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Three parts

(1) Bayesian sparse factor model to estimate genetic covariance.
(2) Finding distal eQTLs.

(3) Quantitative genetics of shapes.



Genetics of multiple traits

Phenotypic traits are often considered individually
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Genetics of multiple traits

Linda Strausbaugh (Genetics 147:5, 1997)

Important phenotypes often involve many traits

BBC



Some objectives in quantitative genetics

Partition total phenotypic (trait) variation into genetic and
environmental components.

P=G+E

G-matrix: matrix of genetic covariance among traits, G.
E-matrix: matrix covariance among traits due to environment E.



Some objectives in quantitative genetics

Partition total phenotypic (trait) variation into genetic and
environmental components.

P=G+E

G-matrix: matrix of genetic covariance among traits, G.
E-matrix: matrix covariance among traits due to environment E.

Broad-sense heritability = genetic effects on phenotype, can be
further partitioned into additive, dominant, and interaction effects.



Lande’s equation

Focus on additive effects: narrow-sense heritability, h?

Fisher’s fundamental theorem (1930):
"The rate of increase in fithess of any organism at any time is
equal to its genetic variance in fitness at that time.”



Lande’s equation

Focus on additive effects: narrow-sense heritability, h?

Fisher’s fundamental theorem (1930):
"The rate of increase in fithess of any organism at any time is
equal to its genetic variance in fitness at that time.”

Lande or breeder’s equation:

R = hZS,

R - response to selection, S - selection differential.



Multivariate Lande’s equation

G:. matrix of additive genetic covariance among traits, G



Multivariate Lande’s equation

G: matrix of additive genetic covariance among traits, G

Lande or breeder’s equation:

Ay = Gs

Y ~ Np: traits are multivariate normal

— a/;gv): selection gradient.




Genetics of multiple traits

all pairwise genetic covariances

G matrix
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Genetics of multiple traits
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Genetics of multiple traits
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Genetics of many traits

Today we can measure thousands of traits simultaneously

Drosophila gene expression from Ayroles et al 2009

Genome-wide gene expression

Proteomics / metabolomics
morphometrics

genotype-environment
interactions

50 100 150 200 250 300 350

New methods are necessary to take advantage of these data



Quantitative Genetics of Gene Expression

Gene expression is a readout of cellular activities
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Metabolism, and cell-signaling activity is difficult to measure
but may be key determinants of fitness



Bayesian genetic sparse factor model

Ayroles et al 2009

Goal:

Reduce high-dimensional data to its
underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or
complex pedigrees
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Be scalable to large numbers of traits
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Bayesian genetic sparse factor model

Ayroles et al 2009

Goal:

Reduce high-dimensional data to its
underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or
complex pedigrees

Be scalable to large numbers of traits

Methods: Bayesian dimension reduction

Sparse estimation of the G matrix based on an animal model



Bayesian genetic sparse factor model

Ayroles et al 2009

Goal:

Reduce high-dimensional data to its
underlying structure

Estimate evolutionary parameters

Handle complicated experimental designs or
complex pedigrees

Be scalable to large numbers of traits

Methods: Bayesian dimension reduction

Sparse estimation of the G matrix based on an animal model

Case study:

An application to Drosophila gene expression data



A factor model for G

Animal model for multiple traits

Random
phenotypes  fixed effects ~ genetic effects  residual error

\ l /
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A factor model for G

Animal model for multiple traits

Random
phenotypes fixed effects genetic effects residual error

\ i /

y; = X; b +u; + ¢

o

genes < uf[/ 4 ~ N (O, G)




A factor model for G

Model u as output of development
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A factor model for G

Model u as output of development

u; -

+ + +
[]
[

e A ™~ \

TOR pathway Rb/E2F network p53 pathway

Developmental
effects are sparse

1 ) Few underlying developmental pathways
are genetically variable

2) Each pathway affects a low
number of genes



A factor model for G

Sparsity assumptions are key for high-dimensional data
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A factor model for G

Sparsity assumptions are key for high-dimensional data
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A factor model for G

Sparsity assumptions are key for high-dimensional data

ui! = + + +
o - =

7 ? N

TOR pathway Rb/E2F network  p53 pathway €;

W_/
! A Loadings
genes matrix
0
E
pathways

Few underlying pathways = few parameters to estimate

Few effects per pathway = pathways are robust and interpretable



A factor model for G

genetic effects
measured traits underlying traits

o
\uz’ = /T\fi + €

Loadings matrix



A factor model for G

genetic effects
measured traits underlying traits

e
\uz- = Afz + €
f

Loadings matrix

\_YJ

Residual covariance

J
G =AA + 3.

