
FRAMING



Examples: 

▸ 16s rRNA sequencing  

▸ RNA-seq (± Single Cell) 

▸ T-cell receptor sequencing 

▸ [hand waving] tumor subtypes 

Extended Applications  
[Beyond Sequencing]: 

▸ Multiparametric Flow 
Cytometry 

▸ Political Polling

WHAT IS SEQUENCE COUNT DATA?

FRAMING SEQUENCE COUNT DATA

Multivariate count data Yij representing the number of 
transcripts of type j sequenced in sample i  



FRAMING SEQUENCE COUNT DATA

DATA COLLECTION AND SAMPLE PROCESSING

Adapted from Hamady. et al., Nature Methods, 2008

Sample Collection  
and Storage

DNA Extraction 
PCR Amplification Sequencing

Assign Sequences  
to Samples

Denoise Reads 
or Cluster

  Species 1	 Species 2	 Species 3	 Species 4	 Species 5	 Species 6	 Species 7	 Species 8	 Species 9	 Species 10	
Sample 1	 23	 53	 2	 44	 10	 88	 94	 66	 73	 67	
Sample 2	 69	 64	 70	 47	 8	 97	 47	 6	 64	 19	
Sample 3	 33	 100	 68	 78	 59	 87	 71	 31	 67	 24	
Sample 4	 5	 63	 57	 27	 86	 81	 83	 92	 46	 62	
Sample 5	 76	 80	 46	 70	 92	 92	 6	 46	 37	 68	
Sample 6	 58	 7	 37	 45	 25	 62	 78	 44	 89	 30	
Sample 7	 10	 87	 32	 80	 9	 91	 59	 90	 67	 77	
Sample 8	 21	 89	 73	 39	 44	 80	 97	 83	 80	 4	
Sample 9	 85	 77	 82	 72	 15	 19	 44	 4	 83	 76	
Sample 10	 67	 87	 68	 58	 73	 29	 87	 4	 48	 79	
Sample 11	 90	 5	 28	 49	 39	 20	 78	 92	 12	 23	
Sample 12	 98	 93	 55	 12	 54	 75	 27	 95	 83	 98	
Sample 13	 31	 97	 52	 9	 93	 84	 45	 97	 81	 27	
Sample 14	 12	 77	 22	 17	 71	 12	 56	 86	 18	 0	
Sample 15	 40	 30	 71	 71	 54	 13	 77	 96	 75	 11	
Sample 16	 43	 94	 40	 73	 27	 33	 97	 88	 81	 44	

Make Count Table
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FRAMING SEQUENCE COUNT DATA

DATA COLLECTION AND SAMPLE PROCESSING

Adapted from Hamady. et al., Nature Methods, 2008

Sample Collection  
and Storage

DNA Extraction 
PCR Amplification Sequencing

BIOLOGICAL 
VARIATION 

AND 
SIGNAL

TECHNICAL 
VARIATION 

AND 
BIAS

COUNTING 
AND 
BIAS

RANDOM SUBSAMPLING RANDOM SUBSAMPLING RANDOM SUBSAMPLING



FRAMING SEQUENCE COUNT DATA

KEY POINT

▸ Sequencing depth does not seem to correlate with 
microbial load. 



FRAMING SEQUENCE COUNT DATA

PROBLEM WITH MULTIVARIATE RANDOM SUBSAMPLING
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FRAMING SEQUENCE COUNT DATA

PROBLEM WITH MULTIVARIATE RANDOM SUBSAMPLING

% Blue 
% Orange 
% Green

RANDOM SAMPLING INDUCES A  
STATISTICAL COMPETITION TO BE COUNTED



FRAMING SEQUENCE COUNT DATA

THE SPACE OF RELATIVE DATA
L

B

R

k

k

k

L+   B+   R=k
And all Positive



FRAMING SEQUENCE COUNT DATA

COUNTING INTRODUCES UNCERTAINTY

N=10



FRAMING SEQUENCE COUNT DATA

COUNTING INTRODUCES UNCERTAINTY

N=10 N=100



FRAMING SEQUENCE COUNT DATA

THE PROBLEM WITH FEW COUNTS OR SMALL COUNTS
N=100

P=(90.3%,  9.2%,  0.5%)



FRAMING SEQUENCE COUNT DATA

THE PROBLEM WITH FEW COUNTS OR SMALL COUNTS
N=100

P=(90.3%,  9.2%,  0.5%)



FRAMING SEQUENCE COUNT DATA

MICROBIOME DATA IS SPARSE

Silverman, et al., eLife 2017



FRAMING SEQUENCE COUNT DATA

TAKE HOME MESSAGES 

▸ Counts (with many zero or small counts) 

▸ Compositional Information Only  

▸ The data is multivariate not univariate! 

▸ Lots of variation (technical and biological) 

▸ Variation is not always random (then we call it "bias")



MODELING



MODELING

GENERATIVE MODELING 

Adapted from Hamady. et al., Nature Methods, 2008

Sample Collection  
and Storage

DNA Extraction 
PCR Amplification

Sequencing

?

