FRAMING

WHAT IS SEQUENCE COUNT DATA?

Multivariate count data **Y**_{ij} representing the number of transcripts of type **j** sequenced in sample **i**

Examples:

- 16s rRNA sequencing
- RNA-seq (± Single Cell)
- T-cell receptor sequencing
- [hand waving] tumor subtypes

Extended Applications

[Beyond Sequencing]:

- Multiparametric Flow
 Cytometry
- Political Polling

Adapted from Hamady. et al., *Nature Methods*, 2008

KEY POINT

Sequencing depth does not seem to correlate with microbial load.

% Blue % Orange % Green

COUNTING INTRODUCES UNCERTAINTY

COUNTING INTRODUCES UNCERTAINTY

THE PROBLEM WITH FEW COUNTS OR SMALL COUNTS

THE PROBLEM WITH FEW COUNTS OR SMALL COUNTS

MICROBIOME DATA IS SPARSE

Silverman, et al., <u>eLife</u> 2017

TAKE HOME MESSAGES

- Counts (with many zero or small counts)
- Compositional Information Only
- The data is multivariate not univariate!
- Lots of variation (technical and biological)
 - Variation is not always random (then we call it "bias")

MODELING

GENERATIVE MODELING

Sequencing

$Y_i \sim \text{Multinomial}(n_i, \pi_i)$

?

DNA Extraction PCR Amplification

Sample Collection and Storage

Adapted from Hamady. et al., *Nature Methods*, 2008

The Aitchison Geometry in the Simplex is the relevant space to model our systems in

- The Aitchison Geometry in the Simplex is the relevant space to model our systems in
- "Our Systems Multiply" + The information in our data is relative

GROUP THEORY / VECTOR SPACE

- The Aitchison Geometry in the Simplex is the relevant space to model our systems in
- "Our Systems Multiply" + The information in our data is relative
- Conclusions should be drawn from [Log]-Ratios

INTUITIVE

- The Aitchison Geometry in the Simplex is the relevant space to model our systems in
- "Our Systems Multiply" + The information in our data is relative
- Conclusions should be drawn from [Log]-Ratios
- The Logistic-Normal Distribution is the CLT for our unobserved system(s)

- The Aitchison Geometry in the Simplex is the relevant space to model our systems in
- "Our Systems Multiply" + The information in our data is relative
- Conclusions should be drawn from [Log]-Ratios
- The Logistic-Normal Distribution is the CLT for our unobserved system(s)
- All methods for analyzing relative data should adhere to three principles (1) Scale Invariance,
 (2) Permutation Invariance, (3)
 Subcompositional Coherence

GENERATIVE MODELING (LIKELIHOOD ONLY)

Sequencing

 $Y_i \sim \text{Multinomial}(n_i, \pi_i)$

DNA Extraction PCR Amplification

Sample Collection and Storage

 $\mu_i \sim \text{Logistic Normal}(\alpha, V)$

 $\pi_i \sim \text{Logistic Normal}(\mu_i, V)$

Adapted from Hamady. et al., Nature Methods, 2008

WHAT IS MISSING?

Sequencing

DNA Extraction PCR Amplification

Sample Collection and Storage

Assign Sequences to Samples

>AGTGAGAGAAGCAGGGTCGTAATGTT		
>AGTGCGATGCGTAGGGTCGTAATGCG		
>AGTGCGATGCGTAGGGTCGTAATG7A	-	
>AGTGGATGCTCTAGGGTCGTAATGCA		
>AGTGTCACGGTGAGGGTCGTAATGGG	-	-
>AGTGGATGCTCTAGGGTCGTAATGTT		
>AGTGTCACGGTGAGGGTCGTAATGCC		
>AGTGAGAGAAGCAGGGTCGTAATCAC		

Denoise Reads or Cluster

	Species 1	Species 2	Species 3	Sp
Sample 1	23	53	2	
Sample 2	69	64	70	
Sample 3	33	100	68	
Sample 4	5	63	57	
Sample 5	76	80	46	
Sample 6	58	7	37	
Sample 7	10	87	32	
comple 0	01	00	70	

Adapted from Hamady. et al., *Nature Methods*, 2008

MULTINOMIAL-LOGISTIC NORMAL (OR NORMAL ON THE SIMPLEX)

```
Y \sim \text{Multinomial}(\pi)
\pi \sim \text{Logistic Normal}(\rho, \Xi)
Y \sim \text{Multinomial}(\pi)
\pi = ILR^{-1}(\eta)
\eta \sim \text{Multivariate Normal}(\mu, \Sigma)
```

ISOMETRIC LOGRATIO TRANSFORM – AN ORTHONORMAL BASIS

UNOBSERVED ABSOLUTE ABUNDANCES

ISOMETRIC LOGRATIO TRANSFORM – AN ORTHONORMAL BASIS

UNOBSERVED ABSOLUTE ABUNDANCES

ISOMETRIC LOGRATIO TRANSFORM

ORTHONORMAL BASIS IN SIMPLEX

DATA PROJECTED ONTO BASIS

Silverman, et al., <u>eLife</u> 2017

PHYLOGENIC ISOMETRIC LOGRATIO (PHILR) TRANSFORM

PHYLOGENETIC BALANCES

ORTHONORMAL BASIS IN SIMPLEX

DATA PROJECTED ONTO BASIS

Silverman, et al., <u>eLife</u> 2017

WHY AN ORTHONORMAL BASIS? CURRENT STATISTICAL STANDARD "IDENTIFIED SOFTMAX" (AKA INVERSE ALR)

WHY AN ORTHONORMAL BASIS? CURRENT STATISTICAL STANDARD "IDENTIFIED SOFTMAX" (AKA INVERSE ALR)

WHY AN ORTHONORMAL BASIS? CURRENT STATISTICAL STANDARD "IDENTIFIED SOFTMAX" (AKA INVERSE ALR)

WHY AN ORTHONORMAL BASIS?