T

Genetic covariances



Bayesian genetic sparse factor model

Posterior Likelihood Prior

(Y | G)7(G)

Bayes’ Theorem
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Posterior Likelihood Prior
p(Y | G)r(G)
, p(G|Y)=
Bayes’ Theorem ( | ) p(Y)

Animal model likelihood

p(Y|G) y;,~N(xb+u;,R)
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Bayesian genetic sparse factor model

Posterior Likelihood Prior
p(Y | G)r(G)
, p(G|Y)=
Bayes’ Theorem ( | ) p(Y)

Animal model likelihood

p(Y | G) y; ~ N (x;b +u;, R)




Bayesian genetic sparse factor model

Posterior Likelihood Prior
p(Y | G)r(G)
, p(G|Y)=
Bayes’ Theorem ( | ) p(Y)

Animal model likelihood

p(Y | G) y; ~ N (x;b +u;, R)

N (O, (71247;A)
— — —
P U N(0,G)
— —— _



Bayesian genetic sparse factor model

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = m (AN + Se)
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Bayesian genetic sparse factor model

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = 7 (AA" + Ze)

factors
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Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = m (AN + Se)

factors



Bayesian genetic sparse factor model

Bhattachyra and Dunson (2011) Sparse Bayesian infinite factor models

m(G) = m (AN + Se)

|

0
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Prior specification on A\

Based on (Bhattacharya and Dunson, 2011)
Aim | $im. Tm ~ N (0, i)
dim ~ Ga(v/2,v/2),
m
Tm — 1_[ 659
(=1

61 ~ Ga(a1, by),
Op ~ Ga(ag, bg) for £ = 2, ..., K.

Heritability prior (Zhou and Stephens, pers. comm.)

n(h? = €/ny) = 1/np, where £ =0...(ny—1).
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Scalable
Can estimate G withn << p
Adding genes doesn’t necessarily increase the number of factors
More genes can actually improve the estimation of the factors
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Advantages

Scalable
Can estimate G with n << p

Adding genes doesn’t necessarily increase the number of factors
More genes can actually improve the estimation of the factors

Regularized

The sparsity prior on )\@ 9 provides shrinkage to reduce the impact of noise
in the high dimensional space

Interpretable

The latent factors can inform the cause of genetic correlations among genes

Bayesian

Calculate posterior distributions of evolutionary parameters:

breeding values, heritability, genetic covariances, dimensionality of G



Case study: Drosophila gene expression

As a demonstration, we collected gene expression from: ve T RELgEd

Ayroles et al (2009) Systems genetics of complex traits in
Drosophila melanogaster. Nat Genet, 41, 299-307. . |

AR ELE B R
40 lines of D. melanogaster DGRP
17 -
_ 161
% 15 -
gene expression of >10,000 genes
£
=
9 10 11 12 13 14 15 16 17
Female mean expression
100 -

Phenotype data on 7 fitness-related
traits

Starvation resistance (h)




Case study: Drosophila gene expression




Case study: Drosophila gene expression

We estimate that the genetic covariation in expression could be explained by
9 factors

Factor 1 is dense but the remainder are very sparse.
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Case study: Drosophila gene expression

We estimate that the genetic covariation in expression could be explained by
9 factors

Factor 1 is dense but the remainder are very sparse.
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Case study: Drosophila gene expression

We can measure genetic covariances with Starvation Resistance
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Case study: Drosophila gene expression

We can measure genetic covariances with Starvation Resistance
But have more power to identify covariances with underlying traits
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Drosophila results

A Genetic correlations B Gene loadings on latent traits
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Software

Software:
http://www.stat.duke.edu/~sayan/bfgr/index.shtml
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Extensions and open problems

Simultaneous inference of G and kinship matrix.
Local heritability.