?
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BUILDING THE TOOLBOX

FIVE (NEARLY) EQUIVALENT STATEMENTS

▸ The Aitchison Geometry in the Simplex is the 
relevant space to model our systems in

▸ "Our Systems Multiply" + The information in 
our data is relative

▸ Conclusions should be drawn from [Log]-Ratios

▸ The Logistic-Normal Distribution is the CLT for 
our unobserved system(s)

▸ All methods for analyzing relative data should 
adhere to three principles (1) Scale Invariance, 
(2) Permutation Invariance, (3) 
Subcompositional Coherence

GROUP THEORY / VECTOR SPACE

INTUITIVE

STATISTICAL

AXIOMATIC



MODELING

GENERATIVE MODELING  (LIKELIHOOD ONLY)

Adapted from Hamady. et al., Nature Methods, 2008

Sample Collection  
and Storage

DNA Extraction 
PCR Amplification

Sequencing



MODELING

WHAT IS MISSING?

Adapted from Hamady. et al., Nature Methods, 2008

Sample Collection  
and Storage

DNA Extraction 
PCR Amplification

Sequencing

Denoise Reads 
or Cluster

Assign Sequences  
to Samples

  Species 1	 Species 2	 Species 3	 Species 4	 Species 5	 Species 6	 Species 7	 Species 8	 Species 9	 Species 10	
Sample 1	 23	 53	 2	 44	 10	 88	 94	 66	 73	 67	
Sample 2	 69	 64	 70	 47	 8	 97	 47	 6	 64	 19	
Sample 3	 33	 100	 68	 78	 59	 87	 71	 31	 67	 24	
Sample 4	 5	 63	 57	 27	 86	 81	 83	 92	 46	 62	
Sample 5	 76	 80	 46	 70	 92	 92	 6	 46	 37	 68	
Sample 6	 58	 7	 37	 45	 25	 62	 78	 44	 89	 30	
Sample 7	 10	 87	 32	 80	 9	 91	 59	 90	 67	 77	
Sample 8	 21	 89	 73	 39	 44	 80	 97	 83	 80	 4	
Sample 9	 85	 77	 82	 72	 15	 19	 44	 4	 83	 76	
Sample 10	 67	 87	 68	 58	 73	 29	 87	 4	 48	 79	
Sample 11	 90	 5	 28	 49	 39	 20	 78	 92	 12	 23	
Sample 12	 98	 93	 55	 12	 54	 75	 27	 95	 83	 98	
Sample 13	 31	 97	 52	 9	 93	 84	 45	 97	 81	 27	
Sample 14	 12	 77	 22	 17	 71	 12	 56	 86	 18	 0	
Sample 15	 40	 30	 71	 71	 54	 13	 77	 96	 75	 11	
Sample 16	 43	 94	 40	 73	 27	 33	 97	 88	 81	 44	



INTERPRETING THE MODEL

MULTINOMIAL-LOGISTIC NORMAL (OR NORMAL ON THE SIMPLEX)
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INTERPRETING THE MODEL

ISOMETRIC LOGRATIO TRANSFORM - AN ORTHONORMAL BASIS

Silverman, et al., eLife 2017

UNOBSERVED ABSOLUTE ABUNDANCES



INTERPRETING THE MODEL

ISOMETRIC LOGRATIO TRANSFORM - AN ORTHONORMAL BASIS

Silverman, et al., eLife 2017

UNOBSERVED ABSOLUTE ABUNDANCES CORRESPONDING COMPOSITION



INTERPRETING THE MODEL

PHYLOGENIC ISOMETRIC LOGRATIO (PHILR) TRANSFORM
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Community A

Community B
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Lactobacillus (%)

Ruminococcus (%)

Silverman, et al., eLife 2017

PHYLOGENETIC BALANCES ORTHONORMAL BASIS IN SIMPLEX

DATA PROJECTED ONTO BASIS
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PHYLOGENETIC BALANCES ORTHONORMAL BASIS IN SIMPLEX

DATA PROJECTED ONTO BASIS
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INTERPRETING THE MODEL

WHY AN ORTHONORMAL BASIS?

▸ Ability to rotate your view requires orthonormal basis.  

▸ Interpretability of low-dimensional projections requires 
orthonormal basis  

▸ "Objects change when you look at them differently with 
non-orthonormal bases" 

▸ "Units" Require an orthonormal Basis (Evidence 
Information)



INTERPRETING THE MODEL

PHILR BASIS
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INTERPRETING THE MODEL

VARIATION ARRAY
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INTERPRETING THE MODEL

PRINCIPLE BALANCE ANALYSIS
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INTERPRETING THE MODEL

MANUAL CURATION 
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EXAMPLE APPLICATIONS: LONGITUDINAL ANALYSIS

MODELING TIME-EVOLUTION WITH MALLARD

Y t ⇠ Multinomial(⇡t)

⇡t = ILR�1(⌘t)

⌘t = F 0
t✓t + ⌫t ⌫t ⇠ N(0,V t)

✓t = Gt✓t�1 + !t !t ⇠ N(0,W t)True State with Biological Noise

Addition of Technical Noise

Observed Counts
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EXAMPLE APPLICATIONS: LONGITUDINAL ANALYSIS

DOMINATED BY TECHNICAL NOISE AT HOURLY INTERVALS
Biological Noise to Technical Noise Ratio Percent of Noise (Excluding Counting)  

Attributable to Biology
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REAL DATA AND RESULTS

BIOLOGICAL AND TECHNICAL VARIATION CAN HAVE DIFFERENT SHAPES


