathbf{y_2} \iff \langle \mathbf{x_1}, \mathbf{x_2} \rangle_a = \mathbf{0}$$

(the inner product of the leading vectors is zero) parallel lines: $\mathbf{y_1} = \mathbf{x_0} \oplus (\alpha \odot \mathbf{x}) \parallel \mathbf{y_2} = \mathbf{p} \oplus \mathbf{x_0} \oplus (\alpha \odot \mathbf{x})$

・ 日 ・ ・ 雪 ・ ・ 国 ・ ・ 日 ・

presentation

historical remarks

CoDa

sample space

Aitchison geometry

final comments

orthogonal compositional lines

orthogonal grids in S^3 , equally spaced, 1 unit in Aitchison distance; the right grid is rotated 45^o with respect to the left grid

presentationCoDahistorical remarkssample space00000000000000000

Aitchison geometry ○○○○○○○● final comments

ellipses and shifted segments

ロ > < 個 > < 目 > < 目 > < 目 > < 回 > < < の へ ()

advantages of complete inner product spaces

- orthonormal basis can be constructed: $\{e_1, \ldots, e_{D-1}\}$
- coordinates obey the rules of real Euclidean space:

$$\mathbf{x} \in S^{D} \Rightarrow \mathbf{y} = [y_{1}, \dots, y_{D-1}] \in \mathbb{R}^{D-1}$$
, with $y_{i} = \langle \mathbf{x}, \mathbf{e}_{i} \rangle_{a}$

- standard methods can be directly applied to coordinates
- expressing results as compositions is easy:

if $h : S^D \mapsto \mathbb{R}^{D-1}$ assigns to each $\mathbf{x} \in S^D$ its coordinates, i.e. $h(\mathbf{x}) = \mathbf{y}$, then

$$h^{-1}(\mathbf{y}) = \mathbf{x} = \bigoplus_{i=1}^{D-1} y_i \odot \mathbf{e}_i$$

PRINCIPLE OF WORKING ON COORDINATES

presentation	CoDa ○	historical remarks	sample space	Aitchison geometry	final comments ○●○○
conclu	sions				

- the Aitchison geometry of the simplex offers a powerful tool to analyse CoDa
- the geometry is apparently complex, but it is completely equivalent to standard Euclidean geometry in real space
- the key is to use a proper representation in coordinates

presentation	CoDa	historical remarks	sample space	Aitchison geometry	final comments
					0000

some specific references

Aitchison, J.: The statistical analysis of compositional data. Monographs on statistics and applied Probability: Chapman and Hall, London (Reprinted in 2003 with additional material by Blackburn Press), 1986.

Pawlowsky-Glahn, V. and J. J. Egozcue: Geometric Approach to Statistical Analysis on the Simplex, Stochastic Environmental Research and Risk Assessment, 15, 5, 384-398, 2001.

Aitchison, J. and J. J. Egozcue: Compositional data analysis: where are we and where should we be heading?, Mathematical Geology, 37, 7, 833-854, 2005. Aitchison, J., Barceló-Vidal, C., Egozcue, J. J., and Pawlowsky-Glahn, V.: A concise guide for the algebraic-geometric structure of the simplex, the sample space for compositional data analysis. Proceedings of IAMG'02, Berlin, 2002. Egozcue, J. J. and V. Pawlowsky-Glahn: Simplicial geometry for compositional data. In: Buccianti, A., Mateu-Figueras, G. and Pawlowsky-Glahn, V., (eds) Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Society, London, (ISBN: 1-86239-205-6), Special Publications, 264, 67-77, 2006.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Egozcue, J. J.: Reply to "On the Harker variation diagrams;..." by J. A. Cortés.

Mathematical Geosciences, 41, 7, 829-834, 2009.