Incorporation with GWAS.

Discrete traits and time varying traits.



Network-based, Large-scale Identification oF disTal
eQTL (NetLIFT)
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Dissect genetic and molecular mechanism underlying complex
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Objective

Dissect genetic and molecular mechanism underlying complex

(disease) traits.
Standard approaches:

(1) Genome wide association studies (GWAS): Correlations
between genetic variants and trait variation.

(2) Gene expression studies: correlations between gene
expression and trait variation.

Integration of both approaches for complementary evidence.



Single nucleotide polymorphisms and haplotypes

Medscapee www.medscape.com

A SNPs SNP SNP SNP

l : l

Chromosome1 AACACGCCA.... TTCGGGGTC.... AGTCGACCG....
Chromosome2 AACACGCCA.... TTCGAGGTC.... AGTCAACCAG...
Chromosome3 AACATGCCA.... TTCGGGGTC.... AGTCAACCG....

Chromosome4 AACACGCCA.... TTCGGGGTC.... AGTCGACCG....

B Haplotypes I

Haplotype 1 CTCAAAGTACGGTTCAGGCA
Haplotype 2 TTGATTGCGCAACAGTAATA
Haplotype 3 CCCGATCTGTGATACTGGTAG
Haplotype4 TCGATTCCGCGGTTCAGACA

v :

C Tag SNPs A T
/ / /
G C

Source: Nal Clin Pract Cardiovasc Med © 2007 Nature Publishing Group




Genome wide association studies
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Challenges

(1) Find single variants, independently contributing to disease.
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Challenges

(1) Find single variants, independently contributing to disease.
(2) Issues with population structure, control for LD, etc...

(3) Genetic variations have been identified for a wide variety of
common complex diseases (GWAS catalog).

(4) Missing heritability: genetic variation explains 5% of height
variation.

(5) Very weak predictive power.



Gene expression based studies
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(4)

Causal versus reactive.



Challenges

1) Signatures or gene lists predictive of disease.

2) Sensitive to many environmental factors.

4) Causal versus reactive.

5) Can we find evidence that expression variation predictive of
trait variation is genetic.

(1)
(2)
(3) Is a complex trait itself.
(4)
(9)



Transcriptional regulation
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Nature Reviews | Genetics
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Expression quantitative trait loci eQTL

Given expression data and genetic variation data on a set of
individuals: eQTLs or eQTNs are SNPs or loci that association
with gene expression.
1
2

(1) SNPs associated with complex traits are enriched in eQTLs.
(2)
(3) Can help with causal versus reactive.
(4)
(9)

This association is robust across eQTL thresholds.

4
5

Need expression data and SNP data from same individuals.
Missing heritability still a problem.



cis and trans eQTL
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Mapping cis vs. trans

eQTL meta-study in 5,311 individuals with replication in 2,775
individuals of non-transformed peripheral blood samples by H-J
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Mapping cis vs. trans

eQTL meta-study in 5,311 individuals with replication in 2,775
individuals of non-transformed peripheral blood samples by H-J
Westra et al 2013

397,310 significant unique cis-eQTL SNPs at FDR<.05
346 significant unique trans-eQTL SNPs at FDR<.05
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Why is the distal signal weak

(1) Testing burden: Number of distal SNPs > number of proximal
SNPs.

(2) It is really weaker.

Fisher’s infinitesimal (polygenic) model suggested very large
number of mutations of infinitesimal effect.
The effect-size distribution of adaptive substitutions is

approximately exponential.
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A model

Given paired gene expression and SNP data for n individuals:
(Xi, Si)L, with X; € R3% and S; € {0, 1, 2)°00k

Assume the j-th SNP S/ is distal to the k-th gene XX
e(XK18) =e(XK | X)) +e(X |9),

where X! is the gene proximal to SNP .