ORTHONORMAL BASIS

WHY AN ORTHONORMAL BASIS?

ORTHONORMAL BASIS

WHY AN ORTHONORMAL BASIS?

- > Ability to rotate your view requires orthonormal basis.
- Interpretability of low-dimensional projections requires orthonormal basis
- "Objects change when you look at them differently with non-orthonormal bases"
- "Units" Require an orthonormal Basis (Evidence Information)

PHILR BASIS

VARIATION ARRAY

PRINCIPLE BALANCE ANALYSIS

MANUAL CURATION

EXAMPLE APPLICATIONS

True State with Biological Noise

True State with Biological Noise

Addition of Technical Noise

True State with Biological Noise

Addition of Technical Noise

True State with Biological Noise

Observed Counts
$$\boldsymbol{Y}_t \sim \operatorname{Multinomial}(\boldsymbol{\pi}_t)$$
 \uparrow $\boldsymbol{\pi}_t = \operatorname{ILR}^{-1}(\boldsymbol{\eta}_t)$ Addition of Technical Noise $\boldsymbol{\eta}_t = \boldsymbol{F}'_t \boldsymbol{\theta}_t + \boldsymbol{\nu}_t$ \uparrow $\boldsymbol{\eta}_t = \boldsymbol{F}'_t \boldsymbol{\theta}_t + \boldsymbol{\nu}_t$ True State with Biological Noise $\boldsymbol{\theta}_t = \boldsymbol{G}_t \boldsymbol{\theta}_{t-1} + \boldsymbol{\omega}_t$ $\boldsymbol{\omega}_t \sim N(0, \boldsymbol{W}_t)$

A SIMPLE SIMULATION

$$Y_t \sim \text{Multinomial}(\pi_t)$$

$$\pi_t = \text{ILR}^{-1}(\eta_t)$$

$$\eta_t = \mu_t + v_t \qquad v_t \sim N(0, V)$$

$$\mu_t = \mu_{t-1} + \omega_t \qquad \omega_t \sim N(0, W)$$

A SIMPLE SIMULATION

$$Y_t \sim \text{Multinomial}(\pi_t)$$

$$\pi_t = \text{ILR}^{-1}(\eta_t)$$

$$\eta_t = \mu_t + v_t \qquad v_t \sim N(0, V)$$

$$\mu_t = \mu_{t-1} + \omega_t \qquad \omega_t \sim N(0, W)$$

Posterior Estimate for Eta with 95% Credible Interval

STANDARD LONGITUDINAL MODEL

 $\begin{aligned} Y_t &\sim \mathsf{Multinomial}(\pi_t) \\ \pi_t &= \mathsf{ILR}^{-1}(\eta_t) \\ \eta_t &= \mu_t + v_t \qquad v_t \sim \mathit{N}(\mathsf{0}, \mathit{V}) \\ \mu_t &= \mu_{t-1} + \omega_t \qquad \omega_t \sim \mathit{N}(\mathsf{0}, \mathit{W}) \end{aligned}$

STANDARD LONGITUDINAL MODEL

 $\begin{aligned} Y_t &\sim \mathsf{Multinomial}(\pi_t) \\ \pi_t &= \mathsf{ILR}^{-1}(\eta_t) \\ \eta_t &= \mu_t + v_t \qquad v_t \sim \mathit{N}(\mathsf{0}, \mathit{V}) \\ \mu_t &= \mu_{t-1} + \omega_t \qquad \omega_t \sim \mathit{N}(\mathsf{0}, \mathit{W}) \end{aligned}$

ESTIMATING "SIGNAL-TO-NOISE" RATIO

Biological Noise to Technical Noise Ratio

$$\frac{\operatorname{Tr}(W)}{\operatorname{Tr}(V)}$$

Percent of Noise (Excluding Counting) Attributable to Biology Tr(W) $\overline{Tr(V) + Tr(W)}$

ESTIMATING "SIGNAL-TO-NOISE" RATIO

Biological Noise to Technical Noise Ratio

 $\frac{\operatorname{Tr}(W)}{\operatorname{Tr}(V)}$

Percent of Noise (Excluding Counting) Attributable to Biology Tr(W) $\overline{Tr(V) + Tr(W)}$

STANDARD LONGITUDINAL MODEL

 $\begin{aligned} Y_t &\sim \mathsf{Multinomial}(\pi_t) \\ \pi_t &= \mathsf{ILR}^{-1}(\eta_t) \\ \eta_t &= \mu_t + v_t \\ \mu_t &= \mu_{t-1} + \omega_t \end{aligned} \qquad \begin{aligned} v_t &\sim \mathsf{N}(\mathsf{0}, \mathsf{V}) \\ \omega_t &\sim \mathsf{N}(\mathsf{0}, \mathsf{W}_t) \end{aligned}$

CONDITION TO HANDLE REPLICATES

$$W_t = \begin{cases} 0 & \text{if } t \text{ is a replicate of } t-1; \\ W & \text{otherwise;} \end{cases}$$

DOMINATED BY TECHNICAL NOISE AT HOURLY INTERVALS

Biological Noise to Technical Noise Ratio

 $\frac{\operatorname{Tr}(W)}{\operatorname{Tr}(V)}$

Percent of Noise (Excluding Counting) Attributable to Biology Tr(W) $\overline{Tr(V) + Tr(W)}$

BIOLOGICAL AND TECHNICAL VARIATION CAN HAVE DIFFERENT SHAPES