A strategy

(1) Compute evidence for proximal effects.
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A strategy

(1) Compute evidence for proximal effects.

g1 92 . - 9p

St
S2

Sa

]

(2) Compute evidence for direct gene by gene expression effects
— Infer a gene network.

(3) Test for associations between SNPs with proximal effects and
genes local to the proximal gene on the gene network.
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For each gene j = 1, ..., p and a specified window size assign local
SNPs and fit:
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Step 1. Infer local eQTLs

For each gene j = 1, ..., p and a specified window size assign local
SNPs and fit:

X =By +BS', -+ X =pBy+BS™.

(1) Use FDR g-value of .05 for significant local significance.

(2) If there are multiple locally associated SNPs select the variant
with the largest effect size.



Step 2. Infer the gene network

Infer gene network using Sparse PArtial Correlation Estimation
(SPACE), Peng et al 20009.
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Step 2. Infer the gene network

Infer gene network using Sparse PArtial Correlation Estimation
(SPACE), Peng et al 20009.

We want to infer

Regularized loss:

b = argmin %Z ) & —Zp”\/i + A Z "Il

i
P =1 J#I 1<i<j<p

x' is the vector of gene expression for the i-th gene, ' is the
precision of the i-th gene, A set by BIC.



Step 2. Infer the gene network

If the partial correlation is non-zero there is an edge between
genesiandj, Ej =1ifp’ #0.
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Step 3. Infer distal eQTL

1. For each gene j with a significantly associated SNP perform
distal eQTL testing:

. Define the set S = {all genes within two steps from j € E}
i. For each gene k € S regress against the associated SNP &
for the j-th gene.

2. Assess significance using Benjamini-Hochberg correction for
FDR.
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Results on HapMap data

eQTL analysis was performed for 69 Nigerian individuals with
RNA-seq data from lymphoblastoid cell lines and genotype data
from HapMap in Pickrell et al. 2010.

Using a window of 200kb and restricting to 9810 top quartile
transcripts

(1) 1842 transcripts with local eQTL, FDR < 0.1.

(2) Replicated 541 of the 949 transcripts identified in Pickrell et
al., remainder were low expression.

(3) 1824 transcripts with distal eQTL, FDR < 0.1.
(4) Pickrell et al. reported no distal eQTL.
(5) SNPs-vs-all genes finds 5 distal associations.
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Results on mouse cross

Paired genotype and liver gene expression data from 156 partially
iInbred mice analyzed as part of the Collaborative Cross
Consortium 2012.

6,182 eQTL for 5,733 genes for FDR of 5%, 75% eQTL were within
10cM of associated gene.

Using a window of 1Mb window

(1) 5,748 genes with a local eQTL.

(2) 774 with at least one distal eQTL.

I. 453 linked to one SNP.
. 87 linked to two SNPs.
ii. 44 linked to three SNPs.
Iv. 190 linked to four or more SNPs.
v. 260 multi locus genes linked to a set of 42 hotspot loci on
chromosome 17



Results on mouse cross
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Extensions and open problems

(1) Bayesian one-step procedure.

(2) Incorporating other genomic features.

(3) Explicit use of the effect size distributions.
(4) Replacing FDR with local FDR.



Shapes as traits

From D. Boyer.



A problem in morphology

Distance between ankle bones across primates for evolutionary
analysis.

Algorithms to automatically quantify the geometric similarity of
anatomical surfaces, Boyer et. al. PNAS 2011.



Geometric algorithm

|. Observer-Placed Landmarks

*(nonprimate) ¥ (monkey)

Il. cP-determined correspondence map between two structures




Topological methods

What happens when the shapes are not isomorphic ?




Topological methods

Broken claw tips.




Euler characteristic

Given a shape M the Euler characteristic is

d
Y(M) = Z(—1 )'Bi = #+vertices — #edges + #faces.
i=0



Euler characteristic

Given a shape M the Euler characteristic is

d

x(M) = Z(—1 )'B; = #vertices — #edges + #+faces.
i=0




Back to bones

The idea of a height function
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Summary statistic

M is simplicial complex in R and v € S%! is a unit vector.
x(M, v) captures changes in topology of

M(v),={AeM:x-v<rforall x e A}

Definition
The Euler characteristic transform of M € R? is the function

ECT(M) : S = [,(R)
v x(M,v).



Height function: v,




Height function: v»




Euler characteristic curve
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Distances

My is the space of finite simplicial complexes in IR9.



Distances

My is the space of finite simplicial complexes in IR9.

The distance between two surfaces My, M5 Is

de(M1, Mg) = LOH d(/\/(M1, V),)((MQ, V))dV.



Sufficient statistic

Given X ~ fy € F, a statistic T = T(X) is sufficient if for the
parameter 4 if for all sets B the probability IP[X € B | T(X) = {]
does not depend on &

P[X | T(X) = t,6] = P[X | T(X) = t].
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Sufficiency of the ECT

Theorem (Turner-M-Boyer)

The Euler characteristic transform is injective when the domain is
My ford = 2, 3.

Corollary (Turner-M-Boyer)

For a density function f(x; 6) with supp(f) € Mgy (d = 2,3) the ECT
IS a sufficient statistic.



Exponential family and ECT

Denote the Euler characteristic curve for each direction:
f(y) = x(M, v) Define the integral of f(y) as F(x) = fOX f(y)dy.



Exponential family and ECT

Denote the Euler characteristic curve for each direction:
f(y) = x(M, v) Define the integral of f(y) as F(x) = fOX f(y)dy.

This results in K smooth curves {F4, ..., Fk}.



Exponential family and ECT

Denote the Euler characteristic curve for each direction:
f(y) = x(M, v) Define the integral of f(y) as F(x) = fOX f(y)dy.

This results in K smooth curves {F4, ..., Fk}.

Exponential family model

K
py(Xx) = a(8) h(x) exp (— 2(6’, Fk(x)>].
k=1



The matrix variate normal

Define F = [F1F>--- Fx] as a K X T matrix and

exp (—tr[V-"(F - A)TU~"(F - A)])

p(FI1A.U.V) = ()KL

A models mean
U models covariance between curves
V models covariance between points in a curve.



The matrix variate normal

Define F = [F1F>--- Fx] as a K X T matrix and

exp (—tr[V-"(F - A)TU~"(F - A)])
(27T)KT/2|V\L/2\U\K/2 ’

p(F|AUYV) =

A models mean
U models covariance between curves
V models covariance between points in a curve.

The given n meshes (M, ..., M,;) we can define a likelihood model

n
Lik(M.... My | AU V) = | [ p(F(M) | A, U.V). (4)
=1



Picture of heel bone

Figure : Images of a calcaneus from two different angles.



106 primates
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Primate calcanel
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Flgure . Phenetic clustering of phylogenetic groups of primate calcanei (n = 106). 67 genera are represented.
Asterisks indicate groups of extinct taxa. Abbreviations: Str, Strepsirrhines; Plat, platyrrhines; Cerc, Cercopithecoids; Om,
Omomyiforms; Adp, Adapiforms; Pp, parapithecids; Hmn, Hominoids. Note that more primitive prosimian taxa cluster
separately from simians (Om, Adp, Str.). Also note that monkeys (Plat, Cerc, Pp) cluster mainly separately from apes
(Hmn).



Comment from Doug

"In at least one way the method matched shapes with family
groups better than any of the other previous methods... it linked a
Hylobates specimen with the the other ape specimens (pan,
gorilla, pongo, and oreopithecus). Previous both hylobatids (which
ARE apes) always ended up closest to some Alouatta specimens.”



Comparing methods

A. Manually placed landmark data B. Persistent Homology
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A shape library
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Can you hear the shape of a network ?
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Association studies of shape phenotypes




Variation in baboon microbiome networks
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Open problems

(1) Other transforms.
(2) Sampling theory for surfaces.
(3) Localized transforms.

(4) Statistical and quantitative genetics of shape traits.
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